The authors have investigated the antibacterial activity of several plant compounds and their effect cytotoxic effect. The compounds have a strong effect on various clarithromycin susceptible and resistant strains of M. abscessus. The study is well designed. However, the introduction needs to be elaborated to put forth a clear and detailed literature review and its development in the field. The role of these plants in folk or cultural medicine and the previous research developments about them should be written with a conclusion of the significance of this study at the end of the introduction. There are technical mistakes in presenting the data. The figures need editing and error bars to be depicted with clarity. The literature references are lacking appropriateness with methodology and findings. Other than that the work is divided into appropriate subsections of coherent linkages. The discussion part needs to be more coherent with results, the discussion of the findings with respect to already findings in the literature would broaden its standing and scope.

The experimental design is OK, methods need to be presented in detail to clearly understand the steps performed in a particular method. For statistical analysis, biological or technical replicates are a must, which needs to be incorporated in the methodology section. There is a discrepancy between methods and results.

The findings have been validated with sufficient experimental methods, though technical or biological replicates need attention. Raw data needs to be shared in supplemental. The manuscript is written in good English with few typo errors. Discussion needs to be more coherent and elaborate to increase its significance.

There are certain main concerns, which need to be addressed. Other minor comments are listed in the attached file.

Major comments:

Major Comments:

- 1. Why RBC and WBCs were chosen for toxicity. It should have been tested with the appropriate cell lines where the M. abscessus causes infection in human body, like skin and lung
- 2. Authors should check the stability of the clarithromycin in culture? It might degrade with time, which leads to the growth at lower concentration with time.

Minor Comments;

Line 69: Authors must introduce these plants, fungi and their antibacterial activity

79: is it plant extracts that were purified or compounds were purified

94: Was this consent required while collecting specimens from patients that they used to generate culture collection at Srinagarind Hospital? it is not clear. Needs more clarification.

99: It would be more clear if authors can mention the media used.

115: why cation adjustment was done, is it to adjust pH? Needs clarification

117: Is this the final concentration or it would be half than this? This needs to be addressed in several places in the document.

128: What does authors mean by 5%? How much was the suspension after wash? it is not clear. Did they made 5% by counting using hemocytometer or what?

130: Is it final concentration after adding the RBC suspension?

131: Is tritron-X100 completely lysing the cells completely (needs reference)?

132: How many RBCs will be in 1ml would it be sufficient to be seen under microscope?

134: Can you read the absorbance at 540 nm, or you used some reagent like drabkin without detergent for absorbance measurement? Does compounds have any color which can affect the absorbance readings? Was proper blank included.

146: How much blood was taken?

154: how many cells were counted under microscope. Number of cells must be given to make it statistically significant.

184: This reference doesn't describe the methodology in detail. This method must be described in detail, or else provide a proper reference.

186: Is it in one experiment the concentration of clarithromycin is its MIC (128ug/ml) which is constant in all 5 wells, where each of 5 wells have one of the 5 concentrations (4MIC, 2MIC, MIC,MIC/2 and MIC/4) of the pure compound. this will determine which of the five concentration will be MIC of the pure compound in combination with drug. Then you repeat in vice versa to determine the MIC of clarithromycin in combination with the drug, whose concentration will be its MIC and is constant in all 5 wells. It must be clearly mentioned. Then how they got 4 here (4/16 for CLA/RL008) in table 3, it (4) is 1/16MIC of CLA (in methods the five concentrations were only tested?????). There seem serious mistakes either in methodology or presentation of the data. Needs details description in methods.

188-189: How the concentration of each compound will be 128 ug/ml in all combinations (the most compounds have MIC of 128ug/ml, at this concentration the growth will be inhibited any how), if 5 concentrations of each compound and clarithromycin are mixed with culture. so authors must describe this method in detail.

205: The MIC ranged from 0.12 to >16. There is no limit of the numbers after 16, it is infinite.

208: In case of inducible it is usually on 14th day, while in case of resistant it is since from 3rd day. Is this resistance phenotypic or genetic?

212: Data must be provided as a supplementary file

213: The concentration should be half when you add equal volume of culture and compound in a well?? There is discrepancy in methods and results.

222, 227: is it final concentration?

228: If it is already mentioned in methods that compounds are pure, then no need to repeat the word pure.

268-269: <1 can be any fraction like 0. 01, 0.0001 and so on. >128 could be 128mg or 128g/ml

281: caused what?

Table 1 Legend: *Crinum asiaticum* not in the table.

Figure 2: SD can not be calculate for duplicate samples. SD Error bar is not visible. The SD bar must be on the top of a bar to clearly distinguish it. Secondary metabolite (ug/ml) is sufficient in XX'. It would appear better if at one concentration (like 2ug/ml) is chosen on which all the five compound are compared in a single bar graph with SD and P values using appropriate statistical analysis.

Figure 3: It is better to show morphology of RBCs for all the five compounds. For SD, you need to have either three biological or experimental replicates.

Figure 4. It would be more appropriate if the effect of all the compound at 128 ug/ml is compared in a single graph with p values using appropriate statistical analysis. For SD, you need to have either three biological or experimental replicates.

Assessment of antimycobacterial activities of pure compounds extracted from Thai medicinal plants against clarithromycin-resistant *Mycobacterium abscessus* (#63417)

First submission

Guidance from your Editor

Please submit by 26 Aug 2021 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 5 Figure file(s)
- 3 Table file(s)
- 2 Raw data file(s)

Custom checks

DNA data checks

- Have you checked the authors data deposition statement?
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

Human participant/human tissue checks

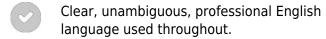
- Have you checked the authors <u>ethical approval statement?</u>
- Does the study meet our <u>article requirements</u>?
- Has identifiable info been removed from all files?
- Were the experiments necessary and ethical?

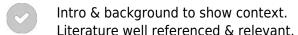
Structure and Criteria

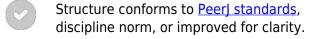
0

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:


- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review


When ready <u>submit online</u>.


Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

Figures are relevant, high quality, well labelled & described.

Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

Original primary research within Scope of the journal.

Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.

Rigorous investigation performed to a high technical & ethical standard.

Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed.

Meaningful replication encouraged where rationale & benefit to literature is clearly stated.

All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Assessment of antimycobacterial activities of pure compounds extracted from Thai medicinal plants against clarithromycin-resistant *Mycobacterium abscessus*

Auttawit Sirichoat Equal first author, 1, 2, Irin Kham-ngam Equal first author, 1, 2, Orawee Kaewprasert 1, 2, Pimjai Ananta 1, 3, Awat Wisetsai 4, Ratsami Lekphrom 4, Kiatichai Faksri Corresp. 1, 2

Corresponding Author: Kiatichai Faksri Email address: kiatichai@kku.ac.th

Background: Infection with *Mycobacterium abscessus* is usually chronic and is associated with clarithromycin resistance. Increasing drug resistance is a major public-health problem and has led to the search for new antimycobacterial agents. We evaluated the antimycobacterial activity, toxicity, and synergistic effects of several plant secondary metabolites against *M. abscessus*.

Methods: Twenty-three compounds were evaluated for antimycobacterial activity against thirty *M. abscessus* clinical isolates by broth microdilution to determine their minimum inhibitory concentration (MIC) values. Toxicity was evaluated using red and white blood cells (RBCs and WBCs). The compounds were used in combination with clarithromycin to investigate the possibility of synergistic activity.

Results: Five out of twenty-three compounds (RL008, RL009, RL011, RL012 and RL013) exhibited interesting antimycobacterial activity against M. abscessus, with MIC values ranging from <1 to >128 μ g/mL. The extracts did not induce hemolytic effect on RBCs and displayed low toxicity against WBCs. The five least-toxic compounds were tested for synergism with clarithromycin against 7 isolates with inducible clarithromycin resistance and 7 with acquired clarithromycin resistance. The best synergistic results against these isolates were observed for RL008 and RL009 (8/14 isolates; 57%).

Conclusions: This study demonstrates antimycobacterial and synergistic activities of pure compounds extracted from medicinal plants against clarithromycin-resistant *M. abscessus*. The synergistic action of the extracts may be effective for treating infections and should be further studied for the development of novel antimicrobial agents.

¹ Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand

 $^{^{2}}$ Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand

 $^{^{3}}$ Clinical Laboratory Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand

⁴ Natural Products Research Unit, Department of Chemistry, and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand, Khon Kaen, Thailand

- 1 Assessment of antimycobacterial activities of pure compounds extracted from
- 2 Thai medicinal plants against clarithromycin-resistant Mycobacterium
- 3 abscessus

- 5 Auttawit Sirichoat^{1,2}¶, Irin Kham-ngam^{1,2}¶, Orawee Kaewprasert^{1,2}, Pimjai Ananta^{1,3}, Awat
- 6 Wisetsai⁴, Ratsami Lekphrom⁴ and Kiatichai Faksri^{1,2*}

7

- 8 ¹ Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen,
- 9 Thailand
- 10 ² Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University,
- 11 Khon Kaen, Thailand
- ³ Clinical Laboratory Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University,
- 13 Khon Kaen, Thailand
- ⁴ Natural Products Research Unit, Department of Chemistry, and Center for Innovation in
- 15 Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand

16

- 17 Corresponding Author: Kiatichai Faksri^{1,2*}, Department of Microbiology, Faculty of Medicine,
- 18 Khon Kaen University, Khon Kaen 40002, Thailand, Tel +6689-4373782.
- 19 E-mail address: <u>kiatichai@kku.ac.th</u>

20

21 These authors contributed equally to this work.

22

23 Short title: Plant secondary metabolites against clarithromycin-resistant M. abscessus

- 24 Abstract
- 25 **Background:** Infection with *Mycobacterium abscessus* is usually chronic and is associated with
- 26 clarithromycin resistance. Increasing drug resistance is a major public-health problem and has
- 27 led to the search for new antimycobacterial agents. We evaluated the antimycobacterial activity,
- 28 toxicity, and synergistic effects of several plant secondary metabolites against *M. abscessus*.
- 29 **Methods:** Twenty-three compounds were evaluated for antimycobacterial activity against thirty
- 30 *M. abscessus* clinical isolates by broth microdilution to determine their minimum inhibitory
- 31 concentration (MIC) values. Toxicity was evaluated using red and white blood cells (RBCs and
- 32 WBCs). The compounds were used in combination with clarithromycin to investigate the
- 33 possibility of synergistic activity.
- 34 **Results:** Five out of twenty-three compounds (RL008, RL009, RL011, RL012 and RL013)
- exhibited interesting antimycobacterial activity against *M. abscessus*, with MIC values ranging
- 36 from <1 to >128 μg/mL. The extracts did not induce hemolytic effect on RBCs and displayed
- 37 low toxicity against WBCs. The five least-toxic compounds were tested for synergism with
- 38 clarithromycin against 7 isolates with inducible clarithromycin resistance and 7 with acquired
- 39 clarithromycin resistance. The best synergistic results against these isolates were observed for
- 40 RL008 and RL009 (8/14 isolates; 57%).
- 41 **Conclusions:** This study demonstrates antimycobacterial and synergistic activities of pure
- 42 compounds extracted from medicinal plants against clarithromycin-resistant M. abscessus. The
- 43 synergistic action of the extracts may be effective for treating infections and should be further
- studied for the development of novel antimicrobial agents.
- 45 **Keywords:** antimycobacterial activity, medicinal plants, plant secondary metabolites,
- 46 *Mycobacterium abscessus*, clarithromycin resistance

Introduction

48	Nontuberculous mycobacteria (NTM) are found in the environment (soil and water)
49	(Velayati et al. 2014). Some species of NTM can cause life-threatening human diseases with a
50	high mortality rate (Cassidy et al. 2009; Iroh Tam et al. 2015). Mycobacterium abscessus is a
51	common NTM species causing chronic infection and is highly associated with drug resistance
52	(Tung et al. 2015). In Thailand, drug-resistant M. abscessus infection has become a serious
53	health issue, requiring a prolonged course of treatment, and is associated with treatment failure in
54	up to one-third of cases (Kham-Ngam et al. 2018). Although clarithromycin is a drug of choice,
55	half of the strains present in Thailand are clarithromycin-resistant (Ananta et al. 2018).
56	Therefore, new treatment alternatives are needed to overcome drug-resistant M. abscessus
57	infection.
58	Plants are a source of bioactive compounds and can treat various diseases. Northeastern
59	Thailand has high plant diversity, which remains locally important as a source of traditional
60	medicines. Several research teams have reported anti-Mycobacterium tuberculosis activity of
61	plant extracts from Tetradenia riparia (see Baldin et al. 2018), Persea americana (Jimenez-
62	Arellanes et al. 2013), Lophira lanceolata (Nkot et al. 2018) and Flourensia cernua (Molina-
63	Salinas et al. 2006). In Thailand, extracts from Neonothopanus nambi (see Kanokmedhakul et al.
64	2012) and Rothmannia wittii (Chaipukdee et al. 2016) showed antimycobacterial activity against
65	M. tuberculosis. However, the effect of these plant extracts against M. abscessus has not been
66	reported.
67	We aimed to evaluate the antimycobacterial activities of pure compounds extracted from
68	four medicinal plants (Atalantia monophylla, Prismatomeris filamentosa, Ageratum conyzoides
69	and R. wittii) and from the cultured mycelium of the luminescent mushroom N. nambi

compunds were tested against clinical isolates of clarithromycin-susceptible and non-susceptible *M. abscessus*. The toxicity for mammalian cells and synergistic effect with clarithromycin of the selected compounds were also analyzed.

Materials and methods

Pure compounds extracted from local medicinal plants

A total of 23 pure compounds, consisting of 22 compounds isolated from four medicinal plants (*A. monophylla*, *P. filamentosa*, *A. conyzoides* and *R. wittii*) and one compound isolated from the cultured mycelium of a luminescent mushroom (*N. nambi*), were evaluated (**Table 1** and Fig. S1). The plant extracts were purified using column chromatography techniques to isolate the pure secondary metabolites, as described previously (Sombatsri et al. 2018). The pure compounds were dissolved in dimethyl sulfoxide (DMSO) to prepare stock solutions for analysis.

Bacterial isolates

Mycobacterium abscessus clinical isolates were retrieved from the culture collection of Srinagarind Hospital, Khon Kaen University, Thailand. All specimens were fully anonymized before they were accessed. The colony morphology of each isolate was noted. The species identification of M. abscessus was performed using INNO-LiPA Mycobacteria v2 (Innogenetics GmbH, Heiden, Germany), Genotype Mycobacterium CM/AS assay (Hain Lifescience GmbH, Nehren, Germany) or Molecutech REBA Myco-ID (YD Diagnostics CORP, Gyeonggi-do, Korea). All M. abscessus isolates were sub-cultured on Lowenstein-Jensen (LJ) solid medium and then incubated at 37°C for 7 days before further analysis. Informed consent is not required

for this study. All specimens including isolates and blood samples were obtained from routine practice in which patient's information were deidentified. This study was approved by the Khon Kaen University Ethics Committee for Human Research (HE611496).

Antibiotic susceptibility testing

The minimum inhibitory concentration (MIC) for clarithromycin was determined according to published protocols (Kham-Ngam et al. 2019). The results were interpreted according to the Clinical and Laboratory Standards Institute (CLSI) guidelines (CLSI 2018). Clarithromycin susceptibility was read at 3, 5, and 14 days. A reading at day 3 was used to test for inducible resistance according to previously described protocols (Ananta et al. 2018). Inducible resistance was inferred by changes in MIC values from "susceptible" at day 3 to "resistant" at day 14. Isolates that were resistant on day 3 and thereafter were regarded as demonstrating acquired resistance. All clarithromycin-susceptible and clarithromycin-resistant (both inducible and acquired resistance) *M. abscessus* clinical isolates were used for further analysis.

Antimycobacterial assay

The antimycobacterial assay was carried out using a broth microdilution method to determine the MIC values according to the CLSI guidelines. Two-fold serial dilutions of pure compounds were prepared directly in a 96-well microtiter plate. Individual colonies of *M. abscessus* were suspended in demineralized water to obtain a density corresponding to McFarland Standard 0.5. Then, 50 µL of cell suspension were transferred into a tube of cationadjusted Mueller-Hinton broth (TREK Diagnostic Systems, Ohio, USA) TES buffer to

117

118

119

120

achieve a final cell concentration of approximately 5×10^5 CFU/mL. One-hundred microliters of this inoculum were mixed with 100 μ L of pure compound (1, 2, 4, 8, 1, 64 and 128 μ g/mL) and were then added to each well of the 96-well plate. Following incubation for 3-5 days at 37°C, MICs were visually determined as the lowest concentration of the compound that completely inhibited the mycobacterial growth.

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

Hemolytic assay

Hemolytic activity was determined according to protocols published previously (Lima Viana et al. 2018). Briefly, six milliliters of blood from a single healthy volunteer were collected and transferred into a heparin collection tube. Whole blood was centrifuged at 5,000 rpm for 5 min and the plasma was then discarded. Human red blood cells (RBCs) were isolated and washed three times with 1% sterile phosphate buffer saline (PBS) solution (pH 7.4). The final cell suspension was adjusted to 5% of RBCs in 1% PBS. Two-hundred microliters of RBC suspension were transferred into the tubes containing different concentrations of pure compounds (1, 2, 4, 8, 16, 32, 64 and 128 µg/mL in 1% PB cositive and negative controls were used, these being 1% Triton X- solution and 1% PBS, respectively. The final volume of each experiment was 1.0 mL. The solutions we cubated at 37°C for 1 h. After incubation, the suspensions were then centrifuged at 3,000×g for 2 min. Then, 100 µL of supernatant from each tube were transferred into a 96-well plate for measurement of the absorbance at 540 nm using a microplate reader (each absorbance was measured twice). In addition, RBC morphology was observed under a light microscope and recorded. All tests were performed in duplicate for each test compounds. Hemolytic activity was calculated by the following equation:

Hemolysis (%) = $[(As - An) / (Ac - An)] \times 100$

Where As refers to the absorbance of the sample, An refers to the absorbance of the negative control (RBCs with PBS) and Ac refers to the absorbance of the positive control (RBCs with Triton X-100).

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

139

140

141

Cell viability assay

To assay the toxicity of each tested compound for human white blood cells, the trypanblue exclusion test was used (Strober 2015). Briefly, white blood cells (WBCs) were isolated from the blood of a healthy volunteer using the Ficoll density gradient technique. We blood was carefully transferred into a tube containing Ficoll solution (ratio 1:1). Then, the cells were centrifuged at 1,500 rpm for 10 min at 20°C and then the WBC layer was transferred into a new tube. WBCs were washed three times with 1% PBS at 1,500 rpm for 5 min at 20°C and resuspended with 1 mL of RPMI-1640 media (GibcoTM, New York, USA). Fifty microliters of WBC suspension were transferred into individual wells of a 96-well plate and then 50 µL of pure compounds at different concentrations (ranging from 1 to 128 µg/mL) were added. The 96-well plate was incubated at 37°C for 1 h. Then, 20 µL of the suspension was mixed with 20 µL of 0.4% trypan blue solution in buffered isotonic solution (0.81% NaCl and 0.06% K₂HPO₄) and incubated for 3 min at room temperature. The viable and dead cells were counted under a light microscope using a hemocytometer. As a negative control, WBC suspension was treated with PBS. The test was performed in duplicate for each test compounds. Dead cells were calculated using the following equation:

Dead cells (%) = (number of dead cells / total number of cells) \times 100

160

161

Genome sequencing and analysis

Genomic DNA of the 30 *M. abscessus* clinical isolates was extracted using the cetyltrimethylammonium bromide-sodium chloride (CTAB) method (De Almeida et al. 2013) and was sent for genome sequencing (NovogeneAIT, Hong Kong) using an Illumina HiSeq platform generating 150-bp paired-end reads.

The quality of raw sequences was checked using FastQC version 0.11.7 (Andrews 2010). Trimmomatic (v0.36) software (Bolger et al. 2014) was used to remove low-quality reads. High-quality paired-end reads were then mapped to the *M. abscessus* ATCC 19977 reference genome (GenBank accession number CU458896.1) using BWA-mem (v.0.7.17) (Li 2013). For converting SAM to BAM format, sorting and indexing the bam files, SAMtools v0.1.19 algorithm was used (Li et al. 2009). GATK version 4.0.5. (McKenna et al. 2010) was used for realignment, generating coverage statistics and mapping details. Both GATK and SAMtools were used for variant calling and filtering, including single nucleotide polymorphisms (SNPs) and small indel.

For phylogenetic analysis, a WGS-based phylogeny was analyzed using mpileup, VCF and coverage files. Maximum likelihood analysis was performed using MEGA-7 (Qasim et al. 2018) with the general time-reversible (GTR) and gamma model. Support for individual nodes was assessed using 1000 bootstrap replicates. The phylogenetic tree was visualized using iTol software (https://itol.embl.de/). The raw sequence data have been deposited into NCBI GenBank under Bioproject PRJNA523980.

Synergism

Combinations of plant secondary metabolites and clarithromycin were evaluated using a microdilution checkerboard method (Doern 2014). econcentrations of each test compound

and of clarithromycin (Sigma-Aldrich, Missouri, USA) were prepared (4MIC, 2MIC, MIC, 185 MIC/2 and MIC/4), and M. abscessus cell suspensions prepared as for previous experiments 186 were used. Fifty microliters of each pure compound and clarithromycin were mixed in a 96-well 187 plate, and 100 µL of inoculum were then adde nal concentration of each pure compound was 188 128 µg/mL and of clarithromycin ranged from 4 to 512 µg/mL). The plate was incubated at 37°C 189 190 for 7 days (for isolates with acquired resistance) or 14 days (for isolates with inducible resistance). The results were recorded and interpreted as fractional inhibitory concentration index 191 (FICI). The FICI value was calculated using the following equation: 192 FICI = [A] / (A) + [B] / (B)193 Where [A] refers to MIC (A) in combination with (B), (A) refers to MIC (A) alone, [B] 194 refers to MIC (B) in combination with (A), and (B) refers to MIC (B) alone. 195

FICI values of ≤ 0.5 , > 0.5-1.0, > 1.0-4.0 and > 4.0 were interpreted as indicating "synergy", "additive", "indifference" and "antagonism", respectively.

198

199

200

201

202

203

204

205

206

197

196

Results

Identification and characteristics of M. abscessus isolates used

Thirty clinical isolates of *M. abscessus* on LJ solid medium were recovered. Characteristics of these isolates are described in Fig. 1. Thirteen isolates were identified as belonging to M. abscessus subsp. abscessus and 17 isolates to M. abscessus subsp. massiliense (**Fig. 1**). Based on their phylogenetic relationships, these isolates were not clonal strains (**Fig. 1**). The MIC values for clarithromycin among the M. abscessus isolates ranged from 0.12 to ≥ 16 μg/mL. Ten isolates were phenotypically susceptible to clarithromycin (ranging from 0.12 to 2

 μ g/mL), while eleven and nine isolates exhibited inducible and acquired resistance to clarithromycin (both \geq 16 μ g/mL), pectively (**Fig. 1** and **Table 2**).

Antimycobacterial activity of plant secondary metabolites

The MIC values of 23 pure compounds were determined by broth microdilution against 30 clinical isolates of *M. abscessus*, including clarithromycin-susceptible and -resistant isolate. The MIC cut-off value of 128 μg/m at least one isolate was chosen for the selection of potentially useful test compounds. Five compounds (RL008, RL009, RL011, RL012 and RL013) were particularly effective in suppressing *M. abscessus*. The MIC values for these compounds ranged from <1 to >128 μg/mL (**Table 2**). The five effective pure compounds were selected for further analysis.

Toxicity testing on human RBCs and WBCs

The hemolytic activity of the five selected compounds (RL008, RL009, RL011, RL012 and RL013) on human RBCs was evaluated. None showed any hemolytic effect on RBCs (<1%) at various concentrations (1, 2, 4, 8, 16, 32, 64, and 128 μg/mL) (**Fig. 2**). RBC morphologies under the light microscope were displayed as the cell shrinks (**Fig. 3**). These findings indicate that the compounds were not harmful to human RBCs.

For WBCs, the percentage of dead cells following exposure to each tested compound is presented in **Fig. 4**. The toxic effects were concentration-dependent. All five compounds caused death of 15-20% of cells at concentrations of 64-128 µg/mL, except for compound RL013, for which the mortality rate was significantly lower (3-8%). These results suggest that the pure compounds have a low toxicity towards human WBCs.

Synergistic antimycobacterial activity of pure compounds and clarithromycin

Based on phenotypic results, fourteen *M. abscessus* isolates (7 isolates with inducible and 7 isolates with acquired resistance to clarithromycin) were randomly selected to study the synergistic effect against these of five pure compounds in combination with clarithromycin.

Results (**Table 3**) showed that the highest degree of synergism was observed for the RL008/CLA and RL009/CLA combinations (FICI ranging from 0.13 to 0.50), which inhibited eight *M. abscessus* isolates (57%) (**Fig. 1**). The second strongest synergistic activity was observed for the RL012/CLA combination, followed by the RL013/CLA combination, which showed synergistic effects against seven (50%) and six isolates (42.9%), respectively. The RL011/CLA combination showed the lowest synergistic effect, inhibiting only five isolates (35.7%).

Discussion

Mycobacterium abscessus mostly occurs as a chronic infection and is an important cause of morbidity and mortality (Cassidy et al. 2009). The emergence, evolution and spread of *M. abscessus* infection is highly associated with drug resistance and treatment failure (Tung et al. 2015). Antibiotic resistance to *M. abscessus* is a major public health concern worldwide, including in Thailand (Imwidthaya et al. 1990; Phowthongkum et al. 2005). Clarithromycin, a macrolide antibiotic, has a broad spectrum of antimicrobial activity that inhibits a range of Gram-positive and Gram-negative microorganisms (Van der Paardt et al. 2017). It is often a drug of choice for the treatment of serious infections caused by *M. abscessus*. However, *M. abscessus* clinical isolates with reduced susceptibility to clarithromycin have emerged, resulting in a prolonged treatment course and poor clinical outcomes (Li et al. 2017). Clarithromycin

monotherapy is associated with treatment failure. A combination of antimicrobial agents may be of therapeutic benefit and efficacious in the treatment of infections caused by clarithromycin-resistant *M. abscessus*. There is therefore a need to search for new sources of antimycobacterial substances. Plants produce a variety of bioactive compounds, sometimes with known therapeutic properties. They are good sources of powerful antibiotic metabolites and can treat various diseases (Hernandez-Garcia et al. 2019). This study was conducted to evaluate the antimycobacterial activity of different secondary metabolites of plant origin against clarithromycin-susceptible and -resistant *M. abscessus* isolates.

Researchers have isolated several such compounds and demonstrated their activities against mycobacteria, including *M. tuberculosis* (Baldin et al. 2018; Chaipukdee et al. 2016; Jimenez-Arellanes et al. 2013; Jyoti et al. 2016; Kanokmedhakul et al. 2012; Molina-Salinas et al. 2006; Naik et al. 2014; Nkot et al. 2018). However, antimycobacterial activities of secondary metabolites against *M. abscessus* have rarely been reported. We used 23 secondary metabolites isolated from *A. monophylla*, *P. filamentosa*, *A. conyzoides*, *R. wittii* and *N. nambi* against *M. abscessus* with different clarithromycin-resistance levels. The most effective compounds were RL008, RL009, RL011, RL012, and RL013, which exhibited MIC values ranging from <1 to >128 μg/ml. Previous reports also showed that colony morphology was not associated with susceptibility to first-line antibiotics (Ruger et al. 2014). However, Clary et al. (2018) reported that the colony morphotypes of *M. abscessus* were associated with biofilm formation and prolonged intracellular survival.

Checking the toxicity of secondary metabolites on both human RBCs and WBCs is of importance when selecting candidates for antimycobacterial drugs. Our results demonstrate that the selected secondary metabolites are not harmful towards RBCs. The RBC shrinkage observed

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

at high compound concentrations was an osmotic effect due to the extra-cellular concentrations. These results agree with those from a previous study (Lima Viana et al. 2018), which evaluated the antimicrobial activity of Bixa orellana secondary metabolites to treat Mycobacterium infections. In this study, the secondary metabolites tested did not induce significant toxicity in human RBCsThe plant secondary metabolites that we tested killed 3% to 20% of WBCs at their MIC levels (128 μ g/mL). The RL0013 compound caused the fewest WBC deaths (\approx 3%). Although toxicity for WBCs was quite high, these compounds had potential to inhibit clarithromycin-resistant M. abscessus isolates. Another study reported that human WBCs were similarly affected by plant secondary metabolites (Maiti et al. 2016). In this study, a combination of the tested compounds and clarithromycin had synergistic effects on some M. abscessus isolates with acquired or inducible clarithromycin resistance. No antagonistic effect of combining these substances was found. Among the five effective compounds tested, RL008 and RL009 proved to be the best ones in a combined treatment with clarithromycin, frequently showing a synergistic effect. They were particularly efficient against M. abscessus isolates, with the FICI values ranging from 0.13 to 0.5. With the synergistic effects of RL008 and RL009, the average MICs of clarithromycin alone were reduced up to 4-fold (i.e., reduced from 512 to 32 μg/mL). Both RL008 and RL009 had low toxicity against RBCs and WBCs at the MIC levels. These results are consistent with those of Rahgozar et al. (2018), who found that the best synergistic results against *Mycobacterium bovis* were obtained for extracts of Lavandula stoechas and Datura stramonium in combination with ethambutol. In addition, Lopes et al. (2014) reported that a synergism was observed against M. tuberculosis with eupomatenoid-5 (EUP-5), extracted from *Piper solmsianum* C. DC. var. solmsianum plus rifampicin, and EUP-5 plus ethambutol combinations. Similar observations of synergism between plant secondary

metabolites and various drugs against mycobacteria have been reported in other studies (Aro et al. 2016; Mossa et al. 2004; Naik et al. 2014). We observed that synergistic effects of combining the test compounds with clarithromycin occurred against *M. abscessus* isolates with inducible as well as acquired clarithromycin resistance. Therefore, plant secondary metabolites could be used for treatment of both forms of resistance. However, the association between antimycobacterial susceptibility and clarithromycin-resistance type remains unclear.

Nowadays, the frequent treatment failure of *M. abscessus* infection is a major public health concern. Although our combinations of pure compounds and clarithromycin were not synergistic against all isolates, almost 60% of clarithromycin-resistant *M. abscessus* isolates (showing either inducible or acquired resistance) were inhibited. This might be applied in development of alternative treatments for *M. abscessus* infection.

The core structure of both RL008 and RL009 is an anthraquinone, an aromatic organic compound. This study supports previous findings in the literature that anthraquinone compounds possess antimicrobial properties against Gram-positive bacteria, Gram-negative bacteria, and fungi. (Comini et al. 2011; Kemegne et al. 2017; Lu et al. 2011; Xu et al. 2017).

Limitation of this study should be acknowledged. These combinations of secondary metabolites and clarithromycin that we tested *in vitro* should be investigated *in vivo* for more conclusive results. Further work is necessary using structural variants of the plant secondary metabolites identified here to improve their antimycobacterial efficacy. Additional studies might also evaluate antifungal, antiviral and antiparasitic activities of these compounds.

In conclusion, we report that five compounds isolated from medicinal plants have potent antimycobacterial effects, which are enhanced synergistically when combined with clarithromycin against clarithromycin-resistant *M. abscessus* clinical isolates. They also showed

322	acceptable results in toxicity test towards RBCs and WBCs. These compounds might be used as
323	an alternative treatment and should be further studied to develop anti-tuberculous drugs.
324	
325	Acknowledgments
326	We would like to acknowledge Prof. David Blair for editing the MS via Publication Clinic KKU,
327	Thailand.
328	
329	References
330	Ahond A, Guilhem J, Hamon J, Hurtado J, Poupat C, Pusset J, Pusset M, Sévenet T, and Potier
331	P. 1990. Bubbialine et Bubbialidine, Alcaloïdes Nouveaux Extraits de Zygogynum
332	pauciflorum. J Nat Prod 53:875-881. 10.1021/np50070a015
333	Ananta P, Kham-Ngam I, Chetchotisakd P, Chaimanee P, Reechaipichitkul W, Namwat W,
334	Lulitanond V, and Faksri K. 2018. Analysis of drug-susceptibility patterns and gene
335	sequences associated with clarithromycin and amikacin resistance in serial
336	Mycobacterium abscessus isolates from clinical specimens from Northeast Thailand.
337	PLoS One 13:e0208053. 10.1371/journal.pone.0208053
338	Andrews S. 2010. FastQC: A Quality Control Tool for High Throughput Sequence Data
339	[Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
340	(access May 2021).
341	Aro AO, Dzoyem JP, Eloff JN, and McGaw LJ. 2016. Extracts of six Rubiaceae species
342	combined with rifampicin have good in vitro synergistic antimycobacterial activity and
343	good anti-inflammatory and antioxidant activities. BMC Complement Altern Med 16:385.
344	10.1186/s12906-016-1355-y

345	Baldin VP, Scodro RBL, Lopes-Ortiz MA, de Almeida AL, Gazim ZC, Ferarrese L, Faioes
346	VDS, Torres-Santos EC, Pires CTA, Caleffi-Ferracioli KR, Siqueira VLD, Cortez DAG,
347	and Cardoso RF. 2018. Anti-Mycobacterium tuberculosis activity of essential oil and 6,7-
348	dehydroroyleanone isolated from leaves of Tetradenia riparia (Hochst.) Codd
349	(Lamiaceae). Phytomedicine 47:34-39. 10.1016/j.phymed.2018.04.043
350	Bolger AM, Lohse M, and Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
351	sequence data. Bioinformatics 30:2114-2120. 10.1093/bioinformatics/btu170
352	Cassidy PM, Hedberg K, Saulson A, McNelly E, and Winthrop KL. 2009. Nontuberculous
353	mycobacterial disease prevalence and risk factors: a changing epidemiology. Clin Infect
354	Dis 49:e124-129. 10.1086/648443
355	Chaipukdee N, Kanokmedhakul K, Kanokmedhakul S, Lekphrom R, and Pyne SG. 2016. Two
356	new bioactive iridoids from Rothmannia wittii. Fitoterapia 113:97-101.
357	10.1016/j.fitote.2016.07.007
358	Clary G, Sasindran SJ, Nesbitt N, Mason L, Cole S, Azad A, McCoy K, Schlesinger LS, and
359	Hall-Stoodley L. 2018. Mycobacterium abscessus smooth and rough morphotypes form
360	antimicrobial-tolerant biofilm phenotypes but are killed by acetic acid. Antimicrob Agents
361	Chemother 62. 10.1128/AAC.01782-17
362	CLSI. 2018. Susceptibility testing of mycobacteria, Nocardia spp., and other aerobic
363	actinomycetes, 3rd ed, CLSI standard document M24. Clinical and Laboratory Standards
364	Institute, Wayne, PA.
365	Comini LR, Montoya SC, Paez PL, Arguello GA, Albesa I, and Cabrera JL. 2011. Antibacterial
366	activity of anthraquinone derivatives from $Heterophyllaea\ pustulata$ (Rubiaceae). J
367	Photochem Photobiol B 102:108-114. 10.1016/j.jphotobiol.2010.09.009

368	De Almeida IN, Da Silva Carvalho W, Rossetti ML, Costa ER, and De Miranda SS. 2013.
369	Evaluation of six different DNA extraction methods for detection of Mycobacterium
370	tuberculosis by means of PCR-IS6110: preliminary study. BMC Res Notes 6:561.
371	10.1186/1756-0500-6-561
372	Doern CD. 2014. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J Clin
373	Microbiol 52:4124-4128. 10.1128/JCM.01121-14
374	Hernandez-Garcia E, Garcia A, Garza-Gonzalez E, Avalos-Alanis FG, Rivas-Galindo VM,
375	Rodriguez-Rodriguez J, Alcantar-Rosales VM, Delgadillo-Puga C, and Del Rayo
376	Camacho-Corona M. 2019. Chemical composition of Acacia farnesiana (L) wild fruits
377	and its activity against $Mycobacterium\ tuberculosis$ and dysentery bacteria. J
378	Ethnopharmacol 230:74-80. 10.1016/j.jep.2018.10.031
379	Imwidthaya P, Komolpis P, Suthiravitayavaniz K, and Rienthong S. 1990. In vitro drug
380	susceptibility of Mycobacterium other than tubercle bacilli. J Med Assoc Thai 73:438-
381	442.
382	Iroh Tam PY, Kline S, Ward G, and Ferrieri P. 2015. Non-tuberculous mycobacterial infection in
383	hospitalized children: a case series. Epidemiol Infect 143:3173-3181.
384	10.1017/S0950268815000333
385	Jimenez-Arellanes A, Luna-Herrera J, Ruiz-Nicolas R, Cornejo-Garrido J, Tapia A, and Yepez-
386	Mulia L. 2013. Antiprotozoal and antimycobacterial activities of Persea americana
387	seeds. BMC Complement Altern Med 13:109. 10.1186/1472-6882-13-109
388	Jyoti MA, Nam KW, Jang WS, Kim YH, Kim SK, Lee BE, and Song HY. 2016.
389	Antimycobacterial activity of methanolic plant extract of Artemisia capillaris containing

390	ursolic acid and hydroquinone against Mycobacterium tuberculosis. J Infect Chemother
391	22:200-208. 10.1016/j.jiac.2015.11.014
392	Kanokmedhakul S, Lekphrom R, Kanokmedhakul K, Hahnvajanawong C, Bua-art S, Saksirirat
393	W, Prabpai S, and Kongsaeree P. 2012. Cytotoxic sesquiterpenes from luminescent
394	mushroom Neonothopanus nambi. Tetrahedron 68:8261-8266. 10.1016/j.tet.2012.07.057
395	Kemegne GA, Mkounga P, Essia Ngang JJ, Sado Kamdem SL, and Nkengfack AE. 2017.
396	Antimicrobial structure activity relationship of five anthraquinones of emodine type
397	isolated from Vismia laurentii. BMC Microbiol 17:41. 10.1186/s12866-017-0954-1
398	Kham-Ngam I, Chetchotisakd P, Ananta P, Chaimanee P, Reechaipichitkul W, Lulitanond V,
399	Namwat W, and Faksri K. 2019. Differentiation between persistent infection/colonization
400	and re-infection/re-colonization of Mycobacterium abscessus isolated from patients in
401	Northeast Thailand. Infect Genet Evol 68:35-42. 10.1016/j.meegid.2018.12.001
402	Kham-Ngam I, Chetchotisakd P, Ananta P, Chaimanee P, Sadee P, Reechaipichitkul W, and
403	Faksri K. 2018. Epidemiology of and risk factors for extrapulmonary nontuberculous
404	mycobacterial infections in Northeast Thailand. PeerJ 6:e5479. 10.7717/peerj.5479
405	Li B, Yang S, Chu H, Zhang Z, Liu W, Luo L, Ma W, and Xu X. 2017. Relationship between
406	antibiotic susceptibility and genotype in Mycobacterium abscessus clinical isolates. Front
407	Microbiol 8:1739. 10.3389/fmicb.2017.01739
408	Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
409	arXiv.
410	Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
411	and Proc GPD. 2009. The Sequence Alignment/Map format and SAMtools.
412	Bioinformatics 25:2078-2079. 10.1093/bioinformatics/btp352

413	Lima Viana J, Zagmignan A, Lima Lobato LF, Gomes Abreu A, Jr., da Silva LCN, de Sa JC,
414	Monteiro CA, Lago JHG, Goncalves LM, Carvalho RC, Neto LGL, and de Sousa EM.
415	2018. Hydroalcoholic extract and ethyl acetate fraction of Bixa orellana leaves decrease
416	the inflammatory response to Mycobacterium abscessus subsp. massiliense. Evid Based
417	Complement Alternat Med 2018:6091934. 10.1155/2018/6091934
418	Lopes MA, Ferracioli KR, Siqueira VL, de Lima Scodro RB, Cortez DA, da Silva RZ, and
419	Cardoso RF. 2014. In vitro interaction of eupomatenoid-5 from Piper solmsianum C. DC
420	var. solmsianum and anti-tuberculosis drugs. Int J Tuberc Lung Dis 18:1513-1515.
421	10.5588/ijtld.14.0229
422	Lu C, Wang H, Lv W, Xu P, Zhu J, Xie J, Liu B, and Lou Z. 2011. Antibacterial properties of
423	anthraquinones extracted from rhubarb against Aeromonas hydrophila. Fisheries Science
424	77:375. 10.1007/s12562-011-0341-z
425	Maiti S, Sasmal K, Sinha SS, and Singh M. 2016. Analysis of cytotoxicity and genotoxicity on
426	E. coli, human blood cells and Allium cepa suggests a greater toxic potential of hair dye.
427	Ecotoxicol Environ Saf 124:248-254. 10.1016/j.ecoenv.2015.10.028
428	McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K,
429	Altshuler D, Gabriel S, Daly M, and DePristo MA. 2010. The Genome Analysis Toolkit:
430	a MapReduce framework for analyzing next-generation DNA sequencing data. Genome
431	Res 20:1297-1303. 10.1101/gr.107524.110
432	Molina-Salinas GM, Ramos-Guerra MC, Vargas-Villarreal J, Mata-Cardenas BD, Becerril-
433	Montes P, and Said-Fernandez S. 2006. Bactericidal activity of organic extracts from
434	Flourensia cernua DC against strains of Mycobacterium tuberculosis. Arch Med Res
435	37:45-49. 10.1016/j.arcmed.2005.04.010

436	Mossa JS, El-Feraly FS, and Muhammad I. 2004. Antimycobacterial constituents from <i>Juniperus</i>
437	procera, Ferula communis and Plumbago zeylanica and their in vitro synergistic activity
438	with isonicotinic acid hydrazide. Phytother Res 18:934-937. 10.1002/ptr.1420
439	Naik SK, Mohanty S, Padhi A, Pati R, and Sonawane A. 2014. Evaluation of antibacterial and
440	cytotoxic activity of Artemisia nilagirica and Murraya koenigii leaf extracts against
441	mycobacteria and macrophages. BMC Complement Altern Med 14:87. 10.1186/1472-
442	6882-14-87
443	Nkot JL, Ngono Bikobo DS, Abouem AZA, Nyemeck NM, 2nd, Moni Ndedi EDF, Betote
444	Diboue PH, Pegnyemb DE, Bochet CG, and Koert U. 2018. Antitubercular evaluation of
445	root extract and isolated phytochemicals from Lophira lanceolata against two resistant
446	strains of Mycobacterium tuberculosis. Pharm Biol 56:318-324.
447	10.1080/13880209.2018.1476559
448	Pailee P, Prawat H, Ploypradith P, Mahidol C, Ruchirawat S, and Prachyawarakorn V. 2020.
449	Atalantiaphyllines A-G, prenylated acridones from Atalantia monophylla DC. and their
450	aromatase inhibition and cytotoxic activities. Phytochemistry 180:112525.
451	10.1016/j.phytochem.2020.112525
452	Phowthongkum P, Prasanthai V, Udomsantisook N, and Suankratay C. 2005. Rapidly growing
453	mycobacteria in King Chulalongkorn Memorial Hospital and review of the literature in
454	Thailand. J Med Assoc Thai 88:1153-1162.
455	Qasim M, Wang BH, Zou HS, Lin YW, Dash CK, Bamisile BS, Hussai M, Zhao ZW, and Wang
456	LD. 2018. Phylogenetic relationship and genetic diversity of citrus psyllid populations
457	from China and Pakistan and their associated Candidatus bacterium. Mol Phylogenet Evol
458	126:173-180. 10.1016/j.ympev.2018.04.028

159	Rangozar N, Bakhshi Khaniki G, and Sardari S. 2018. Evaluation of antimycobacterial and
160	synergistic activity of plants selected based on cheminformatic parameters. Iran Biomed J
161	22:401-407.
162	Ruger K, Hampel A, Billig S, Rucker N, Suerbaum S, and Bange FC. 2014. Characterization of
163	rough and smooth morphotypes of Mycobacterium abscessus isolates from clinical
164	specimens. J Clin Microbiol 52:244-250. 10.1128/JCM.01249-13
165	Sombatsri A, Thummanant Y, Sribuhom T, Boonmak J, Youngme S, Phusrisom S,
166	Kukongviriyapan V, and Yenjai C. 2018. New limonophyllines A-C from the stem of
167	Atalantia monophylla and cytotoxicity against cholangiocarcinoma and HepG2 cell lines.
168	Arch Pharm Res 41:431-437. 10.1007/s12272-018-1021-7
169	Strober W. 2015. Trypan blue exclusion test of cell viability. <i>Curr Protoc Immunol</i> 111:A3 B 1-
170	A3 B 3. 10.1002/0471142735.ima03bs111
171	Sukari M. A NBK, Lajis N. H, Ee G. C. L, Rahmani M, Ahmad F. B. H, Yusof U. K. 2004.
172	Chemical constituents of Kaempferia angustifolia (Zingiberaceae). Orient J Chem 20.
173	Tung YJ, Bittaye SO, Tsai JR, Lin CY, Huang CH, Chen TC, Lin WR, Chang K, Lai CC, Lu PL,
174	and Chen YH. 2015. Risk factors for microbiologic failure among Taiwanese adults with
175	Mycobacterium abscessus complex pulmonary disease. J Microbiol Immunol Infect
176	48:437-445. 10.1016/j.jmii.2014.08.005
177	Van der Paardt A-FL, Akkerman OW, Gualano G, Palmieri F, Davies Forsman L, Aleksa A,
178	Tiberi S, de Lange WCM, Bolhuis MS, Skrahina A, van Soolingen D, Kosterink JGW,
179	Migliori GB, van der Werf TS, and Alffenaar J-Willem C. 2017. Safety and tolerability
180	of clarithromycin in the treatment of multidrug-resistant tuberculosis. Eur $Respir$ J
181	49:1601612. 10.1183/13993003.01612-2016

482	Velayati AA, Farnia P, Mozafari M, Malekshahian D, Seif S, Rahideh S, and Mirsaeidi M. 2014.
483	Molecular epidemiology of nontuberculous mycobacteria isolates from clinical and
484	environmental sources of a metropolitan city. PLoS One 9:e114428.
485	10.1371/journal.pone.0114428
486	Wang XF, Chen JY, and Lu WJ. 1985. Studies on the chemical constituents of Knoxia
487	valerianoides Thorel ex Pitard. Yao Xue Xue Bao 20:615-618.
488	Wisetsai A, Lekphrom R, and Schevenels FT. 2021. New anthracene and anthraquinone
489	metabolites from Prismatomeris filamentosa and their antibacterial activities. Nat Prod
490	Res 35:1582-1589. 10.1080/14786419.2019.1627352
491	Wisetsai A, Schevenels FT, Faksri K, Tontapha S, Amornkitbamrung V, and Lekphrom R. 2020.
492	New iridoid glucosides from the roots of Rothmannia wittii (Craib) Bremek. Nat Prod
493	Res:1-9. 10.1080/14786419.2020.1813133
494	Xu L, Li X, Cui Y, Pang M, Wang F, and Qi J. 2017. Antibacterial activity of anthraquinone
495	from aloe on spiced pig head. IOP Conference Series: Materials Science and
496	Engineering 275:012014. 10.1088/1757-899x/275/1/012014
497	Yim SH, Kim HJ, and Lee IS. 2003. A polyacetylene and flavonoids from Cirsium rhinoceros.
498	Archives of Pharmacal Research 26:128-131. 10.1007/BF02976657
499	

Table 1(on next page)

Compounds used in this study.

1 **Table 1** Compounds used in this study.

No.*	Code	Compound	Source	References
1	RL001	N-methylcycloatalaphylline A	Roots of A. monophylla	(Pailee et al., 2020)
2	RL006	yukocitrine	Roots of A. monophylla	(Pailee et al., 2020)
3	RL002	N-methylatalaphylline	Roots of A. monophylla	(Pailee et al., 2020)
4	RL007	atalaphylline	Roots of A. monophylla	(Pailee et al., 2020)
5	RL004	atalaphylline-3,5-dimethyl ether	Roots of A. monophylla	(Pailee et al., 2020)
6	RL003	2,2-dimethylchromenocoumarin	Roots of A. monophylla	(Pailee et al., 2020)
7	RL005	auraptene	Roots of A. monophylla	(Pailee et al., 2020)
8	RL009	rubiadin-1-methyl ether	Roots of P. filamentosa	(Wisetsai et al., 2021)
9	RL010	rubiadin	Roots of P. filamentosa	(Wisetsai et al., 2021)
10	RL011	knoxiadin	Roots of P. filamentosa	(Wang et al., 1985)
11	RL008	nordamnacanthal	Roots of P. filamentosa	(Wisetsai et al., 2021)
12	RL012	damnacanthal	Roots of P. filamentosa	(Wisetsai et al., 2021)
13	RL013	damnacanthol	Roots of P. filamentosa	(Wisetsai et al., 2021)
14	RL014	3',4',7-tri- <i>O</i> -methylluteolin	Flowers of <i>A. conyzoides</i>	(Ahond et al., 1990)
15	RL015	4',7-di-O-methylapigenin	Flowers of A. conyzoides	(Ahond et al., 1990)
16	RL016	4'-O-methylapigenin	Flowers of A. conyzoides	(Yim et al., 2003)
17	RL017	2'-hydroxy-4,4',6'-trimethoxychalcone	Flowers of A. conyzoides	(Sukari M. A, 2004)
18	RL020	3,5-dihydroxycinnamate	Roots of <i>R. wittii</i>	(Wisetsai et al., 2020)
19	RL021	lippianoside B	Roots of <i>R. wittii</i>	(Wisetsai et al., 2020)
20	RL022	rothmannioside C	Roots of <i>R. wittii</i>	(Wisetsai et al., 2020)
21	RL023	rothmannioside A	Roots of <i>R. wittii</i>	(Wisetsai et al., 2020)
22	RL024	rothmannioside B	Roots of <i>R. wittii</i>	(Wisetsai et al., 2020)
23	RL019	aurisin A	Cultured mycelium of N. nambi	(Kanokmedhakul et al., 2012)

^{*} Compounds 1–22 were isolated from four medicinal plants (*Atalantia monophylla*,

- 3 Prismatomeris filamentosa, Crinum asiaticum, and Rothmannia wittii). Compound 23 was
- 4 isolated from the cultured mycelium of the luminescent mushroom *Neonothopanus nambi*.

Table 2(on next page)

Antimycobacterial activity screening of five plant secondary metabolites against 30 *M. abscessus* isolates.

Table 2 Antimycobacterial activity screening of five plant secondary metabolites against 30 *M. abscessus* isolates.

Isolates	Organism	Subspecies	Colony morphology		MIC value of clarithromycin (μg/mL)					Antimycobacterial screening against M. abscessus isolates					
			1 - 3	Day 3 Day 5 Day 14 DST interpretation					DST interpretation	MIC value of pure compounds (μg/mL)					
				MIC	Phenotype	MIC	Phenotype	MIC	Phenotype		RL008	RL009	RL011	RL012	RL013
80097	M. abscessus	abscessus	Mixed	0.25	Susceptible	8	Resistant	16	Resistant	Inducible	128	16	64	64	128
80167	M. abscessus	massiliense	Rough	≥16	Resistant	≥16	Resistant	≥16	Resistant	Acquired	128	8	64	64	128
80225	M. abscessus	abscessus	Rough	0.25	Susceptible	4	Intermediate	≥16	Resistant	Inducible	<1	<1	<1	<1	<1
80448	M. abscessus	massiliense	Rough	0.12	Susceptible	0.25	Susceptible	2	Susceptible	Susceptible	128	128	128	128	128
80524	M. abscessus	massiliense	Mixed	0.5	Susceptible	2	Susceptible	2	Susceptible	Susceptible	128	128	128	128	128
80700	M. abscessus	massiliense	Rough	>16	Resistant	>16	Resistant	>16	Resistant	Acquired	>128	128	64	>128	128
80824	M. abscessus	massiliense	Mixed	0.25	Susceptible	0.5	Susceptible	1	Susceptible	Susceptible	128	16	32	128	128
80838	M. abscessus	abscessus	Mixed	1	Susceptible	16	Resistant	16	Resistant	Inducible	128	128	128	128	>128
80866	M. abscessus	massiliense	Smooth	0.12	Susceptible	0.12	Susceptible	>16	Resistant	Inducible	128	128	128	128	128
80901	M. abscessus	abscessus	Rough	1	Susceptible	8	Resistant	16	Resistant	Inducible	>128	128	128	128	>128
80988	M. abscessus	abscessus	Rough	0.12	Susceptible	0.25	Susceptible	16	Resistant	Inducible	128	>128	64	128	>128
81103	M. abscessus	abscessus	Smooth	2	Susceptible	2	Susceptible	16	Resistant	Inducible	128	128	64	128	128
81350	M. abscessus	massiliense	Rough	≤0.06	Susceptible	0.12	Susceptible	0.12	Susceptible	Susceptible	>128	128	128	128	128
81422	M. abscessus	abscessus	Rough	0.5	Susceptible	1	Susceptible	≥16	Resistant	Inducible	>128	128	128	128	>128
81463	M. abscessus	massiliense	Smooth	≤0.06	Susceptible	0.12	Susceptible	0.25	Susceptible	Susceptible	128	128	64	128	128
81499	M. abscessus	massiliense	Rough	16	Resistant	16	Resistant	16	Resistant	Acquired	128	128	64	128	128
81618	M. abscessus	abscessus	Mixed	16	Resistant	16	Resistant	16	Resistant	Acquired	128	16	32	128	128
81652	M. abscessus	massiliense	Mixed	0.12	Susceptible	0.25	Susceptible	1	Susceptible	Susceptible	128	8	128	64	128
81702	M. abscessus	massiliense	Rough	>16	Resistant	>16	Resistant	>16	Resistant	Acquired	>128	128	64	>128	128
81838	M. abscessus	massiliense	Rough	16	Resistant	16	Resistant	≥16	Resistant	Acquired	128	128	128	128	128
82119	M. abscessus	abscessus	Smooth	2	Susceptible	16	Resistant	16	Resistant	Inducible	128	16	64	64	128
82154	M. abscessus	abscessus	Smooth	0.5	Susceptible	8	Resistant	16	Resistant	Inducible	128	32	64	64	128
82593	M. abscessus	massiliense	Rough	≤0.06	Susceptible	0.12	Susceptible	0.5	Susceptible	Susceptible	>128	128	128	>128	>128

82895	M. abscessus	massiliense	Rough	0.25	Susceptible	0.5	Susceptible	2	Susceptible	Susceptible	128	>128	32	128	>128
82998	M. abscessus	abscessus	Smooth	16	Resistant	16	Resistant	16	Resistant	Acquired	128	128	128	128	128
83305	M. abscessus	abscessus	Smooth	16	Resistant	16	Resistant	16	Resistant	Acquired	>128	128	128	128	128
83310	M. abscessus	abscessus	Rough	8	Resistant	8	Resistant	≥16	Resistant	Acquired	128	>128	128	>128	>128
83347	M. abscessus	massiliense	Mixed	0.25	Susceptible	0.5	Susceptible	0.5	Susceptible	Susceptible	128	128	128	128	>128
90919	M. abscessus	massiliense	Mixed	0.12	Susceptible	0.12	Susceptible	0.5	Susceptible	Susceptible	128	128	128	128	>128
826492	M. abscessus	massiliense	Mixed	0.12	Susceptible	0.25	Susceptible	16	Resistant	Inducible	128	16	64	64	128

Note: MIC, minimum inhibitory concentration; DST, drug susceptibility testing; Acquired, acquired resistance; Inducible, inducible

3 resistance

4

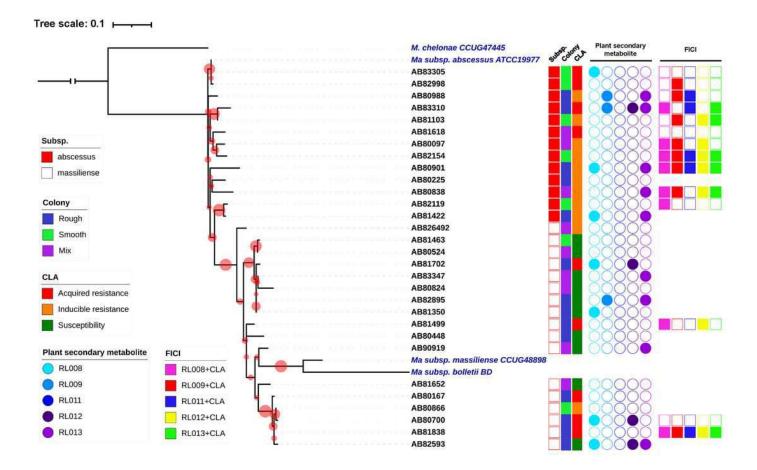
Table 3(on next page)

Synergistic activity of five plant secondary metabolites combined with clarithromycin against 14 clarithromycin-resistant *M. abscessus* isolates.

- **Table 3** Synergistic activity of five plant secondary metabolites combined with clarithromycin against 14 clarithromycin-resistant *M*.
- 2 *abscessus* isolates.

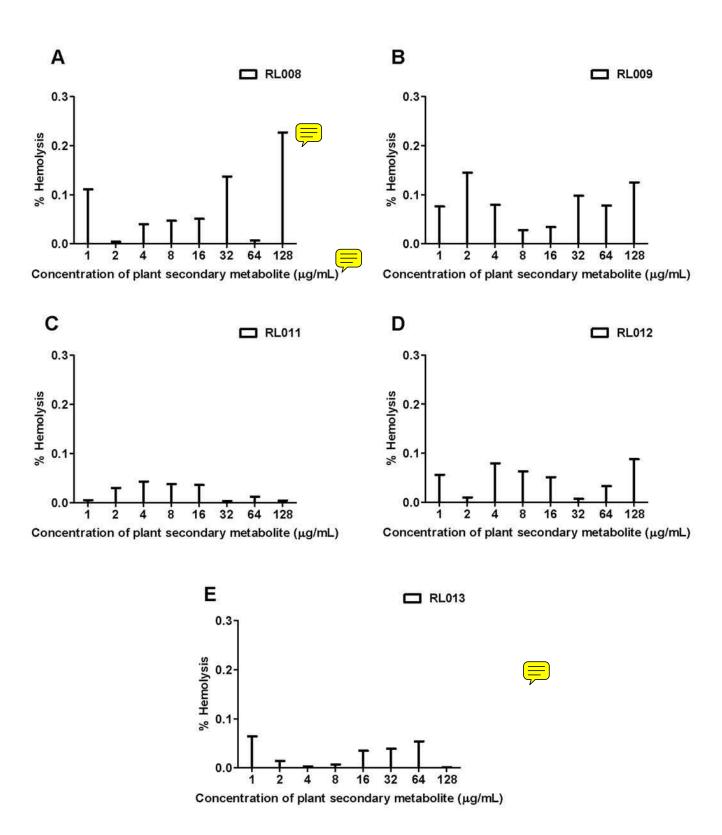
Isolates	Susceptibility profile	Individual MIC (μg/mL)							FICI								
		CLA	RL008	RL009	RL011	RL012	RL013	CLA/RL008	CLA/RL009	CLA/RL011	CLA/RL012	CLA/RL013	RL008	RL009	RL011	RL012	RL013
81499	Acquired	64	128	128	64	128	128	4/16	32/128	64/128	4/8	16/64	0.19	1.50	2.00	0.13	0.75
82998	Acquired	16	128	128	128	128	128	8/32	2/32	8/64	8/128	8/32	0.75	0.38	1.00	1.50	0.75
83305	Acquired	16	>128	128	128	128	128	16/128	2/128	16/128	4/128	4/64	2.00	1.13	2.00	1.25	0.75
83310	Acquired	4	128	>128	128	>128	>128	1/8	2/8	1/8	4/8	1/8	0.31	0.56	0.31	1.06	0.31
81618	Acquired	64	128	16	32	128	128	64/128	32/64	64/128	64/128	64/128	2.00	1.00	2.00	2.00	2.00
80700	Acquired	512	>128	128	64	>128	128	512/128	512/128	512/128	512/128	512/128	2.00	2.00	2.00	2.00	2.00
81838	Acquired	16	128	128	128	128	128	1/8	1/8	1/8	1/8	1/8	0.13	0.13	0.13	0.13	0.13
82119	Inducible	512	128	16	64	64	128	32/8	512/128	512/64	64/128	512/64	0.50	2.00	1.50	1.13	1.5
80097	Inducible	512	128	16	64	64	128	32/8	64/32	32/64	64/32	128/64	0.13	0.38	0.56	0.38	0.75
80838	Inducible	128	128	128	128	128	>128	32/8	32/16	64/8	16/16	16/32	0.31	0.38	0.56	0.25	0.38
80988	Inducible	4	128	>128	64	128	>128	2/8	1/32	1/8	2/8	2/8	0.56	0.50	0.31	0.56	0.56
80901	Inducible	16	>128	128	128	128	>128	4/8	4/8	4/8	4/8	4/16	0.31	0.31	0.31	0.31	0.38
82154	Inducible	32	128	32	64	64	128	4/16	8/16	8/16	8/32	8/16	0.25	0.38	0.38	0.50	0.38
81103	Inducible	64	128	128	64	128	128	32/8	16/32	16/128	8/32	16/32	0.56	0.50	1.25	0.38	0.50

- Note: MIC, minimum inhibitory concentration; CLA, clarithromycin; Acquired, acquired resistance; Inducible, inducible resistance;
- 4 FICI, fractional inhibitory concentration index
- 5 FICI interpretation: ≤0.5: synergy; >0.5-1.0: additive; >1.0-4.0: indifference; >4.0: antagonism (Doern 2014)

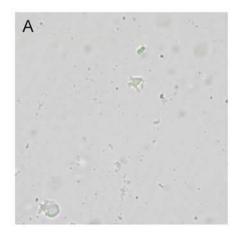

6 Grey-shaded boxes shows synergistic effect

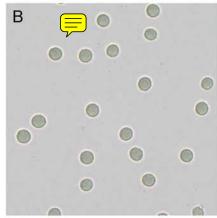
Characteristics of 30 *Mycobacterium abscessus* isolates and antimycobacterial activities of five plant secondary metabolites.

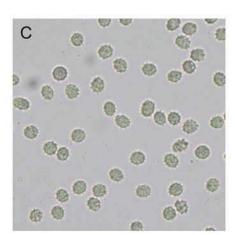
All 30 isolates were either *M. abscessus* subspecies *abscessus* (red box) or subspecies *massiliense* (red border) based on genome analysis. A bootstrap consensus tree was inferred from 1,000 replicates. Red circles refer to bootstrap values and the size of each circle is proportional to its value (the largest red circle indicates a value of 100%). *Mycobacterium chelonae* was used as the outgroup and three reference strains of *M. abscessus* were included for comparison. Colony morphology was classified as rough (blue box), smooth (light green box) or mixed (purple box). Clarithromycin (CLA) susceptibility profiles showed acquired resistance (red box), inducible resistance (orange box), or susceptibility to CLA (green box). MIC values for the five compounds tested against the *M. abscessus* isolates ranged from 8-128 µg/mL (open circles) or were >128 µg/mL (shaded circles). Light blue, blue, dark blue, dark purple and purple circles refer to compounds labeled as RL008, RL009, RL011, RL012, and RL013, respectively. Synergistic activity of compounds in combination with clarithromycin is represented as no synergism (open box) and synergism (shaded box). Pink, red, dark blue, yellow and light green boxes refer to combinations RL008/CLA, RL009/CLA, RL011/CLA, RL012/CLA, and RL013/CLA, respectively.



Hemolytic activity of plant secondary metabolites against red blood cells (RBCs).

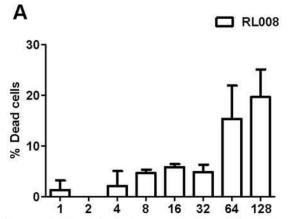

RBC suspension was incubated for 1 h with different concentrations of (A) RL008, (B) RL009, (C) RL011, (D) RL012 and (E) RL013. The hemolytic activity is presented as the percentage of hemolysis. Data are expressed as mean \pm SD.

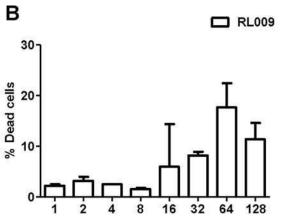




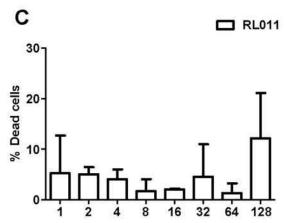
Red blood cell (RBC) morphology under the light microscope.

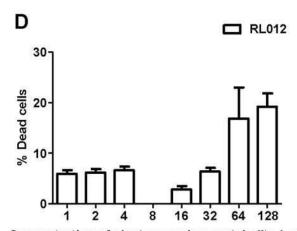
RBC suspension was incubated for 1 h with (A) 1% Triton-X (positive control, showing complete hemolysis), (B) 1% PBS (negative control, showing no hemolysis) and (C) 128 μ g/mL of RL013 (showing some shrinkage due to osmotic effects).

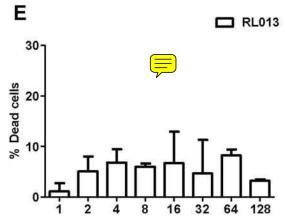




Effect of plant secondary metabolites on white blood cells (WBCs).


WBCs were incubated for 1 h with different concentrations of (A) RL008, (B) RL009, (C) RL011, (D) RL012, and (E) RL013. The toxicity of each secondary metabolite is presented as the percentage of dead cells. Data are expressed as mean \pm SD.




Concentration of plant secondary metabolite (µg/mL)

Concentration of plant secondary metabolite (µg/mL)

Concentration of plant secondary metabolite (µg/mL)

Concentration of plant secondary metabolite (µg/mL)

