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ABSTRACT
We analyze the relative contribution of environmental and spatial variables to the
alpha and beta components of taxonomic (TD), phylogenetic (PD), and functional
(FD) diversity in ant communities found along different climate and anthropogenic
disturbance gradients across western and central Europe, in order to assess the
mechanisms structuring ant biodiversity. To this aim we calculated alpha and beta
TD, PD, and FD for 349 ant communities, which included a total of 155 ant species;
we examined 10 functional traits and phylogenetic relatedness. Variation partitioning
was used to examine how much variation in ant diversity was explained by environ-
mental and spatial variables. Autocorrelation in diversity measures and each trait’s
phylogenetic signal were also analyzed. We found strong autocorrelation in diversity
measures. Both environmental and spatial variables significantly contributed to
variation in TD, PD, and FD at both alpha and beta scales; spatial structure had
the larger influence. The different facets of diversity showed similar patterns along
environmental gradients. Environment explained a much larger percentage of
variation in FD than in TD or PD. All traits demonstrated strong phylogenetic
signals. Our results indicate that environmental filtering and dispersal limitations
structure all types of diversity in ant communities. Strong dispersal limitations
appear to have led to clustering of TD, PD, and FD in western and central Europe,
probably because different historical and evolutionary processes generated different
pools of species. Remarkably, these three facets of diversity showed parallel
patterns along environmental gradients. Trait-mediated species sorting and niche
conservatism appear to structure ant diversity, as evidenced by the fact that more
variation was explained for FD and that all traits had strong phylogenetic signals.
Since environmental variables explained much more variation in FD than in PD,
functional diversity should be a better indicator of community assembly processes
than phylogenetic diversity.
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INTRODUCTION
A central goal in ecology is to describe patterns of species diversity and composition

along broad environmental gradients and to identify the mechanisms that underlie them

(e.g., Pianka, 1966; Gaston, 1996). For instance, broad-scale patterns of species richness are

often correlated with contemporary climate (Gaston, 1996). However, since climatic factors

are usually correlated with latitude, and latitude is, in turn, correlated with other factors,

the underlying causes of variation in species richness are much debated (e.g., Pianka,

1966; Willig, Kaufman & Stevens, 2003). Moreover, other environmental factors besides

(or in addition to) climate can affect diversity patterns. For instance, species richness and

composition may vary along disturbance (Fox, 2013) or habitat heterogeneity gradients

(Rahbek et al., 2007).

Spatial factors might also influence diversity patterns. In fact, environmental gradients

are themselves spatially structured (Legendre & Legendre, 1998), and random but

spatially limited dispersal of species (Tuomisto, Ruokolainen & Yli-Halla, 2003) can also

generate spatially structured patterns. Consequently, dispersal limitations and habitat and

environmental similarities may result in positive spatial autocorrelation in communities

(Legendre et al., 2009). In particular, the extent to which species diversity patterns are

determined by environmental filters versus random but spatially autocorrelated dispersal

are intensely debated (e.g., Tuomisto, Ruokolainen & Yli-Halla, 2003). It has been suggested

that simultaneously examining the influence of environmental and spatial factors on

communities could reveal their relative importance (e.g., Borcard et al., 2004). If species

diversity patterns solely vary along environmental gradients, it would indicate that the

underlying mechanism is environmental filtering; if only spatial structure has an effect,

variation in diversity patterns may arise from dispersal limitations. Although there has

been a recent increase in the number of studies analyzing the relative contribution of

environmental and spatial factors to species diversity patterns, taxonomic diversity (TD)

has been the main focus; other diversity components have only rarely been examined (but

see Meynard et al., 2011).

The problem is that measures of TD treat all species as evolutionarily independent and

ecologically equivalent and therefore may not provide enough information regarding the

mechanisms underlying community patterns. For this reason, new biodiversity metrics

that incorporate information about the functional and phylogenetic characteristics of

communities have recently been proposed. While phylogenetic diversity (PD) reflects

the accumulated evolutionary history of a community (Webb et al., 2002), functional

diversity (FD) reflects the diversity of morphological, physiological, and ecological traits

found therein (Petchey & Gaston, 2006). Understanding how PD and FD relate to TD can

provide insights into the extent to which community assembly is driven by deterministic

versus stochastic processes (Cavender-Bares et al., 2009; Pavoine & Bonsall, 2011; Purschke

et al., 2013). For a given phylogeny of available lineages and evolutionary rate for

functional traits, one would expect to see different patterns of phylogenetic and functional

community structure depending on whether competition or environmental filtering is the

primary driver of community assembly (Webb et al., 2002; Kraft et al., 2007). It is generally
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thought that FD and PD are positively correlated with TD at the regional scale (e.g., Forest

et al., 2007; Faith, 2008; Meynard et al., 2011; but see Losos, 2008; Devictor et al., 2010; Safi

et al., 2011). If functional traits allow species to locally adapt to environmental conditions

(Pavoine et al., 2011), it may be that environmental filters predominantly influence the

functional structure of communities and that nothing is reflected by their taxonomic

and phylogenetic structures (Dı́az et al., 2007; Mouchet et al., 2010). However, a strong

correlation between FD and PD would be expected if the functional traits that allow species

to persist in the environment are evolutionarily conserved, that is to say, they display

phylogenetic signals (Webb et al., 2002; Cavender-Bares et al., 2009).

Since the processes that shape biodiversity differ across scales (Whittaker, Willis &

Field, 2001), it is also relevant to study the aforementioned facets of diversity at different

scales of analysis (e.g., alpha and beta diversity) (Devictor et al., 2010; Bernard-Verdier

et al., 2013). Analyzing patterns at only one of these scales can result in misleading or

incomplete interpretations of the results (Whittaker, Willis & Field, 2001). For instance,

if environmental determinism is at work via trait-based species sorting, significant

patterns of turnover (i.e., beta diversity) in FD, PD (assuming niche conservatism),

and TD will be found. In contrast, it may not translate into significant patterns in

alpha-level TD, PD, and FD: their values may remain unchanged despite significant species,

species-trait, or lineage turnover (Mouchet et al., 2010). In addition, addressing both scales

of analysis provides complementary information. At the local-level, biotic interactions,

environmental filtering, and stochastic processes play major roles in determining (alpha)

diversity whereas, at more regional scales, environmental filtering as well as historical and

evolutionary processes may largely drive (beta) diversity (Cavender-Bares et al., 2009). For

instance, it is thought that environmental filtering operates more strongly at the regional

scale (Cornwell, Schwilk & Ackerly, 2006), while species interactions (e.g., competition)

drive local-level assembly patterns (Cavender-Bares et al., 2009; Slingsby & Verboom, 2006).

In this study, we evaluated how alpha and beta TD, PD, and FD in ant communities

across western and central Europe are shaped by environmental and spatial factors, with

the aim of understanding the mechanisms that structure communities. We also analyzed

trait phylogenetic signals to determine if they helped shape pattern similarity among

the three facets of diversity. Ants are a good study system when it comes to examining

biodiversity patterns because they are among the most diverse and abundant organisms

on earth and perform a great variety of ecological functions that are critical for ecosystems

(Hölldobler & Wilson, 1990). We compiled data from 349 ant communities that included

a total of 155 ant species, and we characterized a set of 10 functional traits that reveal

different dimensions of the ant functional niche. We also quantified ant phylogenetic

relatedness. Our communities were distributed along different broad environmental

gradients (e.g., climate, land-use, and anthropogenic disturbance). This is the first study

to analyze the relative contribution of different factors to different facets of biodiversity at

two different scales (alpha and beta). We generated the following three hypotheses. First,

environmental heterogeneity and space should significantly contribute to variation in TD,

PD, and FD at both alpha and beta scales. However, since ants face dispersal limitations
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Figure 1 Map of the study area showing plot distribution.

(Mezger & Pfeiffer, 2011), we expected spatial factors to make a larger contribution. Second,

the different facets of biodiversity should show similar responses along environmental

gradients. Third, because environmental filtering is expected to limit community members

to those that are preadapted to local conditions, and that are thus functionally similar,

environmental factors should influence FD more than TD or PD; in turn, if strong niche

conservatism exists, PD and FD should display similar patterns.

MATERIAL AND METHODS
Ant community data
Information on the species composition of European ant communities was obtained from

primary data collected by the authors and from an exhaustive search of scientific literature

that contained species abundance or presence-absence data from single locations. The

dataset encompassed 349 sites from eleven different countries (Fig. 1). At these sites, there

were a total of 155 ant species (Table S1). As abundance information does not necessarily

provide better diversity metrics (Devictor et al., 2010), and given that presence-absence
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data are more comparable among sites than are abundance data (usually measured in

different ways: number of nests, individuals at baits, or individuals in pitfall traps), we

focused our analyses on the presence-absence dataset.

Trait data
We characterized 155 ant species according to 10 traits that determine different dimensions

of the ants’ functional niches with respect to morphology, life-history, and behavior at both

the level of the individual worker and that of the colony (Tables S1 and S2). These traits are

considered important in ants because of their influence on ant autoecology and ecosystem

functioning (e.g., Hölldobler & Wilson, 1990; Arnan, Cerdá & Retana, 2012; Arnan et al.,

2013; Arnan, Cerdá & Retana, 2014); furthermore, they strongly respond to environmental

gradients (Arnan, Cerdá & Retana, 2012; Arnan et al., 2013; Arnan, Cerdá & Retana, 2014).

Phylogenetic data
We built a complete phylogeny for the 155 ant species considered (phylogenetic tree

provided in Fig. S1). This tree was the product of a super tree derived from a genus-level

phylogeny created using a molecular dataset (Moreau & Bell, 2013). We then added species

to this basal tree by integrating the results of different studies, using a combination of

molecular and taxonomic data (Appendix S1). The tree was reconstructed with Mesquite

version 3.0 (Maddison & Maddison, 2014). For this phylogeny, reliable estimates of branch

length and node ages were unavailable. First, to solve the polytomies, we used ‘multi2di’

from the R (R Development Core Team, 2010) package ‘phytools’. Second, the tree was

ultrametrized applying Grafen’s Rho transformation to branch lengths, using the function

‘compute.brlen’ from the R package ‘ape.’

Environmental gradients
Sites were classified according to their positions along different environmental gradients,

which were grouped into two broader gradients:

(a) Climate gradients. Climate data for each site came from the WORLDCLIM database

(http://www.worldclim.org/bioclim); rasters of the highest available resolution (30

arc-seconds) were used. We obtained values for four climate variables: mean annual

temperature, temperature amplitude (the difference between the maximum and the

minimum annual temperatures), annual precipitation, and precipitation seasonality

(coefficient of variation of the monthly precipitation level). Previous studies have high-

lighted the independence of these climate variables (Arnan, Cerdá & Retana, 2014).

(b) Land-use gradients. A land-use diversity index was calculated by applying the Simpson

index of diversity to the percentage of different land-use categories within a 2-km

radius area around the central point of each site. We used seven land-use categories

(artificial surfaces, agricultural areas, forests, scrublands, meadows, wetlands, and

water bodies), which were obtained from the CORINE land-cover vector database

(Bossard, Feranec & Otahel, 2000), derived from 25-m resolution satellite data.

Similarly, an anthropogenic disturbance index was calculated based on the proportion
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of the 2-km radius area around the center of each plot that was occupied by the

aforementioned artificial surfaces. We assumed that natural sites within areas with

a higher proportion of anthropogenic land-use would be more likely to suffer from

anthropogenic disturbance.

All variables were standardized to have a mean of 0 and a variance of 1

(De Bello et al., 2010).

Spatial structure
In order to explore the sites’ spatial structure, we generated a set of multiscale principal

coordinates of neighbor matrices (PCNM) from the geographic distance matrix using the

R package PCNM. PCNM eigenfunctions depict a spectral decomposition of the spatial

relationships among sites. They are orthogonal sine waves that describe all the spatial scales

that can be accommodated in the sampling design (Dray, Legendre & Peres-Neto, 2006),

such that the first and last axes represent broad- and fine-scale patterns, respectively. Sixty

PCNMs were generated.

Partitioning taxonomic, functional, and phylogenetic diversity
To partition each facet of biodiversity considered (TD, FD, and PD) into alpha and beta

components, we used the Rao quadratic entropy index, which provides a standardized

methodology for comparing these components within the same mathematical framework

(Pavoine, Dufuor & Chessel, 2004; De Bello et al., 2010; Devictor et al., 2010). Moreover,

this index makes it possible to calculate functional diversity for combinations of traits,

and it can handle quantitative, categorical, and binary traits (e.g., Rao, 1982; Lepš

et al., 2006). Furthermore, its estimates of functional and phylogenetic diversity are

relatively independent of taxonomic diversity (e.g., Mouchet et al., 2010). We used additive

partitioning to break down overall gamma diversity into within (alpha) and among (beta)

community diversity. Within each community k with S species, α-diversity was calculated

using Rao’s coefficient of diversity (Rao, 1982; Pavoine, Dufuor & Chessel, 2004) modified

for presence-absence data:

α Rao(k) =

S
i=1

S
j=1

dij

where dij is the distance between species i and j, which can be taxonomic, functional, or

phylogenetic. This index represents the expected dissimilarity between two individuals of

different species chosen randomly from the community. Between communities k and l,

β-diversity was computed using the Rao’s dissimilarity index (Rao, 1982; Pavoine, Dufuor

& Chessel, 2004), which is the expected distance between two individuals of different

species chosen randomly from two distinct communities:

β Raopairwise(k,l) = (γ(k+l) − ᾱ(k,l))/γ(k+l)

where γk+1 is the gamma diversity of the pair of communities (calculated with the same

equation as for alpha diversity, but taking into account all the species included in the
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two communities) and ᾱ(k,l) is the mean α-diversity of the two communities. Prior to

performing the calculations, we applied Jost’s correction (Jost, 2007) to γ and α to properly

quantify β-diversity independently of α-diversity (De Bello et al., 2010). To carry out these

calculations, we used the function ‘rao’ (De Bello et al., 2010) in R.

To calculate the Rao quadratic entropy index, different distance measures were used

depending on the facet of diversity considered. Taxonomic distances between species

were measured as dij = 1 when i ≠ j, and dij = 0 when i = j. To compute functional

distances between species, we first conducted a principal component analysis (PCA) on the

standardized (mean = 0, SD = 1) trait data to correct for dominance in the distance matrix

by highly correlated traits (Devictor et al., 2010; Purschke et al., 2013). The resulting PCA

axes were used to calculate Euclidean distances. Phylogenetic distances between species

were measured with the cophenetic distances from the phylogenetic tree. We scaled all

distances between 0 and 1 by dividing each type of distance by its maximum value in order

to make taxonomic, functional, and phylogenetic distances comparable.

Statistical analyses
Moran’s I and Mantel tests were used to test for spatial autocorrelation between the alpha

and beta components of TD, PD, and FD, respectively.

We used redundancy analysis (RDA) with variation partitioning (Borcard, Legendre &

Drapeau, 1992) to assess the relative influence of environmental and spatial factors, alone

and combined, on alpha- and beta-level variation in TD, PD, and FD. We partitioned

the variation into multiple components: a pure environmental component, a pure

spatial component, a spatially structured environmental component, and residual

variation. Forward selection (Blanchet, Legendre & Borcard, 2008) was used for each set

of environmental and spatial variables to select only those variables that significantly

explained variation in the dependent variables (p < 0.05, after 999 random permutations).

Only the selected variables were used in variation partitioning. R2 values adjusted for the

number of sites and explanatory variables were used throughout because they provided

corrected estimates of explained variation (R2
adj; Peres-Neto et al., 2006). Monte Carlo

permutation tests (9,999 permutations) were used to calculate the significance levels of

the different components. Since the beta diversity indices estimated with the RaoQ index

were dissimilarity matrices, they cannot be used directly as response variables in this type

of variation-partitioning framework. Therefore, prior to conducting the RDA analysis

and variation partitioning, we transformed the dissimilarity matrices into data frames by

conducting a principal coordinate analysis (PCoA) on the dissimilarity matrices; we then

used the scores of the significant axes as the representative values for each community

(Legendre & Anderson, 1999). Mixing traits in the functional diversity index as we did could

have resulted in FD demonstrating a neutral response to gradients; this does not occur

when individual traits are used. To address this problem, we also conducted analyses of FD

for each trait separately.

A relationship between FD and PD could be explained by significant phylogenetic

signals in the traits used to calculate FD. We therefore tested for their presence using Pagel’s
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Figure 2 Correlograms for the alpha and beta components of the taxonomic, phylogenetic and func-
tional diversity. We used the Moran’s I and Mantel tests for alpha and beta diversity, respectively. Black
circles indicate significant correlation (p < 0.05).

λ test (Pagel, 1999), which assumes a Brownian motion (BM) model of trait evolution.

To test for statistical significance, we used a likelihood ratio test approximated by a

chi-squared distribution to compare the negative log likelihood obtained when there is no

signal (i.e., using the tree transformed λ = 0) to that estimated from the original topology.

All analyses were conducted in R using the packfor, PCNM, vegan, ade4, and Geiger

packages.

RESULTS
We found strong autocorrelations between both the alpha and beta components in the

three facets of diversity (Fig. 2). According to our first hypothesis, our RDA analyses

revealed that both environmental and spatial factors significantly contributed to variation

in alpha- and beta-level TD, PD, and FD (Fig. 3). Furthermore, we found that spatial

factors made a much larger contribution than environmental factors for all dependent

variables (Fig. 3), which indicates that ant communities within our study area were
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Figure 3 Partitioning of variation in alpha- and beta-level taxonomic (TD), phylogenetic (PD), and
functional (FD) diversity. The figure depicts the adjusted unique contribution (R2) of environmental
factors (light gray), spatial factors (black), spatially structured environmental factors (dark gray), and
unexplained variation (white), as calculated in the RDA analyses. Tests of significance for the environ-
mental and spatial factors were all significant (p < 0.05).

strongly structured by space. The PCNMs retained in the alpha- and beta-level models

of spatial structure were mostly broad in scale (Fig. 4).

Although environmental factors made a relatively smaller contribution, they nonethe-

less appear to play an important role in structuring ant diversity. Interestingly, the different

facets of diversity mostly responded to similar environmental gradients in the same

way (Table 1), which gives support to our second hypothesis. In the alpha-level RDAs,

two of the six environmental variables (mean annual temperature and anthropogenic

disturbance) were retained in the TD, PD, and FD models, which highlight the role of these

two factors in determining ant diversity. In particular, warmer and less disturbed sites had

higher levels of all three types of diversity. Mean annual temperature explained most of

the variation in PD and FD; in the case of TD, anthropogenic disturbance explained an

equivalent amount of variation. TD and FD were positively correlated with temperature

amplitude, and TD and FD were negatively correlated with precipitation seasonality

and annual precipitation, respectively (Table 1). No facet of diversity was influenced by

land-use diversity. In the beta-level RDAs, four of the six environmental variables (mean

annual temperature, temperature amplitude, precipitation seasonality, and anthropogenic

disturbance) were retained in the TD, PD, and FD models (Table 1). More specifically,

the greater the distance among these environmental variables, the higher the turnover in

TD, PD, and FD. Once again, mean annual temperature explained most of the variation.

Turnover in TD was mediated by differences in annual precipitation, while turnover in FD

was mediated by annual precipitation and land-use diversity (Table 1).

At the alpha scale, environmental factors accounted for only a small fraction of the total

variation in TD (3%), PD (1%), and FD (6%). Spatial factors had greater explanatory

ability (21, 27, and 21%, respectively). Spatially structured environmental factors
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Figure 4 Selected PCNMs from the 60 PCNMs that exhibit a positive spatial correlation for the
alpha and beta components of taxonomic (TD), phylogenetic (PD) and functional (FD) diversity. The
selected PCNMs from forward selection analyses are represented by red circles.

Table 1 Variables retained, adjusted R-squared, and significance values from the forward-selected models examining the effect of environmental
factors on alpha- and beta-level taxonomic, phylogenetic, and functional diversity. The directions of the significant relationships are depicted in
brackets.

Alpha diversity Beta diversity

Taxonomic
diversity

Phylogenetic
diversity

Functional
diversity

Taxonomic
diversity

Phylogenetic
diversity

Functional
diversity

Mean annual temperature (+) 0.06*** (+) 0.15*** (+) 0.18*** (+) 0.35*** (+) 0.24*** (+) 0.35***

Temperature amplitude (+) 0.01* (+) 0.09*** (+) 0.03*** (+) 0.02*** (+) 0.07***

Annual precipitation (−) 0.01* (+) 0.01*** (+) 0.005*

Precipitation seasonality (−) 0.02** (+) 0.06*** (+) 0.01** (+) 0.02***

Land-use diversity index (+) 0.01**

Anthropogenic disturbance
index

(−) 0.06*** (−) 0.02** (−) 0.02** (+) 0.02*** (+) 0.01** (+) 0.005*

Full-model adjusted R2 0.15 0.17 0.29 0.47 0.28 0.45

Notes.
* P < 0.05.

** p < 0.01.
*** p < 0.001.

explained 13, 16, and 23% of the total variation in TD, PD, and FD, respectively (Fig. 3).

Environmental factors (alone, and in tandem with space) made a greater contribution to

FD than to TD and PD. These results are in agreement with our third hypothesis. Like at

the alpha scale, at the beta scale, environmental factors accounted for only a small fraction

of the total variation in TD (6%), PD (4%), and FD (5%). Spatial factors explained 21, 18,

and 15% of the variation in TD, PD, and FD, respectively. In contrast, spatially structured
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environmental factors had the greatest explanatory ability (TD: 41%, PD: 24%, and FD:

39%, respectively). Environmental factors (alone, and in tandem with space) made a

greater contribution to TD and FD than to PD. Overall, they explained much more beta-

than alpha-level variation in TD, PD, and FD, especially in the case of TD and FD (Fig. 3).

When the functional traits were examined separately (Table S3 and Fig. S2), it was clear

that FD was shaped by individual trait responses at both the alpha and beta scales. Traits

responded differently (positively or negatively) to the various environmental gradients

and made different contributions to the environmental and spatial components. Indeed,

the global FD pattern did not seem to be driven by any particular trait, since no single

trait showed the same pattern as global FD. Furthermore, individual functional responses

did not mirror TD and FD patterns at either the alpha or the beta scale. However, all

the functional traits had significant phylogenetic signals (Table S4), which is evidence

(albeit not definitive) for niche conservatism. The values of Pagel’s λ ranged from 0.78 for

polydomy to 1 for diet (seeds, in particular) and foraging strategy, which demonstrates that

phylogenetic signals were strong for most of the functional traits.

DISCUSSION
In accordance with our first hypothesis, we found that environmental factors and spatial

factors separately influence alpha- and beta-level TD, PD, and FD. In particular, it seems

that climate and human-modified landscapes shape the different facets of ant diversity

in western and central Europe. More interestingly, spatial factors played a large role,

which suggests that dispersal limitations have a strong effect on ant community structure

at the different diversity levels. However, the strength of the role of spatial factors on

shaping the different facets of ant diversity may reflect the omission of certain spatially

structured environmental variables (Jones et al., 2008). We refute this interpretation for

several reasons. First, we examined a wide range of key gradients, including the main

climate and human-modified landscape gradients in western and central Europe. Other

studies have found that similar gradients have an influence on the structure of animal

communities (Meynard et al., 2011), including ant communities (Arnan, Cerdá & Retana,

2012; Arnan, Cerdá & Retana, 2014). Second, there were strong spatial autocorrelations in

all the diversity metrics (Fig. 1), and we found that alpha- and beta-level spatial structure in

all the diversity facets was best explained by broad-scale PCNMs (Fig. 4). Third, our study

area encompassed much of western and central Europe, which contains a great diversity of

habitats, and even spanned across some large mountain ranges. Fourth, ant gynes seem to

face dispersal limitations as a general rule (Mezger & Pfeiffer, 2011) because ants are small

and their alates are often poor dispersers. Altogether, this evidence suggests that, given the

presence of mountain ranges, habitat diversity, and other obstacles, dispersal limitations

strongly structure ant communities across Europe at all diversity levels. In this respect,

our results agree with those of Meynard et al. (2011), who found that spatial structure

played a preponderant role in structuring alpha- and beta-level TD, PD, and FD in French

bird communities. Dispersal limitations are much more severe in ants than in birds, and,

accordingly, our study found a stronger effect of spatial factors on diversity.
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Although we found that ant diversity patterns in western and central Europe are

determined by spatial and environmental parameters, our results also highlight a large

portion of unexplained variation in alpha and beta diversity patterns. This fact suggests

that other processes are at work in determining ant diversity patterns. For instance, ant

diversity patterns across Europe might also be determined by stochastic mechanisms,

assuming that population dynamics do not depend on environmental characteristics and

are primarily driven by ecological drift and dispersal (Hubbell, 2001). Also, the omission of

non-spatially structured biological or environmental variation might also account for part

of the unexplained variance. For instance, it is known the role of competitive interactions

in structuring ant diversity at the local scale (Cerdá, Arnan & Retana, 2013); the fact that

the portion of unexplained variance is higher for the alpha than for the beta diversity

(Fig. 3), might suggest that variation in competitive interactions along the gradients might

account for part of the unexplained variance in ant diversity patterns.

We also found largely support for our second hypothesis: TD, PD, and FD in ant

communities demonstrated parallel responses along most of the environmental gradients

in western and central Europe. Given that spatially structured environmental factors

had strong effects (Fig. 1), a possible explanation is that topography-related dispersal

limitations affect particular functional groups and/or lineages, and consequently,

particular species. It is worth mentioning here that we found strong phylogenetic signals

in the traits we examined (Table S3), which might explain why PD and FD showed highly

similar responses. Once again, our results corroborated those of Meynard et al. (2011),

the only other study conducted thus far that had similar aims and a comparably large

spatial scale. The authors found general support for the idea that hypotheses generated

for local and regional TD can be extended to PD and FD. Conversely, Bernard-Verdier et

al. (2013) observed no congruence among alpha- and beta-level TD, PD, and FD along

local gradients of soil type and resource availability. Purschke et al. (2013) found similar

incongruence in a plant community over the course of plant succession. A recent study

that analyzed the FD of plants along a latitudinal gradient in the New World found that

patterns of alpha-, beta-, and gamma-level diversity failed to match any one theory of

species diversity (Lamanna et al., 2014). A global comparison of mammalian diversity

found that TD, PD, and FD are somewhat related and concluded that any mismatches were

attributable to environmental factors (Safi et al., 2011).

However, we also found some environment-mediated mismatches, which might be due

to assorted environmental drivers differentially filtering the different facets of diversity

(Safi et al., 2011; Hermant et al., 2012). For instance, diversity patterns varied along

the annual precipitation gradient. Precipitation usually influences primary productivity

and resource availability (Leith & Whittaker, 1975). The lower functional diversity

in wetter areas might stem from relaxed local competition: higher levels of primary

productivity could mean less competition for resources and thus lower rates of species

extinction, ultimately resulting in functional redundancy (Pavoine & Bonsall, 2011).

Consequently, functional turnover should be much higher than taxonomic turnover

along the precipitation gradient, which is what we observed. Moreover, the degree of
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niche conservatism might vary for different environmental gradients, which might explain

why patterns among the three facets of diversity differed in some gradients. However, this

speculation remains outside the scope of our paper.

In our study, the most striking environmental gradient was a climate gradient, along

which mean annual temperature varied: it influenced all three facets of diversity and

explained much more variation than the other environmental factors. This finding

highlights the role of temperature as one of the main drivers of biodiversity, which

supports concerns about the effects of climate change on species distributions (Dunn

et al., 2009; Jenkins et al., 2011), as well as related ecosystem services and evolutionary

responses. The negative effect that anthropogenic disturbance had on all three facets of

diversity at both alpha and beta scales—triggering diversity turnover—should also be

underscored. Furthermore, land-use diversity affected functional turnover. These findings

are noteworthy given concerns about the functional consequences of current biodiversity

losses (Loreau et al., 2001), especially those mediated by human-driven changes (Foley

et al., 2005); indeed, the most important driver of declining biodiversity is changes in

land use (Sala et al., 2000). In accordance with our third hypothesis, FD responded to

more environmental gradients than either TD or PD did. Furthermore, when all three

facets of diversity significantly responded to the same environmental gradient, relatively

more variation in FD was explained. However, our single-trait analyses suggest that this

finding might be contingent on the trait examined. At any rate, the large contribution of

environmental gradients to the multi-trait FD index seems somewhat obvious, because a

species’ traits clearly determine whether it will successfully pass through an environmental

filter (Pavoine & Bonsall, 2011) and consequently are the underlying force shaping

functional composition. Interestingly, environmental factors explained a similar amount

of beta-level variation in TD and FD, which suggests that strong environmental filtering

is operating along these gradients (Mouchet et al., 2010). If species sorting is weak, we

would not expect to see major changes in functional traits, i.e., we would not expect high

functional turnover even if species turnover occurred. In contrast, if there is strong species

sorting along environmental gradients, we would expect both species and functional

turnover (Mouchet et al., 2010).

Notably, environmental factors explained more alpha- and beta-level variation in FD

than in PD. In birds, Meynard et al. (2011) found the opposite pattern; they attributed this

finding to either overlooking some of the relevant gradients that affect FD, using poorly

chosen life-history traits to measure FD, or the fact that PD is simply a more integrative

proxy than FD when analyzing a given subset of life-history traits. In this study, we

refute the general assumption that PD is a more integrative measure of FD (Cadotte et

al., 2009; Meynard et al., 2011), and we give empirical support to those authors who have

questioned this assumption from a theoretical standpoint (Losos, 2008; Cavender-Bares

et al., 2009; Mouquet et al., 2012). Phylogenetic diversity does not appear to be a good

proxy for FD when a large number of well-chosen, diverse functional traits are used. We

selected morphological, life-history, and behavioral traits related to resource exploitation,

reproduction, and social structure; these traits have been demonstrated to be strongly
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related to the abiotic environment (Arnan et al., 2013; Arnan, Cerdá & Retana, 2014) and

may therefore reflect effective local adaptation. Our results lend credence to the idea that

FD is a better indicator of community assembly processes than PD (Dı́az et al., 2007).

We also found that environmental factors had a stronger effect on TD, PD, and FD

at the beta level than at the alpha level, which supports the idea that environmental

filtering is stronger at the regional scale (Cornwell, Schwilk & Ackerly, 2006). Other kinds

of mechanisms, such as species interactions (e.g., competition or facilitation), might

have larger effects at the local scale than at the regional scale (Cavender-Bares et al.,

2009; Slingsby & Verboom, 2006). Moreover, beta diversity responded more similarly to

environmental gradients than did alpha diversity. This finding concurs with the results of

some past work (Devictor et al., 2010; Bernard-Verdier et al., 2013), which found relatively

greater congruence among different facets of beta-level vs. alpha-level diversity.

Finally, we should assume that our study might have some limitations, mainly related to

the fact that the communities we used are not evenly distributed across the spatial coverage

of this study, and they account for a subset of species known to occur in western and central

Europe. However, our study encompasses the most comprehensive dataset on ant commu-

nities in Europe. Although our communities do not display a regular spatial distribution,

they encompassed most of the range that the environmental variables take across western

and central Europe; moreover, the species we found in this study are the most common

species of the region. All this suggest that the results from our sampled communities are

representative of the patterns of ant diversity in western and central Europe.

CONCLUSIONS
By using variation-partitioning analyses, we have demonstrated that ant diversity patterns

in western and central Europe, whether TD, PD, or FD, are driven by both environmental

determinism and dispersal limitations, with the latter playing a more prominent role.

The strong autocorrelations that we found in our diversity data, along with the potent

effects of dispersal limitations, underscore that TD, PD, and FD are highly heterogeneous

in western and central Europe. This finding implies that western and central European

ant communities are taxonomically, phylogenetically, and functionally clustered (Zupan et

al., 2014), which might be the result of historical and/or evolutionary forces. For instance,

the study area is composed of highly diverse biogeographic regions, which might display

different rates of trait evolution and speciation (e.g., Weir & Schluter, 2007; Cooper &

Purvis, 2010). Recent massive diversification events (Slingsby & Verboom, 2006), and the

different historical disturbance regimes at the origin of current-day European landscapes

(Schelhaas, Nabuurs & Schuck, 2003) might contribute to this heterogeneity in ant diversity.

Our findings also highlight that the different facets of diversity are fairly equivalent

because they demonstrate similar patterns along environmental gradients. However,

environmental factors explained the most variation in FD, which reflects the strong effect

that species sorting (i.e., environmental filtering) has on these patterns. Furthermore,

functional traits had strong phylogenetic signals, which suggests that niche conservatism

might account for the parallel patterns displayed by FD and PD and, therefore, also have
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relevance for diversity patterns in general. It is clear that incorporating phylogenetic

relationships and functional ecology into analyses of ecological patterns allowed us to draw

stronger conclusions regarding the mechanisms that underlie macroecological patterns

at different spatial scales (Webb et al., 2002; Cavender-Bares et al., 2009). There is thus a

definite need to integrate the information furnished by different facets of diversity to better

understand the assembly rules responsible for current global patterns of biodiversity.
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