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Background. Microscopic polyangiitis (MPA) is a systemic autoimmune disease characterized by
inflammation of small- and medium-sized blood vessels. Autophagy-related protein polymorphisms are
involved in autoimmune disease. The aim of this study was to evaluate the effects of single-nucleotide
polymorphisms (SNPs) in the ULK1 and PIK3CA genes on the risk of MPA.

Method: A total of 208 patients with MPA and 211 controls in the Guangxi Zhuang Autonomous Region
were recruited and analyzed. The SNPs selected were detected by polymerase chain reaction and high-
throughput sequencing. The differences in allele and genotype frequency, various genetic models, and
stratification analyses were evaluated, haplotype evaluation was performed after linkage disequilibrium
analysis, and the interaction between gene alleles was analyzed.

Result: A statistically significant difference was detected in the genotypic distribution of two SNPs
between the two groups: ULK1 rs4964879 (p = 0.019) and PIK3CA rs1607237 (p = 0.002). The results of
the genetic models revealed that ULK1 rs4964879 and rs9481 are statistically significantly associated
with an increased risk of MPA, whereas PIK3CA rs1607237 is associated with a reduced risk. The
association between SNPs and MPA risk is affected by age, sex, and ethnicity. The ULK1 haplotype (G-T-
A-C-G-A) and PIK3CA haplotype (T-G) are associated with a reduced risk of MPA, while the PIK3CA
haplotype (C-G) is associated with an increased risk.

Conclusion: In this study, polymorphisms in the autophagy-related genes ULK1 and PIK3CA and their
association with MPA were examined. The results showed that the polymorphisms in ULK1 (rs4964879
and rs9481) and PIK3CA (rs1607237) were significantly associated with MPA risk in the Guangxi
population. However, the molecular mechanisms are still unclear; basic science research and studies with
larger samples are needed to confirm our conclusions and explore the underlying mechanisms.

PeerJ reviewing PDF | (2021:06:62693:2:0:NEW 30 Sep 2021)

Manuscript to be reviewed



1 Gene polymorphisms in ULK1 and PIK3CA are associated 

2 with the risk of microscopic polyangiitis in the Guangxi 

3 Zhuang Autonomous Region in China

4

5 Yan Zhu 1, 2, Jinlan Rao 1, Jingsi Wei 1, Liu Liu 1, Shanshan Huang 1, Jingjing Lan1, Chao Xue1, Wei Li 1.

6

7 1 The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning, 

8 Guangxi, 53000, China

9 2 The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of 

10 South China, Hengyang, Hunan, 421001, China

11

12 Corresponding Author:

13 Chao Xue, Email address: xccqh@126.com;

14 Wei Li, Email address: liwei030514@126.com.

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

PeerJ reviewing PDF | (2021:06:62693:2:0:NEW 30 Sep 2021)

Manuscript to be reviewed



37 Abstract

38 Background. Microscopic polyangiitis (MPA) is a systemic autoimmune disease characterized by 

39 inflammation of small- and medium-sized blood vessels. Autophagy-related protein polymorphisms are 

40 involved in autoimmune disease. The aim of this study was to evaluate the effects of single-nucleotide 

41 polymorphisms (SNPs) in the ULK1 and PIK3CA genes on the risk of MPA.

42 Method: A total of 208 patients with MPA and 211 controls in the Guangxi Zhuang Autonomous Region 

43 were recruited and analyzed. The SNPs selected were detected by polymerase chain reaction and high-

44 throughput sequencing. The differences in allele and genotype frequency, various genetic models, and 

45 stratification analyses were evaluated, haplotype evaluation was performed after linkage disequilibrium 

46 analysis, and the interaction between gene alleles was analyzed.

47 Result: A statistically significant difference was detected in the genotypic distribution of two SNPs 

48 between the two groups: ULK1 rs4964879 (p = 0.019) and PIK3CA rs1607237 (p = 0.002). The results of 

49 the genetic models revealed that ULK1 rs4964879 and rs9481 are statistically significantly associated 

50 with an increased risk of MPA, whereas PIK3CA rs1607237 is associated with a reduced risk. The 

51 association between SNPs and MPA risk is affected by age, sex, and ethnicity. The ULK1 haplotype (G-

52 T-A-C-G-A) and PIK3CA haplotype (T-G) are associated with a reduced risk of MPA, while the PIK3CA 

53 haplotype (C-G) is associated with an increased risk.

54 Conclusion: In this study, polymorphisms in the autophagy-related genes ULK1 and PIK3CA and their 

55 association with MPA were examined. The results showed that the polymorphisms in ULK1 (rs4964879 

56 and rs9481) and PIK3CA (rs1607237) were significantly associated with MPA risk in the Guangxi 

57 population. However, the molecular mechanisms are still unclear; basic science research and studies with 

58 larger samples are needed to confirm our conclusions and explore the underlying mechanisms.

59

60

61 Introduction

62 Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of 

63 autoimmune diseases characterized by the inflammation of small- and medium-sized blood vessels. AAV 

64 is divided into granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), and eosinophilic 

65 GPA (EGPA). Each clinical phenotype is associated with the presence of circulating ANCAs, mainly 

66 proteinase-3 (PR3) and myeloperoxidase (MPO) (Ramponi et al. 2021). AAV is more common in males 

67 than females, and its incidence rate increases with age, especially in the range of 60–70 years (Geetha & 

68 Jefferson 2020). Additionally, a notable geographic preponderance of MPA rather than GPA and EGPA is 

69 observed in China (Chang et al. 2019).

70 The precise mechanism of AAV remains unestablished, but a genome-wide association study 

71 (GWAS) identified the genetic component in the development of this autoimmune disease. A GWAS 

72 conducted in a North American cohort demonstrated that GPA is significantly associated with single-

73 nucleotide polymorphisms (SNPs) in the HLA region encoding major histocompatibility complex (MHC) 

74 Class II (Xie et al. 2013). A European study showed that the genetic association with AAV is antigen 

75 specificity. PR3-ANCA is associated with HLA-DP, which encodes SERPINA1 and PRTN3, while 

76 MPO-ANCA is associated with HLA-DQ (Lyons et al. 2012). Consistent with previous studies, a new 

77 large GWAS revealed that MHC and non-MHC gene variates are related to GPA/MPA susceptibility, and 

78 changing the expression of genes and proteins is associated with the immune response (Merkel et al. 

79 2017).

PeerJ reviewing PDF | (2021:06:62693:2:0:NEW 30 Sep 2021)

Manuscript to be reviewed



80 Autophagy is an essential metabolic process in eukaryotic cells, and autophagy-related proteins are 

81 involved in various pathologies, including disorders of immune regulation, inflammation, and cancer (Wu 

82 & Adamopoulos 2017). The PI3K/AKT/mTOR/ULK1 signaling pathway is one of the main regulators of 

83 autophagy. Uncoordinated 51-like kinase 1 (ULK1) is a serine/threonine kinase that plays a key role in 

84 the formation of the ULK1 complex. The human ULK1 complex can induce the initiation of the 

85 autophagy pathway and maturation of autophagosomes (Lin & Hurley 2016). PIK3CA encodes the p110α 

86 catalytic subunit of phosphatidylinositol 3-kinase (PI3K), which can inactivate mTOR through the 

87 PIK3CA/AKT signaling pathway and lead to autophagy (Qu et al. 2016). PIK3CA and ULK1 are the core 

88 components of this signaling pathway, and their mutations may alter the autophagy response and cause a 

89 change in the incidence of disease risk (Morgan et al. 2012; Qu et al. 2016; Zhang & Zhou 2019; Zhang et 

90 al. 2017).

91 Numerous studies have revealed that autoimmune diseases may share susceptibility genes. ULK1 has 

92 been shown to be associated with ankylosing spondylitis (Zhang et al. 2017) and Crohn’s disease 

93 (Morgan et al. 2012). The cooccurrence of systemic lupus erythematosus (SLE) and AAV reported in 

94 cases suggests that these two diseases may have shared genetic factors, especially in MPO-ANCA-

95 positive AAV (Hervier et al. 2012). Emerging evidence shows that autophagy-related gene 

96 polymorphisms, such as mTOR (Saravani et al. 2020) and ATG5 (López et al. 2013), participate in SLE. 

97 However, as an autoimmune disease, the role of autophagy-related gene mutations in AAV has not yet 

98 been reported. Considering that MPA is the most common clinical subtype of AAV in China, we focused 

99 on whether gene polymorphisms of ULK1 and PIK3CA play a role in susceptibility to MPA. In the 

100 present study, SNP loci with a minor allele frequency (MAF) ≥5% in the functional region of the ULK1 

101 and PIK3CA genes were selected, and the association between these two gene polymorphisms and 

102 susceptibility to MPA was explored in a group of patients with MPA and a healthy control group from the 

103 Guangxi Zhuang Autonomous Region in China.

104

105 Materials & Methods

106 Study population

107 A total of 208 eligible patients with MPA were recruited from September 2009 to April 2020 in the 

108 Department of Nephrology of the Second Affiliated Hospital of Guangxi Medical University (formerly 

109 Western Hospital of the First Affiliated Hospital of Guangxi Medical University). The inclusion criteria 

110 were as follows: (i) all cases were classified and evaluated as MPA according to the 2012 Revised 

111 International Chapel Hill Consensus Conference Nomenclature of Vasculitis (Jennette et al. 2013), (ii) 

112 age ≥18 years, and (iii) all patients were born in the Guangxi Zhuang Autonomous Region and had no 

113 blood relationship. Patients with secondary vasculitis, other autoimmune diseases, chronic disease and 

114 malignant tumors were excluded. A total of 211 healthy volunteers matching the MPA group with respect 

115 to age and sex were enrolled as the control group.

116 The basic clinical information of the patients with MPA and the healthy controls is presented in 

117 Table 1. The age range at presentation was 18–82 years, with a mean age of 54.6 ± 14.9 years, of which 

118 114 cases were < 60 years, and 62.5% were female. The MPA group had 131 Han and 75 Zhuang 

119 nationality populations. The mean BVAS at diagnosis was 16.8 ± 4.43. In this study, 36 biopsy specimens 

120 (40.4%) were classified as focal, 9 (10.1%) as crescentic, 20 (22.5%) as mixed, and 24 (27%) as sclerotic. 

121 Tubulointerstitial injury was graded as follows: 37 (41.6%) had a score of 1, 41 (46.1%) had a score of 2, 

122 and 11 (12.4%) had a score of 3. The control group (mean age 51.2 ± 12.6 years) consisted of 128 females 

123 and 155 Han nationality populations. This study was approved by the Ethics Committee of the Second 
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124 Affiliated Hospital of Guangxi Medical University (No. 2018 KY-0100) and followed the principles of 

125 the Helsinki Declaration. Written informed consent was obtained from all participants.

126

127 DNA isolation

128 Blood (5 ml) was collected from the ulnar vein of each participant. Total genomic DNA was 

129 extracted from peripheral blood samples using a blood DNA extraction kit (Tiangen, Beijing, China) 

130 according to the manufacturer’s instructions, and the quality was checked by a Nanodrop 2000 

131 spectrophotometer (Thermo Scientific). Samples with an A260/A280 ratio of 1.7–1.9 were included in the 

132 study, and the isolated DNA was stored at −80 °C for further studies.

133

134 Tag SNP selection

135 Six SNPs of the ULK1 gene (rs10902469, rs12303764, rs4964879, rs7300908, rs7138581 and 

136 rs9481) and two SNPs of the PIK3CA gene (rs1607237 and rs9838117) were selected from genotype data 

137 of Chinese people in the 1000 Genomes (http://grch37.ensembl.org/). The selection criteria included the 

138 following: 1) sites located in the functional region, 2) previously reported associations with autoimmune 

139 or inflammatory diseases, 3) select tag SNPs as determined using HaploReg, and 4) MAF ≥0.05.
140

141 SNP genotyping assay

142 SNPs of the ULK1 and PIK3CA genes were detected by polymerase chain reaction (PCR) and high-

143 throughput sequencing (Sangon Biotech, Shanghai, China). The PCR amplification conditions were 

144 settled by the two-step method. HiSeq XTen sequencers (Illumina, San Diego, CA, USA) were used to 

145 perform paired-end sequencing of the library, and the data were analyzed using Samtools 0.1.18 software. 

146 Approximately 10% of the randomly selected samples were sequenced by Sangon Biotechnology 

147 Company (Shanghai, China) to verify the accuracy of genotyping, and the reproducibility rate of all SNP 

148 genotyping was 100%.

149

150 Statistical analysis

151 The genotypic and allelic frequencies in the MPA group and the control group were evaluated by the 

152 chi-square test or Fisher’s exact test. Hardy–Weinberg equilibrium (HWE) in the control participants was 

153 tested using the chi-square test for each SNP. Genetic models and stratification analyses with odds ratios 

154 (ORs) and 95% confidence intervals (CIs) were analyzed to estimate the relationship between genetic 

155 variation and the risk of MPA through online SNPstats software (https://www.snpstats.net/start.htm) 

156 adjusted by age and sex. Pairwise linkage disequilibrium (LD) and haplotype blocks as measured by D’ 

157 were evaluated by online software (SHEsis) ((Shi & He 2005). The interactions between SNPs of the 

158 ULK1 gene and PIK3CA gene were evaluated using generalized multifactor dimensionality reduction 

159 (GMDR). SPSS Statistics version 23.0 (IBM, Armonk, NY, USA) was used to analyze the data, and 

160 p<0.05 was considered statistically significant.

161

162 Results

163 Association of gene polymorphisms with MPA susceptibility 

164 The genotyping results for quality control ranged from 97.18% to 99.76%. Detailed information on 

165 all SNPs is provided in Table 2 (SNP IDs, locations and allele frequencies). In the selected SNPs, all 

166 ANPs had a MAF of >5%, and the genotype distribution in the control group was in HWE (p >0.05). 
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167 According to the single-SNP analyses, the allele frequencies of PIK3CA rs1607237 (C>T) were 

168 significantly different between the MPA group and the control group (p = 0.011).

169 The association between the SNPs and the risk of MPA was identified by genetic models 

170 (codominant, dominant, recessive, and overdominant) and genotype frequencies (Table 3). The results 

171 adjusted by age and sex showed that rs4964879 in the ULK1 gene significantly increased the risk of MPA 

172 with the GA genotype in the codominant model (GA versus AA, OR = 1.76, 95% CI: 1.15–2.70, and p = 

173 0.03), the dominant model (GA/GG versus AA, OR = 1.60, 95% CI: 1.07–2.40, and p = 0.022) and 

174 overdominant model (GA versus AA/GG, OR = 1.68, 95% CI: 1.13–2.49, and p = 0.0096). The risk of 

175 MPA in the ULK1 gene rs9481 was 1.77 times that in healthy controls in the recessive model (GG versus 

176 AA/AG, 95% CI: 1.06–2.94, and p = 0.027). The mutations of rs1607237 in the PIK3CA gene had a 

177 lower incidence of MPA with the CT genotype in the codominant model (CT versus CC, OR = 0.47, 95% 

178 CI: 0.30–0.73, and p = 0.0039), the dominant model (CT/TT versus CC, OR = 0.55, 95% CI: 0.37–0.82, 

179 and p = 0.0031), and the overdominant model (CT versus CC/TT, OR = 0.49, 95% CI: 0.32–0.76, and p = 

180 0.0013). No significant difference was observed for the other gene loci between the cases and controls (p 

181 > 0.05).

182

183 Linkage disequilibrium analysis

184 Figure 1 shows the pattern of pairwise LD with respect to the analyzed SNPs of two genes in the 

185 current study. The LD plot indicated that the ULK1 rs10902469, rs12303764, rs4964879, rs7300908, 

186 rs7138581, and rs9481 loci formed six haplotypes (Table 4). Haplotype G-T-A-C-G-A was the most 

187 commonly observed haplotype in the cases (49.2%) and in the healthy controls (56.1%) and was 

188 associated with a reduced risk of MPA (OR = 0.749, 95% CI: 0.563-0.997, p = 0.047). Other haplotypes 

189 did not exhibit an association with MPA. The SNP loci of the PIK3CA genes rs1607237 and rs9838117 

190 also formed three haplotypes (Table 4). The results showed that the C-G haplotype was the most 

191 commonly observed haplotype in the cases (73.3%) and in the healthy controls (66.7%) and was 

192 associated with an increased risk of MPA (OR = 1.427, 95% CI: 1.050–1.939, and p = 0.023). The T-G 

193 haplotype was significantly associated with a reduced risk of MPA (OR = 0.520, 95% CI: 0.339–0.799, 

194 and p = 0.0025).

195

196 Stratification analysis based on age, sex and ethnicity

197 The analysis results showed that age, sex, and ethnicity significantly affected the association 

198 between ULK1 and PIK3CA SNPs and MPA risk. The mutations of ULK1 rs4964879 (with GA genotype 

199 in the overdominant model, OR = 1.65, 95% CI: 1.01–2.69, and p = 0.046) and rs9481 (with GG 

200 genotype in the recessive model, OR = 1.88, 95% CI: 1.01–3.51, and p = 0.047) were associated with a 

201 higher incidence of MPA in the population aged ＜ 60 years; PIK3CA rs1607237 was associated with a 

202 decreased MPA risk under the codominant model (CT versus CC, OR = 0.23, 95% CI: 0.10–0.53, and p 

203 ＜ 0.001), the dominant model (CT/TT versus CC, OR = 0.41, 95% CI: 0.20–0.85, and p = 0.016), and 

204 the overdominant model (CT versus CC/TT, OR = 0.21, 95% CI: 0.09–0.49, and p ＜ 0.001) in the 

205 population ≧ 60 years (Table 5). The results were adjusted by sex.

206 The results also showed that sex significantly affected the association between SNPs and MPA risk 

207 (Table 6). ULK1 rs4964879 in females under the dominant model (GA/GG versus AA, OR = 1.69, 95% 

208 CI: 1.02–2.82, and p = 0.042) and the overdominant model (GA versus AA/GG, OR = 1.74, 95% CI: 

209 1.05–2.88, and p = 0.031), which could increase MPA risk. Marginal evidence revealed that rs9481 in 
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210 females under the regressive model increased MPA risk (p = 0.05). PIK3CA rs1607237 was associated 

211 with a decreased MPA risk in the population, independent of sex. The results were adjusted by age.

212 In addition, the results showed that the Han population with the ULK1 rs4964879 mutation had a 

213 higher incidence of MPA with the GA genotype under the dominant model (GA/GG versus AA, OR = 

214 1.78, 95% CI: 1.09–2.90, and p = 0.02, Table 7) and the overdominant model (GA versus AA/GG, OR = 

215 1.70, 95% CI, 1.05–2.74, and p = 0.03); the Han population with PIK3CA rs1607237 could significantly 

216 decrease MPA risk with the CT genotype in the codominant model (CT versus CC, OR = 0.42, 95% CI: 

217 0.24–0.73, and p = 0.0068), the dominant model (CT/TT versus CC, OR = 0.48, 95% CI: 0.29–0.78, and 

218 p = 0.0031) and the overdominant model (CT versus CC/TT, OR = 0.44, 95% CI: 0.26–0.76, p = 0.0026). 

219 The results were adjusted by sex and age.

220

221 Interaction of gene alleles with clinical characteristics

222 Generalized multifactor dimensionality reduction (GMDR) was used to analyze the interaction 

223 between the alleles of the ULK1 gene (rs10902469, rs12303764, rs4964879, rs7300908, rs7138581, and 

224 rs9481) and PIK3CA gene (rs1607237 and rs9838117). The interaction showed that rs4964879 and 

225 rs1607237 were the best models for MPA prediction (cross-validation consistency: 10/10). The risk of 

226 MPA in the “high-risk” combination was 2.27 times that in the “low-risk combination” (Figure 2), but a 

227 margin testing p value was observed (p = 0.0547).

228

229 Discussion

230 In this study, polymorphisms in the autophagy-related genes ULK1 and PIK3CA and their 

231 association with MPA were examined. The results showed that the ULK1 SNPs rs4964879 and rs9481 

232 were risk factors for MPA, and PIK3CA rs1607237 was a protective factor for MPA.

233 Autophagy is a fundamental intracellular biological process of eukaryotic cells that is essential for 

234 the activation of innate and adaptive immune responses, including self-antigen presentation, phagocytosis, 

235 maintenance of lymphocyte homeostasis, and regulation of cytokine production (Ye et al. 2019). It is well 

236 established that the mammalian target of rapamycin (mTOR)/ULK1 pathway is one of the main regulators 

237 of autophagy. Inhibition of mTOR results in dephosphorylation of ULK1 and upregulates autophagy, and 

238 it is positively modulated through the PI3K/AKT pathway and negatively modulated by adenosine 

239 monophosphate-activated protein kinase (Mohamed et al. 2021). Increasing studies have demonstrated 

240 that autophagy is involved in the biology of neutrophils, which play a critical role in the acute injury of 

241 AAV by releasing proteolytic enzymes via degranulation, producing reactive oxygen species and 

242 extruding neutrophil extracellular traps (NETs) (Al-Hussain et al. 2017; Skendros et al. 2018). Li-Li Sha 

243 et al. proved that autophagy activity is elevated in neutrophils treated with ANCAs, and the NET 

244 formation rate increases or decreases in neutrophils pretreated with an autophagy inducer or inhibitor, 

245 respectively (Sha et al. 2016). Sha Tang et al. also demonstrated that NET formation is associated with 

246 autophagy-related signaling in human neutrophils with AAV (Tang et al. 2015).

247 In this study, six SNPs (rs10902469, rs12303764, rs4964879, rs7300908, rs7138581, and rs9481) in 

248 ULK1 between healthy controls and MPA patients were evaluated. Our initial single SNP analysis 

249 detected a significant difference in the genotypic distribution (rs4964879, A > G) between the two groups. 

250 Subsequently, rs4964879 (codominant, dominant and overdominant model) and rs9481 (recessive model) 

251 of the ULK1 gene were significantly associated with the risk of MPA. In addition, the association 

252 between ULK1 gene polymorphisms and MPA risk was influenced by age, sex and ethnicity. Our findings 
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253 indicated that rs4964879 and rs9481 variations (A>G) in the ULK1 gene may be able to increase 

254 susceptibility to MPA.

255 ULK1, which is a serine/threonine protein kinase, plays a central role in initiating autophagy. It has 

256 been reported that the knockdown of ULK1 in HEK293 cells is sufficient to inhibit the autophagy 

257 response (Chan et al. 2007). Mouse embryonic fibroblasts derived from ULK1-/- and ULK2-/- mice 

258 blocked autophagy during amino acid starvation (Cheong et al. 2011). As expected by the role of ULK1 

259 kinase in autophagy initiation, genetic variation in ULK1 could result in autophagy disorder. David J. 

260 Horne et al. found that ULK1-deficient cells present decreased cytokine secretion and autophagy activity. 

261 The study was also the first to report that the rs12297124 minor allele of the ULK1 gene contributes to an 

262 80% reduction in latent tuberculosis infection risk in Asian participants (Horne et al. 2016). The ULK1 

263 SNPs rs4964879 and rs9481 reported in this study are located in intron and 3’UTR regions, respectively. 

264 Although introns are untranslated regions in mRNAs, mutations in introns may affect the binding of 

265 transcription factors and change the splicing modes or transcription of the ULK1 gene, ultimately altering 

266 the sequence of amino acids (Kawasaki et al. 2018). The 3’UTR plays an important role in mRNA 

267 transport, stability and posttranscriptional regulation. Trans-acting factors or microRNAs bind to cis-

268 acting elements in the 3’UTR of the target transcript and regulate protein synthesis by affecting 

269 transcription factors. Sequence variations in mRNA introns or 3’UTR regions in ULK1 may cause 

270 abnormal expression of the gene (Zhang et al. 2019). Considering the role of ULK1 in the autophagy 

271 pathway, we speculate that ULK1 (rs4964879 and rs9481) variations may lead to abnormal expression of 

272 ULK1 and then initiate the autophagy response, eventually increasing the susceptibility to MPA.

273 In the present study, another autophagy-related gene, PIK3CA (rs1607237, C>T), showed significant 

274 differences in the allele frequency and genotypic distribution between the patients with MPA and the 

275 healthy controls. A subject with at least one T allele has approximately half the risk for MPA compared 

276 with a subject with a CC genotype (TT+CT vs. CC: OR 0.56, 95% CI: 0.37–0.83). Increasing findings 

277 confirm that polymorphisms in the PI3K/AKT signaling pathway are related to the regulation of cell 

278 proliferation, survival and death. Similar to the results of our study, a case-control study conducted by 

279 Xing et al. found that the PIK3CA polymorphism is a defense factor against follicular thyroid cancer 

280 (Xing et al. 2012). PIK3CA rs1607237 is also significantly associated with a small decrease in breast 

281 cancer risk (Stevens et al. 2011). SNP rs1607237 is in the intron of PIK3CA gene. Although no published 

282 literature has reported the feature of PIK3CA rs1607237, given the location of this SNP, we speculate that 

283 SNPs may affect the transcription of the PIK3CA gene by interrupting the process of translation and 

284 splicing. The PIK3CA mutation increases the expression of the p110α catalytic subunit of PI3K and then 

285 activates AKT through the PI3K/AKT signaling pathway. As mentioned above, the PI3K/AKT pathway 

286 positively regulates the mTOR/ULK1 pathway, and the activation of AKT may decrease the autophagy 

287 response. However, further research will be needed to provide strong evidence for this speculation.

288 This study has several limitations, which should be mentioned. First, the number of participants was 

289 relatively small because of the low incidence rate of MPA, especially for subpopulations after stratified 

290 analysis, which may provide insufficient evidence to provide definitive conclusions. Second, some 

291 follow-up information, such as the curative effect of glucocorticoids and immunosuppressants, renal 

292 survival rate, relapse rate, and mortality, was lacking. Third, we did not perform studies to explore the 

293 molecular mechanisms to verify the association between gene polymorphisms reported in this study and 

294 MPA.

295

296 Conclusions
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297 The present study indicated that the polymorphisms observed in ULK1 (rs4964879 and rs9481) and 

298 PIK3CA (rs1607237) were significantly associated with MPA risk in the Guangxi population. However, 

299 the molecular mechanisms are still unclear, and studies designed with larger samples and basic research 

300 are needed to confirm our conclusions and explore the mechanisms.
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Figure 1
Graphical representation of the SNP locations and LD structure

A) LD plots containing 6 SNPs from ULK1; B) LD plots containing 2 SNPs from PIK3CA
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Figure 2
Distribution of high-risk and low risk genotypes in the best two-locus model

Dark gray and light gray boxed presented the high- and low- risk factor combinations,
respectively. Left bars within each box represented case with positive score, right bars
represented negative score. The higher the positive score, the greater the combination risk.
GA in rs4964879 and CC in rs1607237 showed the most risk combinations.
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Demographic characteristics of the study participants
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1 Table 1 Demographic characteristic of the study participants.

Characteristic MPA group (n=208) control group (n=211)

Age (years)

＜60

≥60

54.6±14.9

114 (54.8)

94 (45.2)

51.2±12.6

160 (75.8)

51 (24.2)

Gender (M/F) 78/130 83/128

Ethnicity (Han/Zhuang) 131/75 155/56

BVAS (mean ± SD) 16.8±4.43 -

Renal pathologic classification 

(Renal biopsy, n=89)

Focal 36 (40.4%) 

Crescentic 9 (10.1%) 

Mixed 20 (22.5%)  

Sclerotic 24 (27.0%) 

Renal tubulointerstitial 

injury (Renal biopsy, n=89)

Score 1 37 (41.6%)

Score 2 41 (46.1%)

Score 3 11 (12.4%)
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Basic information about SNPs in ULK1 and PIK3CA and association with risk of AAV
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1 Table 2 Basic information about SNPs in ULK1 and PIK3CA and their association with the risk of AAV

2

Gene SNP ID Location Alleles
MAF

Case   Control

p for allele 

frequencies

p for 

genotypes

rs10902469 12:132378133 G>C 0.079    0.069 0.571 0.832

rs12303764 12:132399065 T>G 0.200    0.185 0.566 0.678

rs4964879 12:132400309 A>G 0.406    0.356 0.143 0.019

rs7300908 12:132405421 C>T 0.099    0.090 0.673 0.897

rs7138581 12:132406666 G>C 0.174    0.167 0.781 0.853

ULK1

rs9481 12:132407089 A>G 0.442    0.378 0.060 0.070

rs1607237 3:178950297 C>T 0.240    0.325 0.011 0.002
PIK3CA

rs9838117 3:178952507 G>T 0.168    0.165 0.901 0.765

3
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The genotype frequencies of the studied ULK1 and PIK3CA gene SNPs in the cases and
the healthy controls
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1 Table 3 The genotype frequencies of the studied ULK1 and PIK3CA gene SNPs in the cases and the healthy controls

SNP ID Model Genotype
Control 

n (%)

AVV 

n (%)
OR (95% CI) p

Codominant

AA

GA

GG

92 (44)

85 (40.7)

32 (15.3)

67 (32.4)

112 (54.1)

28 (13.5)

1.00

1.76 (1.15-2.70)

1.19 (0.65-2.16)

0.03

Dominant
AA

GA+GG

92 (44)

117 (56)

68 (31.9)

145 (68.1)

1.00

1.60 (1.07-2.40) 0.022

Recessive
AA+GA

GG

177 (84.7)

32 (15.3)

184 (86.4)

29 (13.6)

1.00

0.87 (0.50-1.51) 0.61

ULK1

rs4964879

Overdominant
AA+GG

GA

124 (59.3)

85 (40.7)

97 (45.5)

116 (54.5)

1.00

1.68 (1.13-2.49) 0.0096

Codominant

AA

AG

GG

81 (38.8)

98 (46.9)

30 (14.3)

73 (34.3)

90 (42.2)

50 (23.5)

1.00

1.00 (0.65-1.54)

1.76 (1.01-3.09) 0.086

Dominant
AA

AG/GG

81 (38.8)

128 (61.2)

73 (34.3)

140 (65.7)

1.00

1.18 (0.79-1.76) 0.36

Recessive
AA/AG

GG

179 (85.7)

30 (14.3)

163 (76.5)

50 (23.5)

1.00

1.77 (1.06-2.94) 0.027

ULK1

rs9481

Overdominant
AA/GG

AG

111 (53.1)

98 (46.9)

123 (57.8)

90 (42.2)

1.00

0.83 (0.56-1.22) 0.34

Codominant

CC

CT

TT

101 (48.6)

79 (38)

28 (13.5)

138 (64.3)

45 (22.6)

26 (13.1)

1.00

0.47 (0.30-0.73)

0.78 (0.43-1.42)

0.0039

Dominant
CC

CT/TT

101 (48.6)

107 (51.4)

128 (64.3)

71(35.7)

1.00

0.55 (0.37-0.82) 0.0031

Recessive
CC/CT

TT

180 (86.5)

28 (13.5)

173 (86.9)

26 (13.1)

1.00

1.01 (0.57-1.81) 0.97

PIK3CA 

rs1607237

Overdominant
CC/TT

CT

129 (62)

79 (38)

154 (77.4)

45 (22.6)

1.00

0.49 (0.32-0.76) 0.0013

2
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Table 4(on next page)

The correlation between the haplotypes of ULK1 and PIK3CA gene SNPs and the AAV
susceptibility
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1 Table 4 The correlation between the haplotypes of ULK1 and PIK3CA gene SNPs and the AAV susceptibility

2

Gene Haplotype AAV (n=214)
Control 

(n=211)
OR (95% CI) p

C-T-A-C-C-G 27.6 (6.7%) 27.1(6.5%) 1.039 (0.599~1.799) 0.893

G-G-G-G-G 80.8 (19.5%) 67.0(16%) 1.285 (0.897~1.841) 0.171

G-T-A-C-G-A 203.7 (49.2%) 234.5(56.1%) 0.749 (0.563~0.997) 0.047

G-T-G-C-G-A 13.9 (3.4%) 10.6 (2.5%) 1.343 (0.596~3.024) 0.475

G-T-G-C-G-G 26.8 (6.5%) 20.7 (4.9%) 1.340 (0.741~2.422) 0.331

ULK1

G-T-G-T-C-G 30.8 (7.4%) 29.9 (7.1%) 1.054 (0.624~1.780) 0.844

C-G 291.5 (73.3%) 278.7(66.7%) 1.427 (1.050~1.939) 0.023

T-G 36.5 (8.8%) 68.3 (16.3%) 0.520 (0.339~0.799) 0.0025PIK3CA

T-T 62.5 (15.7%) 66.7 (16.0%) 0.993 (0.681~1.446] 0.9688

3
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Distribution of ULK1 and PIK3CA polymorphisms in population of different ages and its
association with risk of AAV
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1 Table 5 Distribution of ULK1 and PIK3CA polymorphisms in population of different ages and its association with the risk of AAV.

2

SNP ID Model
Geno

type

            Age＜60 years

Control       Case        OR (95% CI)
P value

Age≥ 60 years

Control         Case      OR (95% CI)
p value

AA 72 (45%) 39 (34.2%) 1.00 20 (40.8%) 28 (30.1%) 1.00

GA 62 (38.8%) 58 (50.9%) 1.74 (1.02-2.96) 0.12 23 (46.9%) 54 (58.1%) 1.66 (0.78-3.53) 0.42Codominant

GG 26 (16.2%) 17 (14.9%) 1.21 (0.59-2.49) 6 (12.2%) 11 (11.8%) 1.37 (0.43-4.35)

AA 72 (45%) 39 (34.2%) 1.00 20 (40.8%) 28 (20.1%) 1.00
Dominant

GA/GG 88 (55%) 75 (65.8%) 1.58 (0.96-2.60) 0.073 29 (59.2%) 65 (69.9%) 1.60 (0.77-3.30) 0.21

AA/GA 134 (83.8%) 97 (85.1%) 1.00 43 (87.8%) 82 (88.2%) 1.00
Recessive

GG 26 (16.2%) 17 (14.9%) 0.90 (0.47-1.76) 0.77 6 (12.2%) 11 (11.8%) 1.01 (0.35-2.95) 0.98

AA/GG 98 (61.2%) 56 (49.1%) 1.00 26 (53.1%) 39 (41.9%) 1.00

ULK1

rs4964879

Overdominant
GA 62 (38.8%) 58 (50.9%) 1.65 (1.01-2.69) 0.046 23 (46.9%) 54 (58.1%) 1.53 (0.76-3.08) 0.23

AA 63 (39.4%) 40 (35.1%) 1.00 18 (36.7%) 32 (34.4%) 1.00

AG 74 (46.2%) 47 (41.2%) 0.99 (0.57-1.70) 0.14 24 (49%) 40 (43%) 0.92 (0.42-1.99) 0.44Codominant

GG 23 (14.4%) 27 (23.7%) 1.87(0.94-3.71) 7 (14.3%) 21 (22.6%) 1.73 (0.61-4.88)

AA 63 (39.4%) 40 (35.1%) 1.00 18 (36.7%) 32 (34.4%) 1.00
Dominant

AG/GG 97 (60.6%) 74 (64.9%) 1.20 (0.73-1.98) 0.47 31 (63.3%) 61 (65.6%) 1.10 (0.53-2.27) 0.8

AA/AG 137 (85.6%) 87 (76.3%) 1.00 42 (85.7%) 72 (77.4%) 1.00
Recessive

GG 23 (14.4%) 27 (23.7%) 1.88 (1.01-3.51) 0.047 7 (14.3%) 21 (22.6%) 1.81 (0.71-4.65) 0.2

AA/GG 86 (53.8%) 67 (58.8%) 1.00 25 (51%) 53 (57%) 1.00

ULK1

rs9481

Overdominant
AG 74 (46.2%) 47 (41.2%) 0.81 (0.49-1.32) 0.39 24 (49%) 40 (43%) 0.77 (0.38-1.54) 0.45

CC 76 (47.8%) 63 (58.3%) 1.00 25 (51%) 65 (71.4%) 1.00

CT 58 (36.5%) 32 (29.6%) 0.67 (0.39-1.15) 0.23 21 (42.9%) 13 (14.3%) 0.23 (0.10-0.53) 6e-04
PIK3CA

rs1607237
Codominant

TT 25 (15.7%) 13 (12%) 0.62 (0.29-1.32) 3 (6.1%) 13 (14.3%) 1.70 (0.44-6.51)

CC 76 (47.8%) 63 (58.3%) 1.00 25 (51%) 65 (71.4%) 1.00
Dominant

CT/TT 83 (52.2%) 45 (41.7%) 0.65 (0.40-1.07) 0.09 24 (49%) 26 (28.6%) 0.41 (0.20-0.85) 0.016

CC/CT 134 (84.3%) 95 (88%) 1.00 46 (93.9%) 78 (85.7%) 1.00

PIK3CA

rs1607237
Recessive

TT 25 (15.7%) 13 (12%) 0.73 (0.35-1.49) 0.38 3 (6.1%) 13 (14.3%) 2.61 (0.70-9.71) 0.12
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3

CC/TT 101 (63.5%) 76 (70.4%) 1.00 28 (57.1%) 78 (85.7%) 1.00
Overdominant

CT 58 (36.5%) 32 (29.6%) 0.74 (0.44-1.24) 0.25 21 (42.9%) 13 (14.3%) 0.21 (0.09-0.49) 2e-04
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Distribution of ULK1 and PIK3CA polymorphisms in population of different genders and
its association with risk of AAV
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1 Table 6 Distribution of ULK1 and PIK3CA polymorphisms in population of different sex and its association with the risk of AAV

2

SNP ID Model
Geno-

type

Male 

Control       case       OR (95% CI)
p value

female

Control       Case       OR (95% CI)
p value

AA 31 (37.8%) 23 (29.1%) 1.00 61 (48%) 44 (34.1%) 1.00

GA 38 (46.3%) 46 (58.2%) 1.63 (0.82-3.26) 0.32 47 (37%) 67 (51.9%) 1.86 (1.08-3.20) 0.08Codominant

GG 13 (15.8%) 10 (12.7%) 1.03 (0.38-2.77) 19 (15%) 18 (13.9%) 1.28 (0.60-2.73)

AA 31 (37.8%) 23 (29.1%) 1.00 61 (48%) 44 (34.1%) 1.00
Dominant

GA/GG 51 (62.2%) 56 (70.9%) 1.47 (0.76-2.86) 0.25 66 (52%) 85 (65.9%) 1.69 (1.02-2.82) 0.042

AA/GA 69 (84.2%) 69 (87.3%) 1.00 108 (85%) 111 (86%) 1.00
Recessive

GG 13 (15.8%) 10 (12.7%) 0.76 (0.31-1.87) 0.56 19 (15%) 18 (13.9%) 0.93 (0.46-1.88) 0.84

AA/GG 44 (53.7%) 33 (41.8%) 1.00 80 (63%) 62 (48.1%) 1.00

ULK1 

rs4964879

Overdominant
GA 38 (46.3%) 46 (58.2%) 1.61 (0.86-3.02) 0.13 47 (37%) 67 (51.9%) 1.74 (1.05-2.88) 0.031

AA 29 (35.4%) 28 (35.4%) 1.00 52 (40.9%) 45 (34.9%) 1.00

AG 43 (52.4%) 36 (45.6%) 0.89 (0.45-1.76) 0.5 55 (43.3%) 51 (39.5%) 1.04 (0.60-1.82) 0.14Codominant

GG 10 (12.2%) 15 (19%) 1.49 (0.57-3.90) 20 (15.8%) 33 (25.6%) 1.90 (0.95-3.78)

AA 29 (35.4%) 28 (35.4%) 1.00 52 (40.9%) 45 (34.9%) 1.00
Dominant

AG/GG 53 (64.6%) 51 (64.6%) 1.00 (0.52-1.92) 0.86 75 (59.1%) 84 (65.1%) 1.27 (0.76-2.12) 0.36

AA/AG 72 (87.8%) 64 (81%) 1.00 107 (84.2%) 96 (74.4%) 1.00
Recessive

GG 10 (12.2%) 15 (19%) 1.60 (0.67-3.84) 0.25 20 (15.8%) 33 (25.6%) 1.86 (0.99-3.47) 0.05

AA/GG 39 (47.6%) 43 (54.4%) 1.00 72 (56.7%) 78 (60.5%) 1.00

ULK1

rs9481

Overdominant
AG 43 (52.4%) 36 (45.6%) 0.79 (0.42-1.47) 0.51 55 (43.3%) 51 (39.5%) 0.83 (0.50-1.38) 0.48

CC 39 (47.6%) 51 (66.2%) 1.00 62 (49.2%) 78 (63.4%) 1.00

CT 29 (35.4%) 15 (19.5%) 0.40 (0.19-0.84) 0.042 50 (39.7%) 30 (24.4%) 0.50 (0.28-0.88) 0.048

PIK3CA

rs1607237 Codominant

TT 14 (17.1%) 11 (14.3%) 0.60 (0.25-1.47) 14 (11.1%) 15 (12.2%) 0.93 (0.41-2.11)

CC 39 (47.6%) 51 (66.2%) 1.00 62 (49.2%) 78 (63.4%) 1.00
Dominant

CT/TT 43 (52.4%) 26 (33.8%) 0.46 (0.24-0.88) 0.017 64 (50.8%) 45 (36.6%) 0.59 (0.35-0.99) 0.063

CC/CT 68 (82.9%) 66 (85.7%) 1.00 112 (88.9%) 108 (87.8%) 1.00

PIK3CA

rs1607237
Recessive

TT 14 (17.1%) 11 (14.3%) 0.81 (0.34-1.91) 0.63 14 (11.1%) 15 (12.2%) 1.21 (0.55-2.66) 0.64
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CC/TT 53 (64.6%) 62 (80.5%) 1.00 76 (60.3%) 93 (75.6%) 1.00

CT 29 (35.4%) 15 (19.5%) 0.44 (0.21-0.91) 0.024 50 (39.7%) 30 (24.4%) 0.50 (0.29-0.88) 0.014Overdominant

GA 59 (38.6%) 68 (52.3%) 1.70 (1.05-2.74) 0.03 26 (46.4%) 42 (5%) 1.42 (0.69-2.89) 0.34
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Distribution of ULK1 and PIK3CA polymorphisms in population of different ethnicity and
its association with risk of AAV
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1 Table 7 Distribution of ULK1 and PIK3CA polymorphisms in population of different ethnicity and its association with the risk of AAV.

2

SNP ID Model
Geno

type

            Ethnicity = Han

Control       Case        OR (95% CI)
p value

Ethnicity = Zhuang

Control         Case      OR (95% CI)
p value

AA 73 (47.7%) 43 (33.1%) 1.00 19 (33.9%) 24 (32%) 1.00

GA 59 (38.6%) 68 (52.3%) 1.88 (1.12-3.17) 0.054 26 (46.4%) 42 (56%) 1.24 (0.56-2.76) 0.48Codominant

GG 21 (13.7%) 19 (14.6%) 1.48 (0.71-3.07) 11 (19.6%) 9 (12%) 0.67 (0.23-1.98)

AA 73 (47.7%) 43 (33.1%) 1.00 19 (33.9%) 24 (32%) 1.00
Dominant

GA/GG 80 (52.3%) 87 (66.9%) 1.78 (1.09-2.90) 0.02 37 (66.1%) 51 (68%) 1.07 (0.50-2.28) 0.86

AA/GA 132 (86.3%) 111 (85.4%) 1.00 45 (80.4%) 66 (88%) 1.00
Recessive

G/G 21 (13.7%) 19 (14.6%) 1.06 (0.54-2.07) 0.87 11 (19.6%) 9 (12%) 0.58 (0.22-1.55) 0.28

AA/GG 94 (61.4%) 62 (47.7%) 1.00 30 (53.6%) 33 (44%) 1.00

ULK1

rs4964879

Overdominant
GA 59 (38.6%) 68 (52.3%) 1.70 (1.05-2.74) 0.03 26 (46.4%) 42 (5%) 1.42 (0.69-2.89) 0.34

AA 60 (39.2%) 47 (36.1%) 1.00 21 (37.5%) 25 (33.3%) 1.00

AG 72 (47.1%) 54 (41.5%) 0.94 (0.56-1.59) 0.18 26 (46.4%) 32 (42.7%) 1.07 (0.49-2.37) 0.62Codominant

GG 21 (13.7%) 25 (22.3%) 1.74 (0.88-3.45) 9 (16.1%) 18 (24%) 1.61 (0.59-4.41)

AA 60 (39.2%) 47 (36.1%) 1.00 21 (37.5%) 25 (33.3%) 1.00
Dominant

AG/GG 93 (60.8%) 83 (63.9%) 1.12 (0.69-1.83) 0.64 35 (62.5%) 50 (66.7%) 1.22 (0.58-2.54) 0.6

AA/AG 132 (86.3%) 104 (77%) 1.00 47 (83.9%) 57 (76%) 1.00
Recessive

GG 21 (13.7%) 31 (23%) 1.80 (0.96-3.35) 0.064 9 (16.1%) 18 (24%) 1.55 (0.62-3.86) 0.34

AA/GG 81 (52.9%) 79 (58.5%) 1.00 30 (53.6%) 43 (57.3%) 1.00

ULK1

rs9481

Overdominant
AG 72 (47.1%) 56 (41.5%) 0.79 (0.49-1.27) 0.33 26 (46.4%) 32 (42.7%) 0.91 (0.44-1.87) 0.8

CC 76 (49.7%) 86 (68.2%) 1.00 25 (45.5%) 40 (56.3%) 1.00

CT 59 (38.6%) 27 (21.4%) 0.42 (0.24-0.73) 0.0068 20 (36.4%) 18 (25.4%) 0.59 (0.26-1.36) 0.47Codominant

TT 18 (11.8%) 13 (10.3%) 0.68 (0.31-1.49) 10 (18.2%) 13 (18.3%) 0.81 (0.30-2.18)

CC 76 (49.7%) 86 (68.2%) 1.00 25 (45.5%) 40 (56.3%) 1.00
Dominant

CT/TT 77 (50.3%) 40 (31.8%) 0.48 (0.29-0.78) 0.0031 30 (54.5%) 31 (43.7%) 0.67 (0.32-1.37) 0.27

CC/CT 135 (88.2%) 113 (89.7%) 1.00 45 (81.8%) 58 (81.7%) 1.00

PIK3CA

rs1607237

Recessive
TT 18 (11.8%) 13 (10.3%) 0.91 (0.43-1.97) 0.82 10 (18.2%) 13 (18.3%) 0.97 (0.38-2.51) 0.96
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CC/TT 94 (61.4%) 99 (78.6%) 1.00 35 (63.6%) 53 (74.7%) 1.00
Overdominant

CT 59 (38.6%) 27 (21.4%) 0.44 (0.26-0.76) 0.0026 20 (36.4%) 18 (25.4%) 0.63 (0.28-1.38) 0.24
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