

Transcriptomic analysis reveals candidate genes for male sterility in *Prunus sibirica*

Jianhua Chen ¹, Hao Xu ¹, Jian Zhang ¹, Shengjun Dong ^{Corresp., 1}, Quangang Liu ^{Corresp., 1}, Ruoxi Wang ¹

Corresponding Authors: Shengjun Dong, Quangang Liu Email address: dsj928@163.com, liuquangang007@126.com

Background. The phenomenon of male sterility widely occurs in *Prunus sibirica* and has seriously affected the production yield. We identified the key stage and cause of male sterility and found differentially expressed genes related to male sterility in *Prunus sibirica*, and we analyzed the expression pattern of these genes. This work aimed to provide valuable reference and theoretical basis for the study of reproductive development and the mechanisms of male sterility in *Prunus sibirica*. **Method**. The microstructures of male sterile flower buds and male fertile flower buds were observed by paraffin section. Transcriptome sequencing was used to screen genes related to male sterility in *Prunus* sibirica. Quantitative real-time PCR analysis was performed to verify the transcriptome data. **Results**. Anther development was divided into the sporogenous cell stage, tetrad stage, microspore stage, and pollen maturity stage. Compared with male fertile flower buds, in the microspore stage, the pollen sac wall tissue in the male sterile flower buds showed no signs of degeneration. In the pollen maturity stage, the tapetum and middle layer were not fully degraded, and the anther development stopped. Therefore, the microspore stage was the key stage for anther abortion, and the pollen maturity stage was the post stage for anther abortion. A total of 4108 differentially expressed genes were screened out by transcriptome analysis. Among them, 1899 were up-regulated, and 2209 were down-regulated in the transcript of male sterile flower buds. We found that "protein kinase activity", "apoptosis process", "calcium binding", "cell death", "cytochrome c oxidase activity", "aspartate peptidase activity", "cysteine peptidase activity" and other biological pathways such as "starch and sucrose metabolism" and "proteasome" were closely related to male sterility in *Prunus sibirica*. A total of 332 key genes were preliminarily screened. **Conclusion**. The occurrence of male sterility in *Prunus sibirica* involved many biological processes and metabolic pathways. According to the results of microstructure observations, related physiological indexes determination and transcriptome analysis, we inferred that the occurrence of male sterility in *Prunus sibirica* may be caused by abnormal metabolic processes such as the release of cytochrome c in PeerJ reviewing PDF | (2021:03:58714:2:0:NEW 19 Jul 2021)

¹ College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China

the male sterile flower buds, the imbalance of the antioxidant system was destroyed, and inability of macromolecular substances such as starch to be converted into soluble small molecules in time, resulting in energy loss. The tapetum cannot be fully degraded, thereby blocking anther development, which eventually led to the formation of male sterility.

38

1 Transcriptomic analysis reveals candidate genes for 2 male sterility in Prunus sibirica 3 4 5 Jianhua Chen¹, Hao Xu¹, Jian Zhang¹, Shengjun Dong¹, Quangang Liu¹, Ruoxi Wang¹ 6 7 8 ¹ College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China 9 Corresponding authors: 10 11 Shengjun Dong, Quangang Liu 12 No.120 Dongling Road, Shenhe District, Shenyang, Liaoning, 110866, China 13 Email address: dsj928@163.com, liuquangang007@126.com 14 **Abstract** 15 16 **Background**. The phenomenon of male sterility widely occurs in *Prunus sibirica* and has 17 seriously affected the production yield. We identified the key stage and cause of male sterility 18 and found differentially expressed genes related to male sterility in *Prunus sibirica*, and we 19 analyzed the expression pattern of these genes. This work aimed to provide valuable reference 20 and theoretical basis for the study of reproductive development and the mechanisms of male 21 sterility in Prunus sibirica. 22 Method. The microstructures of male sterile flower buds and male fertile flower buds were 23 observed by paraffin section. Transcriptome sequencing was used to screen genes related to male 24 sterility in *Prunus sibirica*. Quantitative real-time PCR analysis was performed to verify the 25 transcriptome data. 26 **Results**. Anther development was divided into the sporogenous cell stage, tetrad stage, 27 microspore stage, and pollen maturity stage. Compared with male fertile flower buds, in the 28 microspore stage, the pollen sac wall tissue in the male sterile flower buds showed no signs of degeneration. In the pollen maturity stage, the tapetum and middle layer were not fully degraded, 29 30 and the anther development stopped. Therefore, the microspore stage was the key stage for 31 anther abortion, and the pollen maturity stage was the post stage for anther abortion. A total of 32 4108 differentially expressed genes were screened out by transcriptome analysis. Among them, 33 1899 were up-regulated, and 2209 were down-regulated in the transcript of male sterile flower buds. We found that "protein kinase activity", "apoptosis process", "calcium binding", "cell 34 death", "cytochrome c oxidase activity", "aspartate peptidase activity", "cysteine peptidase 35 activity" and other biological pathways such as "starch and sucrose metabolism" and 36

"proteasome" were closely related to male sterility in *Prunus sibirica*. A total of 332 key genes

were preliminarily screened.

- 39 **Conclusion**. The occurrence of male sterility in *Prunus sibirica* involved many biological
- 40 processes and metabolic pathways. According to the results of microstructure observations,
- 41 related physiological indexes determination and transcriptome analysis, we inferred that the
- 42 occurrence of male sterility in *Prunus sibirica* may be caused by abnormal metabolic processes
- 43 such as the release of cytochrome c in the male sterile flower buds, the imbalance of the
- 44 antioxidant system was destroyed, and inability of macromolecular substances such as starch to
- 45 be converted into soluble small molecules in time, resulting in energy loss. The tapetum cannot
- 46 be fully degraded, thereby blocking anther development, which eventually led to the formation
- 47 of male sterility.

61 62

63

64 65

66

67

68

69 70

71

72

73 74

75

76

77

78

48 Introduction

- 49 *Prunus sibirica* is a shrub or small tree that belongs to the family Rosaceae. It is mostly found in
- 50 the wild and semi-wild state, and most of *Prunus sibirica* are self-incompatible. There is a
- 51 common phenomenon of interspecific hybridization in *Prunus sibirica*, so the germplasm
- 52 resources are abundant. *Prunus sibirica* is widely cultivated in China, and its economic benefits
- 53 are generally recognized by those who reside in the areas where this species commercially
- 54 cultivated (Wan et al., 2015). However, the low and unstable yield, which is caused by many
- 55 factors, such as frost damage during flowering stage, low fruit setting rate, self-incompatibility,
- 56 male sterility and pistil abortion, has become the main bottleneck hindering the rapid
- 57 development of the *Prunus sibirica* industry (Wang et al., 2014). Among them, the

58 differentiation of male organs directly affects the yield of *Prunus sibirica*. At present, the key

59 stage and cause of male sterility in *Prunus sibirica* have not been determined.

Plant male sterility is widespread in nature. At present, domestic and foreign scholars have conducted studies on different plants, such as apricot (Badenes et al., 2000), Prunus mume (Yaegaki et al., 2003), Prunus salicina (Radice et al., 2008), poplar (Liu et al., 2019), Camellia crassicolumna (Jiang et al., 2020), Brassica napus (Du et al., 2016), and tobacco (Liu et al., 2020), from the aspects of cytology, physiology and biochemistry, and molecular biology to explore the mechanism of plant male sterility. The plant male sterility can usually be classified into several types such as abnormal meiosis of pollen mother cells (Nonomura et al., 2003; Zhou et al., 2011), abnormal metabolism of callose (Wan et al., 2011), early or late degeneration of tapetum cells (Jung et al., 2005; Li et al., 2006), abnormal development of pollen wall (Shi et al., 2011), failure of anther dehiscence (Steiner-Lange et al., 2003). The tapetum plays an important role in pollen development, which provides nutrients for the developing pollen (*Pacini 2010*; Gómez et al., 2015). The middle layer cells are located between the tapetum and endothecium, and play an important role in the differentiation and function of tapetum cells (Ma et al., 2007; Roque et al., 2007). In recent years, with the rapid development of high-throughput sequencing technology, transcriptome sequencing has been widely used in the study of male sterility in herbs or cereals such as Salvia miltiorrhiza Bunge (Yu et al., 2021), wheat (Liu et al., 2020), Cucumis melo (Dai et al., 2019), onion (Yuan et al., 2018) and woody plant such as Vernicia fordii (Liu et al., 2019), and Citrus suavissima (Zhang et al., 2018). However, to our knowledge, no study has used transcriptome sequencing technology to investigate male sterility in *Prunus*.

88

By using paraffin section, transcriptome sequencing and quantitative real-time PCR (RT-79 qPCR), this study clarified the critical stage and cause of male sterility in *Prunus sibirica*. The 80 differentially expressed genes in male sterile flower buds and male fertile flower buds were 81 analyzed, and the mechanism of male sterility was explored at the level of microstructure and 82 83 gene transcription level. This work aims to provide a scientific basis for the study of the mechanism of male sterility in *Prunus sibirica*, and also lays the foundation for the development 84 of molecular markers to select sterile materials and create high-yield and stable product varieties 85 through use of genetic engineering technology to. 86

Materials & Methods

Plant materials

- 89 The eight-year-old *Prunus sibirica* clones were selected as the experimental material, which
- 90 were cultivated in the *Prunus sibirica* germplasm resource nursery of Shenyang Agricultural
- 91 University (Beipiao, Liaoning, China). Based on our research team's multi-year investigation of
- 92 the inflorescence, florescence, male sterile flower buds of clone No. 1 were selected as the
- 93 experimental group, and male fertile flower buds of clone No. 60 were selected as the control
- 94 group. The anthers clone No. 1 were aborted thoroughly, there was no phenomenon of pollen
- 95 dispersal, and the sterility was stable. The stamens of clone No. 60 developed completely, and
- 96 can release abundant mature pollen after flowering, and they can pollinate and bear fruits well.
- 97 Flower bud samples of male sterile clone and male fertile clone were collected from the end of
- 98 July in 2018 to the beginning of April in 2019. Samples were taken every 10 to 15 days. Each
- 99 time, 10~20 complete flower buds free of any observable disease symptoms or insect pests were
- selected from the upper part of the fruiting branches outside the canopy on the sunny side. They
- were collected and quickly stored in FAA fixative to create paraffin sections of flower buds. At
- the same time, three biological replicates of flower buds were collected and rapidly transferred
- into the liquid nitrogen (-196°C). The samples were taken back to the laboratory and stored in an
- 104 ultra-low temperature freezer(-80°C) for RNA extraction. MSFB and MFFB were used to
- represent male sterile clone No. 1 and male fertile clone No. 60, respectively. MSFB 1, MSFB 2 and
- MSFB 3 were used to represent the experimental group, and MFFB 1, MFFB 2 and MFFB 3
- were used to represent the control group.

108 Microstructure observation

- 109 Paraffin section technology was used to make sections (*Xu et al.*, 2008). The microstructure of
- male sterile flower buds and male fertile flower buds in different sampling periods were
- observed and photographed with an inverted fluorescent microscope (Zeiss Axio Vert.A1).

112 Determination of physiological indicators

- 113 The anthrone colorimetric method was used to determine the contents of soluble sugar and starch
- 114 (*Gao*, 2005). Coomassie Brilliant Blue G-250 staining was used to determine the contents of
- 115 soluble protein (*Qu*, 2006).

116 RNA extraction and detection

- 117 Total RNA was extracted from male sterile flower buds and fertile flower buds by using an RNA
- extraction kit (Tiangen Biotech Co., Ltd., Beijing) according to the manufacturer's instructions.

- Then, 1.0 % (w/v) agarose gel electrophoresis was used to detect whether the extracted RNA was
- degraded or of appropriate quality. A NanoPhotometer spectrophotometer (IMPLEN, CA, USA)
- was used to detect the purity of RNA. An Agilent Bioanalyzer 2100 system (Agilent
- 122 Technologies, CA, USA) was used to detect the concentration and integrity of RNA.
- 123 Construction of sequencing library and Illumina sequencing
- 124 The sequencing library was constructed by using the NEBNext® UltraTM RNA Library Prep Kit
- for Illumina® (NEB, USA). First of all, poly (A) mRNA was purified from total RNA with
- Oligo(dT) magnetic beads. Fragmentation was carried out using divalent cations in NEBNext
- 127 First Strand Synthesis Reaction Buffer (5X). Fragmented mRNA was taken as a template. The
- 128 first strand cDNA was synthesized using a random hexamer primer and M-MuLV Reverse
- 129 Transcriptase (RNase H-). The second cDNA synthesis was subsequently performed using DNA
- polymerase I and RNase H. The obtained double-stranded cDNAs were end-repaired. A tail was
- added, and a sequencing connector was added. In order to select cDNA fragments with 250~300
- bp in length, the library fragments were purified with AMPure XP beads (Beckman Coulter,
- Beverly, USA). The purified cDNA was amplified by PCR, the PCR products were purified
- again by AMPure XP beads, and finally the cDNA libraries were obtained. The constructed
- libraries were quantified by using a Qubit 2.0 Fluorometer, and then the library quality was
- detected by using an Agilent 2100 bioanalyzer. To ensure the quality of the libraries, RT-qPCR
- was used to accurately quantify the effective concentration of the libraries. Meanwhile, the
- 138 clustering of the samples was performed on a cBot Cluster Generation System using TruSeq PE
- 139 Cluster Kit v3-cBot-HS. After cluster generation, the library preparations were sequenced on an
- 140 Illumina HiSeq platform and 150 bp paired-end reads were generated.
- 141 Transcriptome sequencing data analysis
- 142 The raw image data obtained from sequencing were converted to sequence reads using
- 143 CASAVA. Then, the raw data were filtered by R language, and finally the clean reads for
- subsequent analysis were obtained. Trinity v2.4.0 program was used to stitch and assemble clean
- reads of all samples (*Grabherr et al.*, 2011). Redundancy was removed by clustering with Corset
- hierarchy. The longest transcript of each gene was selected as unigene for subsequent analysis.
- 147 The transcript sequence obtained by splicing with Trinity was used as a reference sequence.
- 148 RSEM software (version v1.2.15) (bowtie2, mismatch=0) was used to compare clean reads of
- each repeated sample with reference sequences (Li & Dewey, 2011), and the readcount of each
- 150 gene was counted and compared. Fragments per kilobase of exon per million mapped fragments
- 151 (FPKM) was used to standardize the readcount of genes.
- 152 Differentially expressed gene analysis
- 153 The DEGseq R package (1.12.0) was used for differential expression analyses. The P-value was
- 154 calculated on the basis of a negative binomial distribution model. P-values were adjusted using
- the Benjamini-Hochberg method. Genes with an adjusted P-value < 0.05 and log2(Fold
- change) > 1 were considered as differentially expressed.
- 157 Gene Ontology (GO) and KEGG enrichment analysis

- Based on the hypergeometric distribution, GOseq R package (1.10.0) was used for GO
- enrichment analysis, and KOBAS (v2.0.12) was used for KEGG pathway enrichment analysis.
- 160 Quantitative Real Time PCR (RT-qPCR) analysis
- 161 RNA was extracted as described above. The first-strand cDNA was synthesized using EasyScript
- One-Step gDNA Removal and cDNA Synthesis SuperMix (TransGen Biotech, China). The
- 163 18SrRNA gene was used as an internal reference gene (Table S1). RT-qPCR was performed with
- 164 SYBR Green I method. The reaction system was 20 μL, including 10 μL of 2 × SuperReal
- PreMix Plus, 0.6 μL of 0.3 μmol/L forward primer, 0.6 μL of 0.3 μmol/L reverse primer, 1 μL of
- 166 cDNA template, $2 \mu L$ of $50 \times ROX$ Reference Dye, and $5.8 \mu L$ ddH₂O. The RT-qPCR was
- performed on the Applied Biosystems Step One Plus system, and the experiments were carried
- out in three replications. The PCR program was as follows: initial denaturation at 95°C for 15
- min, denaturation at 95 °C for 10 s, annealing at 60 °C and extension for 32 s, for 40 cycles. The
- 170 $2^{-\Delta\Delta Ct}$ method was used to calculate the relative expression. The correlation coefficient between
- transcriptome sequencing and RT-qPCR was analyzed using SPSS 22.0 software.

172 **Results**

173 Microstructural characteristics of male sterile flower buds and male fertile flower buds of

174 Prunus sibirica

- 175 To identify the key period and characteristics of male sterility in *Prunus sibirica*, the
- 176 microstructures of male sterile flower buds and male fertile flower buds at different
- developmental periods were observed by paraffin section (Fig. 1). The results showed that anther
- development can be divided into four stages, namely sporogenous cell stage, tetrad stage,
- 179 microspore stage, and pollen maturity stage. At the sporogenous cell stage (Fig. 1A, E) and
- tetrad stage (Fig. 1B, F), no significant difference was observed in anther development between
- male sterile flower buds and male fertile flower buds of *Prunus sibirica*. The sporogenous cells
- located in the four corners of the anther differentiate into multiple microspore mother cells.
- 183 These cells produce microspores through meiosis, and they are surrounded by callose to form
- tetrads. When flower buds reach the microspore stage, microspores are released from tetrads
- with the degradation of the callose. In male fertile flower buds, the tapetum and middle layer
- cells in the pollen sac wall were degraded, and rendering the border between the two difficult to
- observe. At the pollen maturity stage, the tapetum and middle layer cells disappeared completely.
- Only the endothecium and epidermis were left in the pollen sac wall (Fig. 1G, H). In male sterile
- flower buds, however, the pollen sac wall tissue was complete at the microspore stage, with any
- signs of degradation failing to be observed. At the pollen maturity stage, the tapetum and middle
- layer cells were not degraded sufficiently, and the development of pollen was blocked, which
- eventually led to male sterility (Fig. 1C, D). Therefore, the abnormal anther development was the
- 193 cause of male sterility in *Prunus sibirica*. The microspore stage was the key stage of anther
- abortion, and the pollen maturity stage was the post stage of anther abortion.

195 Total RNA extraction and detection

- The total RNA concentrations of the six samples ranged from 452 $\text{ng} \cdot \mu L^{-1}$ to 670 $\text{ng} \cdot \mu L^{-1}$. The
- 197 RNA integrity number values were all close to 10 (Table S2). These results indicated that the

199

200

201202

203204

205

206207

208209

210

211

212

213

214215

216

222

230

231

232233

234

235236

extracted RNA had good integrity, high purity, and no obvious degradation, which met the quality requirements of sequencing library construction.

Six cDNA libraries of male sterile flower buds and male fertile flower buds at the microspore stage of abortion were sequenced on an Illumina sequencing platform using double-ended sequencing. After filtering and quality control, a total of 40 030,500~61,826,716 clean reads were obtained. The clean reads rate was between 98.02% and 98.45%. The total number of clean bases was 45.80 Gb, the sequencing quality represented by Q30 percentage was over 94%, and the GC content was between 45.65% and 45.88%. The transcripts assembled by Trinity were used as the reference transcriptome, and the clean reads of each sample were mapped to the reference sequences. The alignment proportion of each sample was greater than 80% (Table S3). All the above results showed that the quality and accuracy of the sequencing data were sufficient for further analysis.

Trinity software was used to assemble the clean reads and obtain non-redundant unigenes, and a total of 34,377 unigenes were obtained. The gene function of the obtained unigenes were annotated in seven databases (Nr, Nt, KEGG, SwissProt, Pfam, GO, and KOG), and it was found that a total of 27,798 unigenes were annotated, accounting for 80.86% of the number of originally identified unigenes. The number of unigenes that were annotated successfully in all seven databases was 3,283, accounting for 9.54% (Table S4).

Analysis of the differentially expressed genes

- The expressed genes with false discovery rate (FDR) < 0.05 and fold change (FC) > 2 were
- 218 designated as differentially expressed genes. Differences in gene expression in male sterile
- 219 flower buds and male fertile flower buds were compared and analyzed. A total of 4,108 genes
- were differentially expressed with 1,899 up-regulated genes and 2,209 down-regulated genes in
- 221 male sterile flower buds (Fig. S1).

GO functional enrichment analysis of differentially expressed genes

- 223 GO functional classification analysis of the differentially expressed genes between male sterile
- 224 flower buds and male fertile flower buds was conducted. The results are shown in Fig. 2. Among
- 225 the biological processes, differential genes were mainly enriched in the processes of "cellular
- process", "metabolic process", and "single-organism process". In cellular component category,
- the differential genes were mainly distributed in "cells", "cell part", "cell composition". In the
- molecular function category, the differential genes were mainly enriched in "binding", "catalytic activity", and "heterocyclic compound binding".

Based on the results of GO enrichment analysis, eight GO functional subclasses with significant enrichment (corrected *P*-value <0.5) were selected (Fig. 3), including "DNA integration" in biological process and "ADP binding", "heme binding", "tetrapyrrole binding", "iron ion binding", "oxidoreductase activity", "acting on paired donors with incorporation or reduction of molecular oxygen", "oxidoreductase activity", and "terpene synthase activity" in molecular function. The results indicated that these functional categories played a central role in the occurrence of male sterility in *Prunus sibirica*.

According to microstructure observations, the insufficient degradation of tapetal cells at the pollen maturity stage was one of the causes of male sterility in *Prunus sibirica*. The degradation process of tapetal cells belongs to programmed cell death. Therefore, the genes involved in the categories of "protein kinase activity", "apoptosis process", "calcium binding", "cell death", "cytochrome c oxidase activity", "aspartate peptidase activity" and "cysteine peptidase activity" may be the key genes that regulate the male sterility of *Prunus sibirica*. Among them, a total of 297 related genes were enriched, and the detailed information of the 297 genes is listed in Table S5.

Hierarchical clustering was performed on key differentially expressed genes of male sterility in *Prunus sibirica*, which were screened on the basis of GO function enrichment analysis, and the heat map was drawn (Fig. S2). The column represents the expression of the same gene in different samples, and the horizontal row represents the expression of different genes in the same sample. The differences between individual samples at the transcriptome level can be preliminarily depicted by the use of a cluster map, and the differentially expressed genes can be divided into four categories (Category 1, Category 2, Category 3 and Category 4). The detailed information of differentially expressed genes in GO functional enrichment analysis is listed in Table S5.

KEGG pathway enrichment analysis of differentially expressed genes

To explore the main metabolic pathways involved in differentially expressed genes, KEGG pathway cluster analysis was conducted on differentially expressed genes between male sterile flower buds and male fertile flower buds of *Prunus sibirica*. The differentially expressed genes were mapped to 215 biological pathways, and 20 of them were significantly enriched (Fig. 4). They mainly included "plant-pathogen interaction", "monoterpenoid biosynthesis", "protein processing in endoplasmic reticulum", "flavonoid biosynthesis", "Stilbenoid, diarylheptanoid and gingerol biosynthesis", "phenylpropanoid biosynthesis", "Vitamin B6 metabolism", "glycolysis / gluconeogenesis", and "diterpenoid biosynthesis". These pathways might play an important role played a key role in regulating the formation of male sterility in *Prunus sibirica*.

The metabolism of macromolecular nutrients plays a key role in the formation of male sterility in plants. In this study, the differences of soluble sugar content, starch content, and soluble protein content between male sterile flower buds and male fertile flower buds were analyzed. The results showed that during the critical stage of anther abortion, the soluble sugar content, starch content and soluble protein content in male sterile flower buds were significantly lower than those in male fertile flower buds at the same stage. During the post-abortion stage, the soluble sugar content and soluble protein content in male sterile flower buds were significantly lower than those in male fertile flower buds, whereas the starch content was significantly higher than that of male fertile flower buds (Fig. 5).

Combined with the results of KEGG pathway enrichment analysis, we found that "starch and sucrose metabolism" and "proteasome" pathways were enriched separately, and a total of 35 differentially expressed genes were involved (Fig. S3). The result suggested that these differentially expressed genes played an important regulatory role in the occurrence of male

- 277 sterility in *Prunus sibirica*. The detailed information of differentially expressed genes in KEGG
- 278 pathway enrichment analysis is listed in Table S6.

279 RT-qPCR analysis

- 280 To verify the accuracy of the transcriptome sequencing data, 14 DEGs were selected and used
- 281 for RT-qPCR verification (Table S7). The RT-qPCR results were largely consistent with the
- transcriptome data (Fig. 6), and the correlation coefficient was 0.964. The results showed that the
- 283 accuracy of transcriptome sequencing was high, which can be used to analyze the dynamic
- 284 changes to the expression of genes related to male sterility in the flowers of *Prunus sibirica*, thus
- 285 revealing the molecular mechanism of male sterility.

286 Discussion

292293

294

295

296297

298

299

300

301

302 303

304

305

306 307

308

309

310311

312313

314

315316

- In the studies of male sterility of *Prunus*, Lillecrapp *et al.* (1999) found that the anthers of
- 288 'Trevatt Blue' apricot contained degraded microspores, with some failure in tapetal breakdown.
- 289 Badenes et al. (2000) found a marker (M4-650) linked to male fertility traits in apricot using
- 290 RAPD markers combined with the BSA method. *Yaegaki et al.* (2003) found that genes related
- 291 to the male sterility of *Prunus mume* belong to the cytoplasmic type.

According to the microstructural characteristics of male sterile flower buds and fertile flower buds at different development stages of *Prunus sibirica*, anther development can be divided into four stages, namely sporogenous cell stage, tetrad stage, microspore stage and pollen maturity stage. This was similar to the findings reported by *Zhang et al.* (2018). The reason for the male sterility in *Prunus sibirica* was because the tapetum and middle layer cells failed to degrade sufficiently. The microspore stage was the key stage of anther abortion, whereas the pollen maturity stage was the post-abortion stage.

The soluble sugar content in male sterile flower buds of *Prunus sibirica* was significantly lower than that in fertile flower buds during the key stage of anther abortion and post-abortion stage, and the difference reached the maximum at the post-abortion stage. This result indicated that the degree of carbohydrate metabolism in male sterile flower buds was lower, which possibly led to a deficiency in the supply of required energy, and therefore, anther abortion (*Han et al.*, 2020). The content of soluble protein in male sterile flower buds of *Prunus sibirica* was significantly lower than that of fertile flower buds during the key stage of abortion and post-abortion stage, and the difference reached the maximum during the key stage of abortion. The starch content in male sterile flower buds was significantly higher than that in fertile flower buds during the key stage of abortion, and significantly lower than that in fertile flower buds during the post-abortion stage. This result indicated that anther abortion was closely related to the inability of macromolecular nutrients to produce soluble small molecular substances in time, which was consistent with the results of *Liu et al.* (2014) on male sterility in *Sesamum indicum*.

In recent years, many studies have used transcriptome sequencing to investigate male sterility, including studies in pepper (*Lv et al.*, 2020), *Catalpa bungei* (*Mao et al.*, 2017), maize (*Xue et al.*, 2019), and soybean (*Li et al.*, 2019). However, no study has investigated male sterility of *Prunus sibirica* using transcriptome sequencing. The filtered clean reads account for more than 80% of raw reads (*Ge et al.*, 2014). The GC content can reflect the structure of nucleic

318

319

320 321

322

323

324

325

326

327

328 329

330

331

332

333

334

335

336

337

338

339 340

341

346

348 349

350

351

acid sequence within a certain range and can be used as an important feature of transcriptome sequencing (Xu et al., 2020). In our study, the proportion of clean reads obtained from each repeated sample was more than 98%, and the GC content was between 45.65% and 45.88%. The results showed that the reliability of the sequencing data was high.

Male sterility is regulated by a series of genes related to fertility, which can be broadly divided into abnormal meiosis genes (*Nonomura et al.*, 2004), abnormal tapetum development genes (Li et al., 2006), abnormal callose metabolism genes (Wan et al., 2011), abnormal pollen wall formation genes (Shi et al., 2011) and abnormal anther cracking genes (Steiner-Lange et al., 2003). The development of the tapetum is closely related to male sterility, and the tapetum is the innermost tissue of the pollen sac wall, which secretes enzymes needed to degrade the callose component of the wall (*Cui et al.*, 2017). Furthermore, the tapetum provides essential nutrients for the development of microspore mother cells (*Li et al.*, 2020), and it is important for normal pollen development. Through the enrichment analysis of differentially expressed genes, the biological functions and metabolic pathways related to male sterility of *Prunus sibirica* were screened. We found that "protein kinases activity" (Mizuno et al., 2007), "apoptotic process" (Love et al., 2008), "calcium ion binding" (Cao et al., 2012), "cell death" (Zhu et al., 2006), "cytochrome c oxidase activity" (Luo et al., 2013), "aspartic peptidase activity" (Li et al., 2006) and "cysteine- peptidase activity" (Niu et al., 2013) and other terms are closely related to insufficient degradation of tapetum. Biological pathways such as "starch and sucrose metabolism" and "proteasome" also participate in the formation of male sterility of *Prunus* sibirica. These analyses therefore provided strong initial evidence for elucidating the regulatory pathways of male sterility in Prunus sibirica.

Conclusions

We inferred that during anther development in *Prunus sibirica*, starch and other macromolecular substances cannot be converted into soluble small molecules in time due to abnormal metabolic process such as the release of cytochrome c, resulting in the abnormal development of tapetum 342 343 cells and abnormal pollen development to form male sterility. The stage, characteristics and 344 related metabolic pathways of male sterility in *Prunus sibirica* were analyzed at the microscopic and transcriptome level in our study, which has important reference value for the study of 345 reproductive development and the mechanism of male sterility in *Prunus sibirica*. At the same time, this study provides scientific reference for breeding male sterile germplasms with better 347 comprehensive traits, and the selected germplasms can be used as a worthful female parent in the hybridization breeding. It is of great significance for giving full play to heterosis and utilizing reasonably the *Prunus sibirica* germplasm resources in future hybrid breeding.

Acknowledgements

- We thank Professor Xiujun Lu and Lecturer Xiaolin Zhang from Shenyang Agricultural 352
- University for their helpful comments and suggestions to improve our manuscript. 353

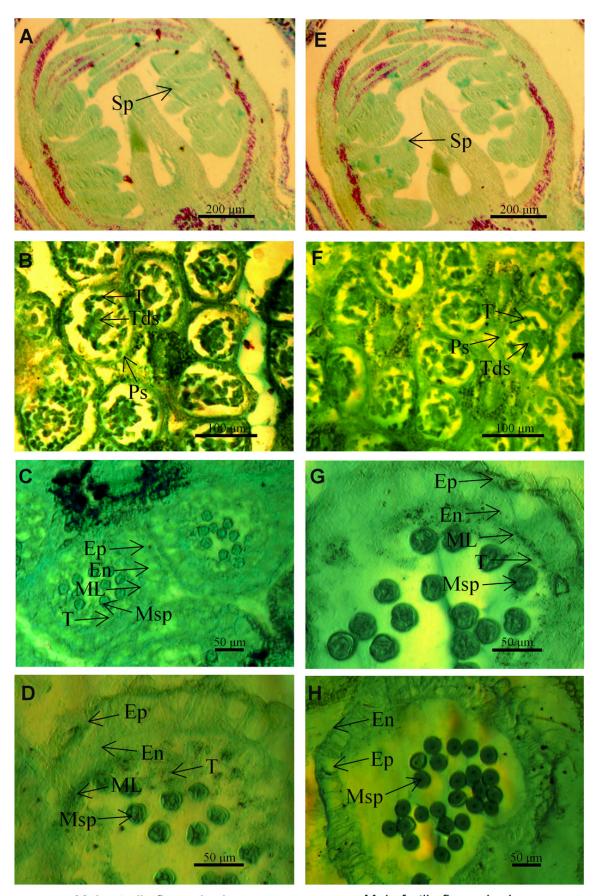
References 354

- Badenes ML, Hurtado MA, Archelos DM, Burgos L, Egea J, Llácerl G. 2000. Searching for molecular markers linked to male sterility and self-compatibility in apricot, *Plant Breeding* 119(2):157-160 DOI 10.1046/j.1439-0523.2000.00463.x.
- Cao Y, Kang XY, Zhang ZY, Jing YP. 2012. Anomalous changes in Ca²⁺ -ATPase distribution during the process of pollen abortion in *Populus tomentosa* Carr. *Journal of Beijing* Forestry University 34(4):10-17 DOI 10.13332/j.1000-1522.2012.04.020.
- Cui HF, Zhang F, Yin JL, Guo YQ, Yue YL. 2017. Callose deposition and pollen
 development. *Journal of Yunnan Agricultural University (Natural Science)* 32(3):551-557
 DOI 10.16211/j.issn.1004-390X(n).2017.03.022.
- Dai DY, Xiong AP, Yuan LW, Sheng YY, Ji P, Jin YZ, Li DD, Wang YH, Luan FS. 2019.
 Transcriptome analysis of differentially expressed genes during anther development stages
 on male sterility and fertility in *Cucumis melo* L. line. *Gene* 707:65-77. DOI
 10.1016/j.gene.2019.04.089.
- Du K, Liu Q, Wu XY, Jiang JJ, Wu J, Fang YJ, Li AM, Wang YP. 2016. Morphological structure and transcriptome comparison of the cytoplasmic male sterility line in *Brassica napus* (SaNa-1A) derived from somatic hybridization and its maintainer line SaNa-1B.
 Frontiers in Plant Science 7: 1313 DOI 10.3389/fpls.2016.01313.
- 372 Gao JF. 2005. Experimental Guidance of Plant Physiology. Beijing: Higher Education Press.
- 373 Ge SJ, Sun AQ, Liu P, Zhang JD, Dong ST. 2014. *In silico* Expression profile of maize genes
 374 in response to osmotic stress. *Acta Agronomica Sinica* 40(7):1164-1173 DOI
 375 10.3724/SP.J.1006.2014.01164.
- Gómez JF, Talle B, Wilson ZA. 2015. Anther and pollen development: A conserved
 developmental pathway. *Journal of Integrative Plant Biology* 57(011):876-891. DOI
 10.1111/jipb.12425.
- Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L,
 Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N,
 Palma FD, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011.
 Full-length transcriptome assembly from RNA-Seq data without a reference genome.
 Nature Biotechnology 29(7):644-652 DOI 10.1038/nbt.1883.
- Han PA, Bai CH, Wu XR, Wang L, Zhang ZQ, Sun RF, Zhang BZ, Li XD. 2020. Differential
 Protein Analysis between Male Sterile Line and Maintainer Line in Bud Stage of Sugarbeet.
 Molecular Plant Breeding 18(16):5230-5236 DOI 10.13271/j.mpb.018.005230.
- Jiang HB, Sun YN, Xu Y, Song WX, Li YY, Tian YP. 2020. Physiological and biochemical changes during bud development in male sterile plant of *Camellia crassicolumna*. *Plant Physiology Journal* 56(9):1807-1817 DOI 10.13592/j.cnki.ppj.2020.0209.
- 390 Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G. 2005.
- Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. *Plant Cell* **17(10)**:2705-2722. DOI 10.1105/tpc.105.034090.

- Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics* 12:323 DOI 10.1186/1471-2105-12-323.
- Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB. 2006. The rice tapetum degeneration
- retardation gene is required for tapetum degradation and anther development. *The Plant Cell* **18(11)**:2999-3014 DOI 10.1105/tpc.106.044107.
- 399 Li R, Lin CJ, Peng B, Ding XY, Li YK, Zhao GL, Zhao LM, Zhang CB. 2019.
- Transcriptomic analysis of soybean cytoplasmic male sterile lines with different outcrossing rate. *Chinese Journal of Oil Crop Sciences* **41(5)**:696-704 DOI 10.19802/j.issn.1007-9084.2019053.
- 403 Li YQ, Wang QL, Wei CY, Dong T, Chen QJ, Zhou RY. 2020. Morphological observation
 404 and physiological and biochemical characteristics of ccotton cytoplasmic male sterile cells.
 405 Southwest China Journal of Agricultural Sciences 33(1):58-63 DOI
 406 10.16213/j.cnki.scjas.2020.1.010.
- 407 **Lillecrapp A M, Wallwork M A, Sedgley M. 1999.** Female and male sterility cause low fruit set in a clone of the `Trevatt' variety of apricot (*Prunus armeniaca*). *Scientia Horticulturae* 409 **82(3-4):**255-263. DOI 10.1016/S0304-4238(99)00061-8.
- 410 **Liu HY, Tan MP, Yu HJ, Li L, Zhou F, Yang MM, Zhou T, Zhao YZ. 2016.** Comparative 411 transcriptome profiling of the fertile and sterile flower buds of a dominant genic male sterile 412 line in seasame (*Sesamum indicum* L). *BMC Plant Biology* **16(1)**:250 DOI 10.1186/s12870-413 016-0934-x.
- 414 **Liu HY, Wu K, Yang MM, Zhou XA, Zhao YZ. 2014.** Variation of soluble sugar, starch and plant hormones contents in sesame dominant genic male sterile line during bud development. *Chinese Journal of Oil Crop Sciences* **36(02)**:175-180 DOI 10.7505/j.issn.1007-9084.2014.02.006.
- Liu ML, Li WY, Zhao G, Fan XM, Long HX, Fan YR, Shi MW, Tan XF, Zhang L. 2019.
 New Insights of Salicylic Acid Into Stamen Abortion of Female Flowers in Tung Tree
 (Vernicia fordii). Frontiers in Genetics 10 DOI 10.3389/fgene.2019.00316.
- 421 Liu WS, Han LZ, Zhu S, Pan HX. 2019. Cytological observation on pollen development of the
 422 male sterile poplar variety. *Journal of Nanjing Forestry University (Natural Sciences* 423 *Edition)* 43(1):198-203 DOI 10.3969/j.issn.1000-2006.201805034.
- Liu ZH, Li S, Li W, Liu Q, Zhang LL, Song XY. 2020. Comparative transcriptome analysis indicates that a core transcriptional network mediates isonuclear alloplasmic male sterility in wheat (*Triticum aestivum* L.). *BMC Plant Biology* 20(1):10 DOI 10.1186/s12870-019-2196-x.
- 428 Liu ZW, Liu YF, Sun YH, Yang AG, Li FX. 2020. Comparative transcriptome analysis reveals
 429 the potential mechanism of abortion in Tobacco *sua*-Cytoplasmic male sterility.
 420 21672445
- International Journal of Molecular Sciences **21**(7):2445 DOI 10.3390/ijms21072445.
- 431 **Love AJ, Milner JJ, Sadanandom A. 2008.** Timing is everything: regulatory overlap in plant cell death. *Trends in Plant Science* **13(11)**:589-595 DOI 10.1016/j.tplants.2008.08.006.

- 433 Luo DP, Xu H, Liu ZL, Guo JX, Li HY, Chen LT, Fang C, Zhang QY, Bai M, Yao N, Wu
- H, Wu H, Ji CH, Zheng HQ, Chen YL, Ye S, Li XY, Zhao XC, Li RQ, Liu YG. 2013.
- A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice.
- 436 *Nature genetics* **45(5)**:573-U157 DOI 10.1038/ng.2570.
- 437 Lv JH, Liu ZB, Liu YH, Ou LJ, Deng MH, Wang J, Song JS, Ma YQ Chen WC, Zhang ZQ,
- Dai XZ, Zou XX. 2020. Comparative transcriptome analysis between Cytoplasmic male-
- sterile line and its maintainer during the floral bud development of pepper. *Horticultural Plant Journal* **6(2)**:89-98 DOI 10.1016/j.hpj.2020.01.004.
- 441 Ma J, Duncan D, Morrow DJ, Fernandes J, Walbot V. 2007. Transcriptome profiling of
- maize anthers using genetic ablation to analyze pre-meiotic and tapetal cell types. *The Plant*
- *Journal* **50(4)**:637-648. DOI 10.1111/j.1365-313X.2007.03074.x.
- 444 Mao WB, Chen FJ, Wang CL, Liang HW. 2017. Transcriptome Sequencing and Analysis of
- Male Sterile Flower Buds in *Catalpa bungei*. Scientia Silvae Sinicae **53(6)**:141-150 DOI
- 446 10.11707/j.1001-7488.20170617.
- 447 Mizuno S, Osakabe Y, Maruyama K, Ito T, Osakabe K, Sato T, Shinozaki K, Yamaguchi-
- Shinozaki K. 2007. Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling
- anther development in *Arabidopsis thaliana*. The Plant Journal **50(5)**:751-766 DOI
- 450 10.1111/j.1365-313X.2007.03083.
- Nonomura K, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N. 2003.
- The MSP1 Gene Is Necessary to Restrict the Number of Cells Entering into Male and
- 453 Female Sporogenesis and to Initiate Anther Wall Formation in Rice. *Plant Cell* **15(8)**:1728-
- 454 1739. DOI 10.1105/tpc.012401.
- Nonomura KI, Nakano M, Fukuda T, Eiguchi M, Miyao A, Hirochika H, Kurata N. 2004.
- 456 The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice
- encodes a putative coiled-coil protein required for homologous chromosome pairing in
- 458 meiosis. *The Plant Cell* **16(4)** :1008-1020 DOI 10.1105/tpc.020701.
- 459 Niu NN, Liang WQ, Yang XJ, Jin WL, Wilson AZ, Hu JP, Zhang DB. 2013. EAT1 promotes
- 460 tapetal cell death by regulating aspartic proteases during male reproductive development in
- rice. *Nature Communications* **4**:1445 DOI 10.1038/ncomms2396.
- **Pacini E. 2010.** Relationships between tapetum, loculus, and pollen during development.
- 463 International Journal of Plant Sciences 171(1):1-11. DOI 10.1086/647923.
- 464 Ou CX, Shen SD, Wang XF, Cui YH, Song WP. 2006. Method research of measuring soluble
- protein contents of plant rough extraction using Coomassie Brilliant Blue. *Journal of*
- 466 Suzhou University (Natural Science Edition) 22(2): 82-85
- 467 Radice S, Ontivero M, Giordani E, Bellini E. 2008. Anatomical differences on development of
- 468 fertile and sterile pollen grains of *Prunus salicina* Lindl. *Plant Systematics & Evolution*
- **273(1-2)**:63-69 DOI 10.1007/s00606-008-0011-5.

- 470 Roque E, MD Gómez, Ellul P, Wallbraun M, Madueño F, Beltrán J, Cañas LA. 2007. The
- PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by
- early anther ablation. *Plant Cell Reports* **26(3)**:313-325. DOI 10.1007/s00299-006-0237-z.
- 473 Shi J, Tan HX, Yu XH, Liu YY, Liang WQ, Ranathunge K, Franke RB, Schreiber L,
- Wang YJ, Kai GY, Shanklin J, Ma H, Zhang DB. 2011. Defective pollen wall is required
- for anther and microspore development in rice and encodes a fatty acyl carrier protein
- 476 reductase. *The Plant Cell* **23(6)**:2225-2246 DOI 10.1105/tpc.111.087528.
- 477 Steiner-Lange S, Unte US, Eckstein L, Yang CY, Wilson ZA, Schmelzer E, Dekker K,
- Saedler H. 2003. Disruption of *Arabidopsis thaliana MYB26* results in male sterility due to
- 479 non-dehiscent anthers. *The Plant Journal* **34(4)**:519-528 DOI 10.1046/j.1365-
- 480 313x.2003.01745.x.
- 481 Wan LL, Zha WJ, Cheng XY, Liu C, Lv L, Liu CX, Wang ZQ, Du B, Chen RZ, Zhu LL,
- He GC. 2011. A rice β -1,3-glucanase gene *Osg1* is required for callose degradation in
- 483 pollen development. *Planta* **233(2)**:309-323 DOI 10.1007/s00425-010-1301-z.
- 484 Wan DM, Wu YL, Wang MH, Dong SJ, Liu MG. 2015. Genetic Diversity of Armeniaca
- sibirica Germplasm Resources Revealed by SRAP Analysis. Molecular Plant Breeding
- 486 **13(11)**:2537-2541 DOI 10.13271/j.mpb.013.002537.
- Wang Z, Kang M, Liu H, Gao J, Zhang ZD, Li YY, Wu RL, Pang XM. 2014. High-level
- genetic diversity and complex population structure of Siberian apricot (*Prunus sibirica* L.)
- in China as revealed by nuclear SSR markers. *PloS one* **9(2)**:e87381 DOI
- 490 10.1371/journal.pone.0087381
- 491 Xu YL, Jin JJ, Zhao YZ, Wei P, Xi JQ, Yang J, Cao PJ, Zhang JF. 2020. Genome survey of
- 492 Lasioderma serricorne based on high-throughput sequencing. Tobacco Science &
- 493 *Technology* **53(11)**:1-6 DOI 10.16135/j.issn1002-0861.2020.0211.
- 494 Xu YT, Luo SP, Li J, Yang WY, Zeng B. 2008. Morphological Differentiation of Flower Bud
- in Amygdalus Ledebouriana Schleche. Nonwood Forest Research 26(4):86-89 DOI
- 496 10.14067/j.cnki.1003-8981.2008.04.017.
- 497 Xue YD, Yang L, Yang HL, Li B, Lin YN, Zhang HS, Guo ZY, Tang JH. 2019. Comparative
- transcriptome analysis among the three line of cytoplasmic male sterility in maize. *Scientia*
- 499 *Agricultura Sinica* **52(8)**:1308-1323 DOI 10.3864/j.issn.0578-1752.2019.08.002.
- Yaegaki H, Miyake M, Haji T, Yamaguchi M. 2003. Inheritance of male sterility in Japanese
- apricot (*Prunus mume*). *Hortscience* **38(7)**:1422-1423 DOI 10.21273/HORTSCI.38.7.1422.
- 502 Yu Y, Jiang Y, Wang L, Wu L, Wu YC, Liao JQ, Zhong MZ, Yang RW, Chen XF, Li QM,
- **Zhang L. 2021.** Comparative transcriptome analysis reveals key insights into male sterility
- in Salvia miltiorrhiza Bunge. PeerJ 9:e11326 DOI 10.7717/peerj.11326.
- 505 Yuan QL, Song C, Gao LY, Zhang HH, Yang CC, Sheng J, Ren J, Chen D, Wang Y. 2018.
- Transcriptome de novo assembly and analysis of differentially expressed genes related to
- 507 cytoplasmic male sterility in onion. *Plant Physiology and Biochemistry* **125**:35 DOI
- 508 10.1016/j.plaphy.2018.01.015.



509	Zhang C, Yu DH, Ke FZ, Zhu MM, Xu JG, Zhang M. 2018. Seedless mutant 'Wuzi Ougan'
510	(Citrus suavissima Hort. ex Tanaka 'seedless') and the wild type were compared by iTRAQ-
511	based quantitative proteomics and integratedly analyzed with transcriptome to improve
512	understanding of male sterility. BMC Genomics, 19:106 DOI 10.1186/s12863-018-0693-9.
513	Zhang CY, Guo SF, Sun Q, Zhang GZ, Xu JJ, Liu L. 2018. Embryological characterization
514	of apricot pollen and anther wall development. Acta Horticulturae Sinica 45(12):2427-2436
515	DOI 10.16420/j.issn.0513-353x.2018-0271.
516	Zhou SR, Wang Y, Li WC, Zhao ZG, Ren YL, Wang Y, Gu SH, Lin QB, Wang D, Jiang
517	L, Su N, Zhang X, Liu LL, Cheng ZJ, Lei CL, Wang JL, Guo XP, Wu FQ, Ikehashi H,
518	Wang HY, Wan JM. 2011. Pollen semi-sterility 1 encodes a kinesin-1-like protein
519	important for male meiosis, anther dehiscence, and fertility in rice. Plant Cell 23(1):111-
520	129 DOI 10.1105/tpc.109.073692.
521	Zhu BB, Li CQ, Lu JJ, Peng M. 2006. The progresses of research on programmed cell death of
522	plants. Molecular Plant Breeding 4(S1):11-15.
	plants. Hoveewar I van Breeards 1(81).11 16.

The microstructure of male sterile flower buds (A-D) and male fertile flower buds (E-H) at different developmental stages in *Prunus sibirica*

A, E: sporogenous cell stage; B, F: tetrad stage; C, G: microspore stage; D, H: anther maturity stage. Sp: sporogenous cells; Ps: pollen sac; T: tapetum; Tds: tetrads; Ep: epidermis; En: endothecium; ML: middle layer; MSp: microspores; A, D: sporogenous cell stage; B, F: tapetum stage.

Male sterile flower bud

Male fertile flower bud

Figure 2 GO functional classification of differentially expressed genes

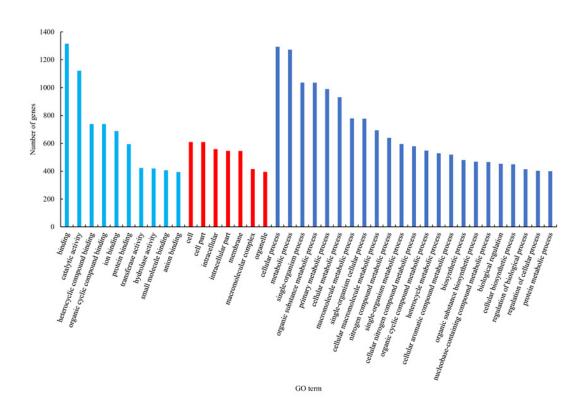


Figure 3 GO significant enrichment analysis of differentially expressed genes

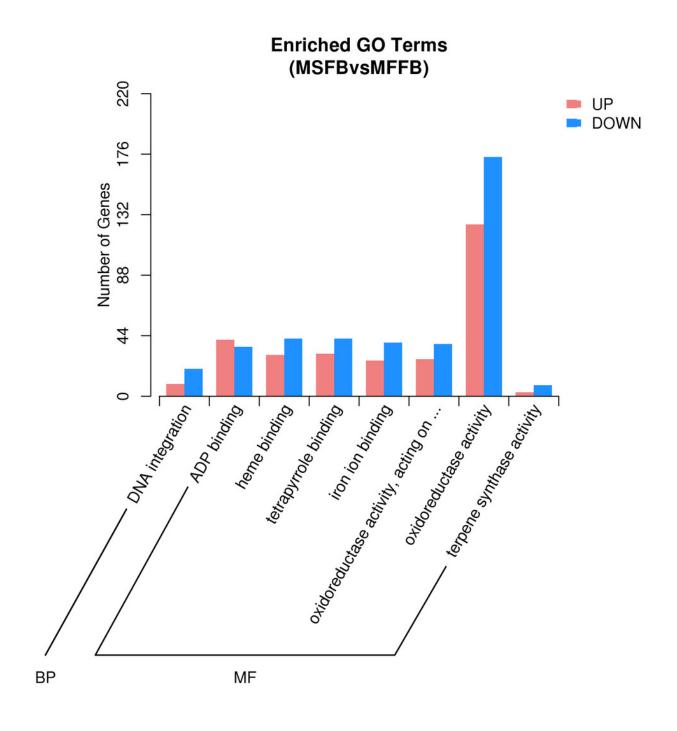


Figure 4 KEGG pathway significant enrichment analysis of differentially expressed genes

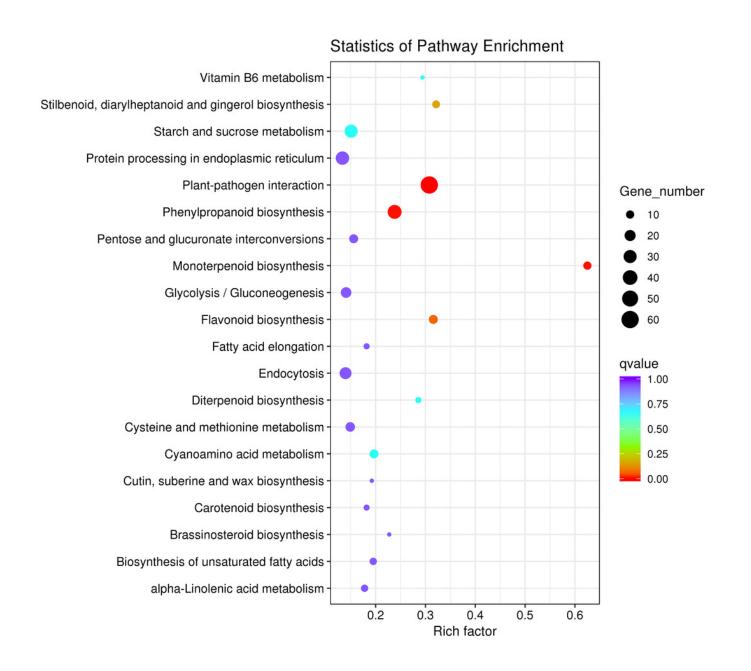


Figure 5 Analysis of related physiological indexes between MSFBs and MFFBs in *Prunus sibirica*

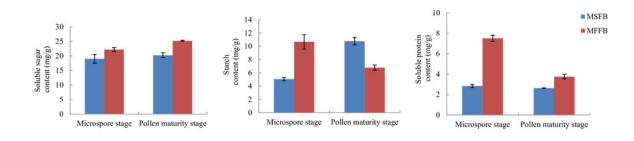
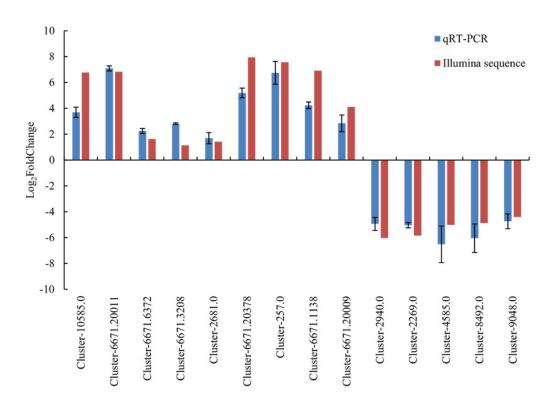



Figure 6 qRT-PCR verification for transcriptome sequencing results

