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ABSTRACT
In composting, the degradation of lignocellulose in straw is problematic due to its
complex structures such as lignin. A common solution to this problem is the addition
of exogenous inoculants. AC-1, a stable thermophilic microbial composite, was isolated
from high temperature compost samples that can decompose lignocellulose at 50–
70 ◦C. AC-1 had a best degradation efficiency of rice straw at 60 ◦C (78.92%), of
hemicellulose, cellulose and lignin were 82.49%, 97.20% and 20.12%, respectively. It
showed degrad-ability on both simple (filter paper, absorbent cotton) and complex (rice
straw) cellulose materials. It produced acetic and formic acid during decomposition
process and the pH had a trend of first downward then upward. High throughput
sequencing revealed the main bacterial components of AC-1 were Tepidimicrobium,
Haloplasma, norank-f-Limnochordaceae, Ruminiclostridium and Rhodothermus which
provides major theoretical basis for further application of AC-1.

Subjects Agricultural Science, Biotechnology, Microbiology, Natural Resource Management,
Environmental Contamination and Remediation
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INTRODUCTION
Urbanization, as well as the steady rise in human population, has resulted in the generation
of large quantities of waste globally. These waste streams have led to a number of challenges
(environmental, social, and economic) in developing countries (Goodman, 2020;Meena et
al., 2018). Large amounts of straw and livestock manure are produced every year, especially
in China. Rice straw is an abundant lignocellulosic waste material in many parts of the
world (Pedraza-Zapata et al., 2017). For each kg of cropped grain, 1 to 1.5 kg of rice straw
is produced. Effective management strategies are needed to overcome the challenges and
reduce this large amount of rice straw waste (Moh &Manaf, 2017).

Composting is a reliable waste treatment option that could be useful in ameliorating
the negative effects that arise when applying organic waste to soil. Composting provides
sanitized and stabilized products, which could be utilized as potential sources of organic
fertilizers or soil amendments (Qian et al., 2014). The thermophilic conditions provide the
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opportunity for total hygienization of compost, by destroying pathogenic organisms present
in waste (Kulikowska, 2016; Pandey et al., 2016). Compared to anaerobic fermentation
technology, aerobic fermentation is less expensive, and brings significant economic
benefits. The heat can still reach more than 70 ◦C for days in the northeast region when
environmental temperature below 0 ◦C. This energy produced by large-scale aerobic
composting is also one of the available clean energy in cold regions. The composting
process results in organic matter decomposition and the formation of humic substances,
which can be deployed in the treatment of soil contaminated with heavymetals (Kulikowska
et al., 2015). Therefore, if used as a bioremediation option, composting can play a significant
role as a stabilizer (immobilizes metal in the soil) and as a washing agent, due to the humic
substances.

Unfortunately, composting of raw straw is inefficient due to the complex structure
of lignocellulose, which is hard to degrade. The addition of exogenous inoculants could
shorten composting time while increase composting efficiency (Shikata et al., 2018).
Bioconversion of lignocelluloses is a better approach by means of microbial co-cultures
or complex communities due to synergistic interaction, compared to single bacteria
(Wongwilaiwalin et al., 2010). Composite microorganism interaction has been proposed as
an efficient way to deconstruct biomass (Jiménez, Korenblum & Elsas, 2014). To this effect,
attempts have been made to characterize co-cultures or specify consortia as starting points
for biotechnological processes (Jiménez, Korenblum & Elsas, 2014). Due to the obvious
advantages, compound inoculants have been gradually recognized and widely used in
the composting process (Zhang et al., 2014). Few studies have been done on screening of
composite strains with high degradation rate while adapt to the extreme environment above
60 ◦C. In our study, the stable AC-1 isolated fromhigh temperature compost was foundhave
the ability to efficiently degrade lignocellulose especially aerobic, as demonstrated by both
screening process and determination of content of lignocellulose components indicators
in the degradation process. The optimal decomposition conditions of AC-1 were studied
by pH value, temperature and decomposition substrates (filter paper, absorbent cotton,
rice straw); DGGE and high-throughput sequencing were used to analyze the bacterial
composition of AC-1, so as to provide microbial strains for agricultural waste degradation,
contribute to the sustainable development of agriculture.

MATERIALS & METHODS
Material
Rice straw was obtained locally after harvest from the experimental fields at YanBian
University Jilin, China, cut into pieces, approximately 3–5 cm in length, for further use.

Screen and train of lignocellulose degrading microbial consortium
PCS medium was composed of 0.5% peptone, 0.1% yeast extract, 0.2% CaCO3, 0.5% NaCl
and deionized H2O. The medium was autoclaved at 121 ◦C for 20 min. PCS medium (75
ml) was added to 100 ml flasks, rice straw was added as 10% (W/V) of the medium volume
with a clipped filter paper strip attached to the wall of the flask to observe microbe activity.
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Original inoculum sample was taken from the compost with pig manure and rice straw
in high temperature period and then inoculated into PCS medium (Yi et al., 2017). After
inoculation (original inoculum sample, 5% volume of PCS), static intermittent ventilation
cultured at 60 ◦C (each generation has five repetitions), selected the culture with the
best decomposing ability (filter paper broken first) and the first generation strains were
obtained. Then the liquid of first-generation were inoculated into new fresh medium (5
ml per 100 ml medium) (same as original inoculum sample), and cultured under the same
conditions. Cultures with the best decomposing ability were selected, the second-generation
strains were obtained. Repeating in the same manner as described above up to the 30th
generation, the relatively stable decomposition capacity strains named AC-1 were obtained.

The obtained AC-1 inoculated into new PCS medium for fermentation about 15 days,
and samples were taken on day 0 (immediately after inoculation) and on days 1, 3, 5, 7, 9,
12, and 15. Liquid and straw of the culture medium were stored for analysis at −20 ◦C in
centrifuge tubes and sealed bags, respectively.

Measurements
The pH value was measured using a HORIBA Compact pH meter (Model B-212, Japan).
The hemicellulose, cellulose, and lignin content were determined based on van’s washing
fiber analysis, as described in (Zhao et al., 2014) using ANKOM220, USA. The volatile fatty
acids (VFA) were determined based on the method (Peng et al., 2010; Wang, Li & Estrada,
2011) using gas chromatography (GC-7890N, Agilent Inc. USA).

Decomposition ability wasmeasured using weighing. 5% volume of AC-1was inoculated
into each PCS medium. 50 ◦C, 55 ◦C, 60 ◦C, 65 ◦C, 70 ◦C were set in the treatments of
rice straw as the sole carbon source, each treatment was repeated three times; Filter
paper, absorbent cotton and untreated rice straw were set in the same temperature
(60 ◦C) treatments, each treatment was repeated three times, cultured under static
intermittent ventilation. After 15 days, the solid substance in each PCS medium was
treated as Updegraff’s method (Updegraff, 1969), dried at 105 ◦C and weighed.

DNA was extracted using Soil DNA Purification Kit, the bacterial V3–V4 region
was amplified by primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′), PCR reactions were as Zheng et al. (2020) described.
Gel imager (Alpha Innotech 2200, USA) was used to detected gel electrophoresis (DGGE)
products about 15d fermentation samples of AC-1, using 1% agarose under 302 nm
ultraviolet (product quantity 5 µl, buffer 1×TAE, electric voltage 100 V, time 30 min,
coloration 15 min). Miseq High-throughput sequencing were performed by Majorbio Co,
Ltd., China (Zhang et al., 2015). Raw reads were deposited in NCBI Sequence Read Archive
database and analyzed. All measurements were performed in triplicate.

Data analysis
Drawing analysis was used Origin 8 mapping software. SPSS 17.0 data analysis software
were used for data analysis. Uparse software divides 16S rRNA sequences into operational
taxons (OTUs) with 97% threshold.
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RESULTS AND DISCUSSION
Degradation characteristics of AC-1
As shown in Fig. 1, the degradation trend of rice straw along with its composition of
cellulose and hemicellulose showed similar change. On 15 d, the quality of rice straw
and the content of hemicellulose, cellulose, lignin decreased by 78.92%, 82.49%, 97.20%,
and 20.12%, respectively, in the presence of AC-1. The most readily used components,
cellulose and hemicellulose, were rapidly decomposed by microorganisms, and thus, the
rice straw was degraded the most intensively during the early fermentation times, but
after 9d, they leveled off while the degradation rate of lignin slightly higher in this period.
Lignin was found relatively difficult to be directly utilized by microorganisms (Mei et al.,
2020), thus to improve the degradation rate of lignin is critical. Compared with other
bacterial strains (Guo et al., 2008; Seesatat et al., 2020), the decomposition capacity of AC-1
on each composition is relatively stronger. Studies of degradation capacity by fungi are
extensive and deep (Sanchez, 2009;Wang, Han & Liang, 2017) because of its high efficiency,
actually fungi are not suitable for large-scale industrial production by the sensitivity to their
surroundings and the temperature. Bacteria are characterized by their variety of sources,
pH tolerance, cultivation temperature and their fields of application and in our study,
AC-1 are found a stronger efficiency on hemicellulose and cellulose compared with Fungi
(Mishra et al., 2017; Mustafa, Poulsen & Sheng, 2016). Recent years, many researchers are
focus on isolating bacteria with ability of degrading lignin including Bacillus, Cyclospora
and Pseudomonas (Aston et al., 2016) and recombine them for utilization (Dar et al., 2018).
Different from AC-1 screened by external elimination method through 30 generations,
single bacteria and recombinant compound strains are found easy to be replaced by
indigenous microorganisms and it’s hard to be active in external environment such as
composting (Jiménez, Korenblum & Elsas, 2014).

Liquid degradation products produced by AC-1 were analyzed. As shown in Fig. 2, the
predominant VFAs were acetic and formic acid, along with a few propionic acid (under
detected limit) during degradation process. The concentration of formic acid was 0.334 g/L
on 1 d, reached a maximum (0.816 g/L) at 9 d, and gradually decreased to a concentration
of 0.778 g/L on 15 d. The concentration of acetic acid was 0.519 g/L at 1 d, reached a
maximum at 0.85 g/L at 3 d, and decreased to 0.280 g/L on 15 d. The total acid value
reached a maximum of 1.37 g/L on 3 d, 1.06 g/L on 15 d, and thus, tended to first increase
and then decrease which was basically consistent with the trend of pH value (Fig. 2). Acetic
acid was found beneficial for methane fermentation in subsequent application (Wang et
al., 2013), formic acid is an ideal carrier of hydrogen energy (Eppinger & Huang, 2017).
These organic acids laying the foundation for development and application of clean energy
by straw (Yuan et al., 2016).

Degrad-ability of AC-1
The degradation rate is greatly affected by temperature, as shown in Fig. 3, AC-1 has a
certain decomposition effect on rice straw when temperature was from 50 ◦C to 70 ◦C.
At 50 ◦C, 55 ◦C, 60 ◦C, 65 ◦C and 70 ◦C, the decomposition rates were 55.1%, 63.2%,
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Figure 1 Changes of cellulose, hemicellulose, and lignin of straw by AC-1 during cultivation.
Full-size DOI: 10.7717/peerj.12364/fig-1

Figure 2 Changes of volatile organic acids and pH in the degradation process of AC-1 composite
strains.

Full-size DOI: 10.7717/peerj.12364/fig-2

78.92%, 66.3% and 64.8%, respectively. The best decomposition temperature of AC-1 was
about 60 ◦C (78.92%), which is the common and long-lastingtemperature in thermophilic
period of large-scale aerobic composting. Studies show that the thermophilic stage of
composting is crucial on the destruction, fracture and decomposition of lignin, cellulose
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Figure 3 Degradation ability of AC-1 under different temperatures and for different materials.
Full-size DOI: 10.7717/peerj.12364/fig-3

and hemicellulose, especially over 55 ◦C (Hemati et al., 2021). Therefore, the screened
AC-1 could provide a new idea for the further degradation of lignocellulose in the process
of large-scale aerobic composting.

AC-1 showed significant difference degradation ability of different materials. The
degradation rate of filter paper was the highest, almost all filter paper was decomposed
within 5 d, with an average degradation rate of 99.2% after 15 d, followed by absorbent
cotton 92.6% and rice straw 78.9% (Fig. 3). It can be seen that AC-1 has strong degradation
ability to pure cellulose materials and also to complex cellulose structure.

Microbial composition
DGGE map can help us find the stable reproduction time of microorganisms. In the whole
degradation process, the number of bands with the same brightness were observed after 5d
(Fig. 4). Therefore, the stable 12 d AC-1 culture medium was chosen for high-throughput
sequencing and a total of 20,630 valid sequences were obtained. At phylum level, there were
five main groups (Table 1), among which Firmicutes dominantly accounted for 66.46%,
followed Teneriates and Bacteroidetes accounted for 19.11% and 7.16%, respectively, other
bacteria accounted for only 7.27% of the total.

The bacteria at the level of class, order, family and genus are also classified, and the
percentages are shown in pie charts of Fig. 5. At class level, Clostridia accounted for 41.03%.
Mollicutes and Limnochordia accounted for 19.11% and 15.55%, respectively, other classes
of bacteria account for about 24.32% of the total (Fig. 5A). At order level, Clostridiales
accounted for 37%, Haloplasmatales 19.11%, Limnochordales 15.55%, other orders of
bacteria account for about 26.47% (Fig. 5B). At family level, Family-XI-o-clostridiales,
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Figure 4 Bacteria DGGE banding analysis of AC-1 composite strains.
Full-size DOI: 10.7717/peerj.12364/fig-4

Table 1 Bacterial taxonomy at the phylum level.

Classification Relative
abundance (%)

Firmicutes 66.46
Teneriates 19.11
Bacteroidetes 7.16
Proteobacteria 6.05
Others 1.22

Haloplasmataceae, Limnochordaceae, Ruminococcaceae and Rhodothermaceae accounted
for 20.21%, 19.11%, 13.27%, 11.17% and 7.16%, respectively, other families accounted
for about 27.23% (Fig. 5C). Haloplasmataceae is an anaerobic halophilic bacterium, which
can reduce the content of nitrate and nitrite (Antunes et al., 2008). Limnochordaceae is
a moderately thermophilic, facultatively anaerobic, pleomorphic bacterium (Watanbe,
Kojima & Fukui, 2015). Under Ruminococcaceae family, there are many cellulose
decomposing bacteria, mainly produce formic acid, acetic acid and a series of VFA
(Langda et al., 2020). Rhodothermaceae is thermophilic and halophilic. At genus level,
Tepidimicrobium accounted for 20.21%, Haloplasma 19.11%, norank-f-Limnochordaceae
12.94%, Ruminiclostridium 9.36%, Rhodothermus 7.16%, other genera accounted for about
31.23% (Fig. 5D).Tepidimicrobium belongs to Clostridiales, separated fromhot springs, can
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Figure 5 Classification of bacteria at different levels. (A) Class level. (B) Order level. (C) Family level.
(D) Genus level.

Full-size DOI: 10.7717/peerj.12364/fig-5

propagate at 26–62 ◦C, thermophilic, pH 5.5–9.5 and played a role in cellulose degradation
(Koeck et al., 2013; Slobodkin et al., 2020). Haloplasma is known as its deep lineage, vast
habitats, salt and acid tolerance (Surhone, Tennoe & Henssonow, 2011). Limnochordaceae
is salt-tolerant and thermophilic (Watanbe, Kojima & Fukui, 2015). Ruminiclostridium
survives in the stomach of ruminants, and help animals decompose cellulose (Langda et al.,
2020) and Rhodothermus is a thermophilic, halophilic bacterium (Alfredsson et al., 1988).

CONCLUSION
A novel active thermophilic lignocelluloses degrading microbial consortium AC-1 has
been obtained after 30 generation in this study. It showed best degradation efficiency of
rice straw at 60 ◦C (78.92%) and had degrad-ability on both simple and complex cellulose
materials. The acetic and formic acid produced by AC-1 during decomposition process and
the pH showed a trend of first downward then upward. The main bacterial components of
AC-1 were Tepidimicrobium, Haloplasma, norank-f-Limnochordaceae, Ruminiclostridium,
Rhodothermus by High throughput sequencing. Our study demonstrates that AC-1 can
degrade lignocellulose, especially refractory lignin (20.12%) efficiently, provides the
theoretical basis and data for the use of AC-1 in accelerating compost maturity and
improving quality, efficiency of reuse agricultural wastes.
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