1	Fusarium head blight in the Russian Far East: 140 years of after description of	
2	<u>the</u> 'drunken bread' <u>problem</u> problem	
3 4 5	Tatiana Yu. Gagkaeva, Aleksandra S. Orina, Olga P. Gavrilova	
6	Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, St.	
7	Petersburg, Pushkin 196608, Russia	
8 9 10 11	Corresponding Author: Tatiana Yu. Gagkaeva Podbelskogo shosse, 3, St. Petersburg, Pushkin 196608, Russia	
12	Email address: t.gagkaeva@yahoo.com	
13 14	Abstract	
15 16	The Far East region of Russia is characterised by a monsoon climate that is very damp and warm	
17	during the summer. The first appearance of Fusarium head blight (FHB)—and the beginning of	Formatted: Font: Not Italic
18	scientific research of this disease—occurred in on the Far East region of Russia this area at the	
19	end of the 19th century.	
20	In the summer of 2019, in the Amur region, which comprises 60–70% of grain production in	
21	the Russian Far East, flooding caused a state of emergency. As a result, cereal yields were only	
22	partially saved and harvested. The quality of wheat and barley grains grown under natural	
23	conditions of FHB outbreaks, including grain infection, fungal species composition, F.	
24	graminearum DNA content and their chemotypes, and the presence of various mycotoxins, was	
25	studied.	
26	Fusarium infection rates reached extremely high percentages, 51–98%, the majority of which	
27	were F. graminearum infections. The amount of F. graminearum DNA in wheat grain samples	

28	was higher than in the barley grain samples and averaged 6.1 and 2.1 pg/ng, respectively. The
29	content of deoxynivalenol (DON) in the wheat samples reached 13,343 ppb and in barley reached
30	7,755 ppb.
31	A multilocus genotyping assay was conducted on the partially sequenced fragments of the
32	translation elongation factor EF-1a, ammonium ligase gene, reductase gene, and 3-O-
33	acetyltransferase gene in 29 Fusarium graminearum sensu lato (s. lat.) strains from the grain
34	harvested in the Amur region. Additionally, one atypical strain, F. graminearum s. lat., from the
35	Siberian region (wheat grain, 2018), and three F. culmorum strains from the Western Siberian,
36	Ural, and South European regions of Russia were analysed.
37	All strains from the Far East region were characterized as F. graminearum sensu stricto; 70%
38	were the 15-AcDON chemotype, while the other strains were the 3-AcDON chemotype. One
39	strain from Siberia belonged to F. vorosii and was characterized as the 15 AcDON chemotype.
40	This is the first detection of this species outside the Far East region in Russia. High genetic
41	similarity was found among the analysed F. culmorum strains from remote regions; these strains
42	were the 3-AcDON chemotype.
43	According to the results, aAfter 140 years of study of FHB, we are still not very successful in
44	controlling <u>PHB-this disease</u> if conditions are favo u rable for pathogen development. Even at
45	present, some of the grain harvested must be destroyed, as high contamination of mycotoxins
46	renders it unusable.
47	
48	Keywords: chemotype; deoxynivalenol; disease; DNA; epidemic; Fusarium

graminearum; grain; multilocus genotyping; mycotoxins; Russian Far East.

50

49

51 Introduction

52 53	The first description of Fusarium head blight (FHB) within the territory of Russia was in the Far
54	East in 1882 (Palchevsky, 1891; Voronin, 1890). This region is typically a monsoon climate with
55	very damp and warm summers due to the influences of the Sea of Japan and the Pacific Ocean.
56	The scientific investigation of this disease began at the end of the 19th century, but long before
57	this, Chinese peasants and later Russian settlers related the poisoning of people and animals with
58	pinkish grains and heads in the fields.
59	Between 1882 and 1914, epidemics of this disease in the Far East occurred almost every year
60	(Naumov, 1916). Consumption of affected grain and straw caused numerous cases of food
61	poisoning of people and farm animals. The initial signs and symptoms of the disease resemble
62	those that can develop after drinking too much alcohol (including dizziness and headache,
63	trembling hands, confusion, and vomiting) and thus was were named 'drunken bread'. The
64	extensive research undertaken by Russian mycologists revealed that Fusarium roseum Link (F.
65	graminearum Schwabe) with teleomorph stage Gibberella saubinetii Sacc. (G. zeae [Schwein.]
66	Petch) was the principal cause of the disease (Jaczewski, 1904; Naumov, 1916; Voronin, 1890).
67	N.A. Palchevsky (1891), who lived in this territory and was one of the first to report the
68	disease of grain crops, studied its actiology and deposited diseased grain head specimens in
69	herbaria (kept in the Herbarium LEP of our laboratory, the first specimens are dated 1912).
70	Thanks to this inquisitive individual, drawings of typical symptoms of the disease and pathogens
71	were published (Fig. 1).
72	FHB was a persistent problem in the Far East during the 20th century (Abramov, 1938;
73	Naumov, 1916) and continues to be today. High severities of FHB are reported nearly every year

Formatted: Font: Not Italic

region. Mycological analyses of seed samples from 1998–2002 have shown a high level of

75	FHB-infected wheat and barley seed $(23-32\%)$. The most frequently isolated pathogen was <i>F</i> .
76	graminearum (Gagkaeva et al., 2002; Ivaschenko et al., 2000).
77	Potential toxic effects of mycotoxins associated with FHB, particularly trichothecenes, which
78	are secondary metabolites produced by F. graminearum, can result in numerous health problems
79	after consumption of infected grain, flour, and processed products. Fusarium outbreaks are a
80	concern because of loss of grain yield and quality and mycotoxin contamination.
81	The development of multilocus sequence typing (MLST) has facilitated the identification of
82	species and chemotypes of the F. graminearum species (Fg) group (Ward et al., 2008). Among
83	them, the ubiquitous F. graminearum sensu lato (s. lat.) includes at least 16 phylogenetic species
84	(Aoki et al., 2012; O'Donnell et al., 2000, 2004, 2008) united into the Fg group. Based on MLST
85	assays, several species of the Fg group, including F. graminearum sensu stricto (s. str.), F.
86	ussurianum T. Aoki, Gagkaeva, Yli-Mattila, Kistler & O'Donnell, and F. vorosii B. Tóth, Varga,
87	Starkey, O'Donnell, H. Suga & T. Aoki, were identified in the grain grown in the Russian Far
88	East (Yli-Mattilla et al., 2009). A biogeographic hypothesis suggests that F. vorosii, F.
89	ussurianum, and F. asiaticum O'Donnell, T. Aoki, Kistler & Geiser may be endemic Asian
90	species within the Fg group (O'Donnell et al., 2004).
91	All species within the Fg group are capable of producing type B trichothecenes, but the
92	activity of their formation is largely different. Three types of chemotypes have been identified
93	among the strains: deoxynivalenol (DON) and 3-acetyldeoxynivalenol (3-AcDON),
94	deoxynivalenol ₂ and 15-acetyldeoxynivalenol (15-AcDON), and nivalenol and 4-acetyl-nivalenol
95	(NIV) (Moss, Thrane, 2004; Ward et al., 2002).
96	High humidity and heavy rainfall stimulate the development of F. graminearum s. lat. in grain
97	and, as a result, increase its contamination by DON (Aldred, Magan, 2004; Ramirez et al., 2006).

98 The Russian Far East is often exposed to weather disasters, such as floods, which can lead to

99	negative consequences insurmountable by human efforts and technologies resulting in significant
100	agricultural damage. In the summer of 2019, in the Amur region, which accounts for 60-70% of
101	grain production in the Russian Far East, flooding after substantial rainfall has wreaks havoc with
102	extensive damaged cropseaused an emergency situation with grain crops. In this region, an
103	emergency regime was established on July 25, 2019, and 'about 250,000 ha was flooded, which
104	amounted to about 20% of the total cultivated area in the region' (TASS, 2019). As a result, the
105	yield of cereals was only partially saved and harvested.
106	Despite the long history of the problem in the Far East, there is still no objective information
107	on infection and mycotoxin contamination of harvested grain. Epidemics of FHB in the region
108	fuelled our interest in investigating this disease using available modern methods of research.
109	Broad geographic surveys of Fusarium species on cereal crops are important to establish if
110	any present shifts in populations occur in response to environmental change. We expected the
111	diversity of Fusarium species belonging to the Fg group in this territory to be high, since the
112	conditions were very favorable for fungi and led to the disease epidemic. In addition, we assumed
113	that F . asiaticum may appear in the complex of pathogens, since in the neighbouring countries of
114	China and Japan this species is detected on cereals with a high frequency (Gale et al., 2002;
115	Láday et al., 2004; Qu et al., 2007; Suga et al., 2008). In China, where the problem of FHB is
116	also acute, two species of the Fg group have been identified: F. graminearum s. str. and F.
117	asiaticum (Qu et al., 2007). In the north of China, closest to the Amur Region, mostly F.
118	graminearum was dominant, and all of the 15-AcDON chemotypes (Shen et al., 2012). But F.
119	asiaticum was the predominant species in the Yangtze River Basin, and chemotypes of strains
1	

120 were either 3-AcDON or NIV, with 3-AcDON being predominant.

121	The aim of the study was to obtain objective information on the quality of grain grown under
122	natural conditions of excessive moisture in the Amur region in 2019, including the species
123	composition of fungi and the DNA content of pathogens and mycotoxins.
124	Thise aim of this study was study aimed to investigate (1) the natural Fusarium species
125	occurrence and mycotoxin contamination of grain from the Amur region in the Far East in the
126	most favorable conditions for pathogens and (2) provide the multilocus analysis of isolated
127	strains of F. graminearum sensu lato to species and trichothecene genotype diversity.
128	Materials & Methods
129 130	Grain samples and climatic conditions of growth
131	In the mid-August, 2019, the samples of spring wheat (nine samples) and barley (four samples)
132	were harvested from the different locations of the Amur region, Russian Far East. In mid-August
133	2019, grain harvest samples were collected in various flood-rescued fields located in the Amur
134	Region, the Russian Far East. These samples were spring wheat (nine samples of the most
135	common Aryuna variety) and barley (four samples of the most common Acha variety).
136	Collecting the representative sample from harvesting The collection of specimens at these
137	locations was approved by the Russian Science Foundation (project number: 19-76-30005).
138	The weather in the summer period of 2019 was characterized by disastrous excessive
139	moisture: the total rainfall in July and August was 2.2 and 1.7 times greater, respectively, than the
140	average means of long-term observations (according to https://rp5.ru/). In addition, the number of
141	days with precipitation in these months was 50% and 39% more, respectively, than the average
142	means of the climatic norm (Table 1).

143 Mycological analysis of grain

144	Microscopic examination was conducted to reveal the presence of infected grains and perithecia	
145	fungal structures on seed surfaces, and photographs were taken under an Olympus BX53 and	
146	Olympus SZX16 microscopes.	
147	One hundred seeds per sample were chosen at random and surface disinfected by soaking in a	
148	5% sodium hypochlorite solution for 1–2 min. Then the grains were washed with sterile water	
149	and put into Petri dishes on potato sucrose agar medium (PSA) containing 1 mL/L of an	
150	antibiotics solution (HyClone TM , Austria). Moreover, a commonly used detergent Triton X-100	
151	(Panreac, Spain) which reduces the linear fungal growth (0.4 μ L/L) was added. After 7-14 days	
152	of incubation in the dark at 24 °C, identification and demarcation of taxa were carried out	
153	(Gerlach, Nirenberg, 1982; Leslie, Summerell, 2006). The grain infection by the specific taxon of	
154	fungi was calculated as the ratio of the number of grains from which these fungi were isolated to	
155	the total number of analysed analyzed grains and expressed as the incidence percentage.	
156	DNA extraction and quantification	
156 157	DNA extraction and quantification The grain samples (20 g) were homogenized separately using sterilized grinding chambers of a	
156 157 158	DNA extraction and quantification The grain samples (20 g) were homogenized separately using sterilized grinding chambers of a batch mill Tube Mill Control (IKA, Königswinter, Germany). The grain flour was stored at -20	
 156 157 158 159	DNA extraction and quantification The grain samples (20 g) were homogenized separately using sterilized grinding chambers of a batch mill Tube Mill Control (IKA, Königswinter, Germany). The grain flour was stored at –20 °C.	
 156 157 158 159 160	DNA extraction and quantification The grain samples (20 g) were homogenized separately using sterilized grinding chambers of a batch mill Tube Mill Control (IKA, Königswinter, Germany). The grain flour was stored at –20 °C. The total DNA from 200 mg of grain flour was isolated using the Genomic DNA Purification	
156 157 158 159 160 161	DNA extraction and quantification The grain samples (20 g) were homogenized separately using sterilized grinding chambers of a batch mill Tube Mill Control (IKA, Königswinter, Germany). The grain flour was stored at –20 °C. The total DNA from 200 mg of grain flour was isolated using the Genomic DNA Purification Kit (Thermo Fisher Scientific, Viln <u>i</u> us, Lithuania) according to the manufacturer's protocol and	
156 157 158 159 160 161 162	DNA extraction and quantification The grain samples (20 g) were homogenized separately using sterilized grinding chambers of a batch mill Tube Mill Control (IKA, Königswinter, Germany). The grain flour was stored at –20 °C. The total DNA from 200 mg of grain flour was isolated using the Genomic DNA Purification Kit (Thermo Fisher Scientific, Vilnius, Lithuania) according to the manufacturer's protocol and as previously described in Gagkaeva et al. (2019). Using the same kit, DNA was also isolated	
156 157 158 159 160 161 162 163	DNA extraction and quantification The grain samples (20 g) were homogenized separately using sterilized grinding chambers of a batch mill Tube Mill Control (IKA, Königswinter, Germany). The grain flour was stored at −20 °C. The total DNA from 200 mg of grain flour was isolated using the Genomic DNA Purification Kit (Thermo Fisher Scientific, Vilnius, Lithuania) according to the manufacturer's protocol and as previously described in Gagkaeva et al. (2019). Using the same kit, DNA was also isolated from the mycelium of <i>Fusarium</i> spp. strains cultivated on PSA. DNA concentrations from the	
 156 157 158 159 160 161 162 163 164	DNA extraction and quantification The grain samples (20 g) were homogenized separately using sterilized grinding chambers of a batch mill Tube Mill Control (IKA, Königswinter, Germany). The grain flour was stored at −20 °C. The total DNA from 200 mg of grain flour was isolated using the Genomic DNA Purification Kit (Thermo Fisher Scientific, Vilnius, Lithuania) according to the manufacturer's protocol and as previously described in Gagkaeva et al. (2019). Using the same kit, DNA was also isolated from the mycelium of <i>Fusarium</i> spp. strains cultivated on PSA. DNA concentrations from the grain samples and fungal strains were determined using a Qubit 2.0 Fluorometer with a Quant-iT	
 156 157 158 159 160 161 162 163 164 165	DNA extraction and quantification The grain samples (20 g) were homogenized separately using sterilized grinding chambers of a batch mill Tube Mill Control (IKA, Königswinter, Germany). The grain flour was stored at –20 °C. The total DNA from 200 mg of grain flour was isolated using the Genomic DNA Purification Kit (Thermo Fisher Scientific, Vilnius, Lithuania) according to the manufacturer's protocol and as previously described in Gagkaeva et al. (2019). Using the same kit, DNA was also isolated from the mycelium of <i>Fusarium</i> spp. strains cultivated on PSA. DNA concentrations from the grain samples and fungal strains were determined using a Qubit 2.0 Fluorometer with a Quant-iT dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). Before the start of	
 156 157 158 159 160 161 162 163 164 165 166	DNA extraction and quantification The grain samples (20 g) were homogenized separately using sterilized grinding chambers of a batch mill Tube Mill Control (IKA, Königswinter, Germany). The grain flour was stored at –200 °C. The total DNA from 200 mg of grain flour was isolated using the Genomic DNA Purification Kit (Thermo Fisher Scientific, Vilnjus, Lithuania) according to the manufacturer's protocol and as previously described in Gagkaeva et al. (2019). Using the same kit, DNA was also isolated from the mycelium of <i>Fusarium</i> spp. strains cultivated on PSA. DNA concentrations from the grain samples and fungal strains were determined using a Qubit 2.0 Fluorometer with a Quant-iT dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). Before the start of quantitative PCR (qPCR), the concentrations of all DNA samples were normalized to 23–67	

168 In every total DNA sample extracted from grain flour, the DNA content of the F. 169 graminearum and F. avenaceum was evaluated by qPCR with TagMan probes (Yli-Mattila et al., 170 2008). The reaction was carried out in a 20- μ L-volume mixture with 10 μ L of a 2 × TaqM master 171 mix (AlkorBio, St. Petersburg, Russia), 300 nM of each primer, 100 nM of a fluorescent sample 172 (Evrogen, Moscow, Russia), and 2 µL of the corresponding DNA solution. 173 Additionally, the DNA content of 3-AcDON and 15-AcDON chemotypes of F. graminearum 174 was determined using qPCR with SYBR Green (Nielsen et al., 2012). All qPCR assays were run 175 using the CFX 96 Real-Time System thermocycler (Bio-Rad, Hercules, CA, USA). All samples 176 were analysed analyzed at least twice. 177 Mycotoxin determination by HPLC-MS/MS 178 The HPLC-MS/MS multi-mycotoxin method was used to detect different fungal secondary 179 metabolites. In the grain samples, 3-AcDON, 15-AcDON, alternariol (AOH), alternariol 180 monomethyl ether (AME), beauvericin (BEA), DON, deoxynivalenol-3-glucoside (DON-3gl), 181 diacetoxyscirpenol (DAS), fumonisins B1, B2, and B3, T-2 toxin, HT-2 toxin, T-2 triol, neosolaniol (NEO), fusarenone X, moniliformin (MON), nivalenol (NIV), tentoxin (TEN), 182 183 tenuazonic acid (TeA), and zearalenone (ZEN) were analysed analyzed. 184 The analysis of the mycotoxins was carried out following the described procedure (Malachová et al., 2014). Detection and quantification were performed with a QTrap 5500MS/MS system 185 186 (Applied Biosystems, Foster City, CA, USA) equipped with a TurboV electrospray ionization 187 (ESI) source and a 1290 series UHPLC system (Agilent Technologies, Waldbronn, Germany). Chromatographic separation was performed at 25 °C on a Gemini® C18-column, 150 × 4.6 mm 188 189 i.d., with a 5- μ m particle size, equipped with a C18 SecurityGuard cartridge, 4 × 3 mm i.d. (all from Phenomenex, Torrance, CA, USA). Elution was carried out in binary gradient mode. Both 190

191 mobile phases contained 5 mM of ammonium acetate and were composed of

methanol/water/acetic acid ratios of 10:89:1 (v/v/v; eluent A) and 97:2:1 (v/v/v; eluent B),

respectively. The recovery of mycotoxins from grain ranged from 79% to 105%.

194 Genotyping of Fusarium spp.

Among isolated fungi that were morphologically assigned to the Fg group (nearly 900), 29 monoconidial strains were randomly selected for further molecular analysis. Additionally, four related *Fusarium* strains with various geographic and substrate origins, the taxonomic status of which requires appraisal, were included in the study (Table 2).

199 In order tTo assess the phylogenetic relationships between all the strains tested, fragments of

200 the translation elongation factor EF-1a (TEF), ammonium ligase gene (URA), reductase gene

201 (*RED*), and 3-O-acetyltransferase gene (*Tri101*) were used. Their amplification was carried out

using specific primers EF1/EF2, URA11/URA16, RED1d/RED2, and TRI1013E/TRI1015B,

respectively, according to the authors' protocols and instructions (O'Donnell et al., 2000, 2004,2008).

205 The sequencing was carried out on an ABI Prism 3500 sequencer (Applied Biosystems,

206 Hitachi, Japan) using the BigDye Terminator v3.1 cycle sequencing kit (Applied Biosystems,

207 USA). To address the phylogenetic relationships among taxa maximum likelihood (ML),

208 maximum parsimony (MP) analysis was conducted using the MEGA X 10.2 program (Kumar et

al., 2018) as well as Bayesian posterior probability (BP) by MrBayes v. 3.2.1 on the Armadillo

210 1.1 platform (Lord et al., 2012). Nodal support was assessed by bootstrap analysis on 1,000

211 replicates. Sequence data were deposited in GenBank.

The *Fusarium* spp. <u>a</u> chemotype (3-AcDON, 15-AcDON, or NIV) was determined using PCR
with primers Tri13P1/Tri13P2 according to the authors' protocols and instructions (Wang et al.,

214 2008).

215	All tested <i>Fusarium</i> strains are maintained in the collection of the Laboratory of Mycology
216	and Phytopathology at the All-Russian Institute of Plant Protection.
217	Statistical analysis
218	Data were analysed analyzed using Microsoft Office Excel 2010 (Microsoft, Redmond, WA,
219	USA) and Statistica 10.0 (StatSoft, Tulsa, OK, USA). The significance of differences between
220	mean values was estimated by a-Tukey's test (95% confidence level).
l 221	
222	Results
223 224	Detection of grain infection with fungi
225	Visual analysis of grain samples revealed the presence of various deformities, shrunken and
226	with <u>a pink-white colouration of grain heads in the amount of 5–42%</u> (Fig. 2.). Due to prolonged
227	wet weather, the salmon-orange conidia masses of the fungus and blue-black perithecia can be
228	seen on the infected spikelet and glumes in barley. Most of the perithecia were mature, and when
229	placed in a water drop, the ascospores with three septa appeared from asci.
230	The average germination of wheat grain was 25.1% (12–41%) and of barley grain was 55.3%
231	(48-62%). Almost 100% infection by fungi of all grain samples was noted; often, different fungi
232	were isolated from one grain.
233	Mycology analyses verified that infection by Fusarium spp. was the primary cause of damage
234	in grains, and infection rates reached extremely high percentages (Table 3). Moreover, the
235	proportion of F. graminearum s. lat. strains among all isolated Fusarium spp. averaged 83.7% in
236	the wheat grain and 89.7% in the barley grain. Fusarium sporotrichioides Sherb. strains were
237	detected in 61% of samples, but grain infection was low (1-4%) (the supplemental table). Among
238	the isolated fungi, the occurrence of F. avenaceum (Fr.) Sacc., F. anguioides Sherb., F.

239	tricinctum (Corda) Sacc., F. poae (Peck) Wollenw., F. cerealis (Cooke) Sacc., F. equiseti (Corda)
240	Sacc., F. incarnatum (Desm.) Sacc., and F. heterosporum Nees et T. Nees as well as four strains
241	belonging to the Fusarium fujikuroi species complex were lower (the supplemental table).
242	Alternaria spp. were the second frequent genera isolated from the grains. Moreover, the
243	infection of wheat grain with Alternaria spp. was almost two times lower (12.9%) than that of
244	barley grain (21.5%). Cladosporium spp., Clonostachys rosea (Link: Fr.) Schroers, Samuels,
245	Seifert & W. Gams, Cochliobolus spp., Epicoccum nigrum Link, and other fungi were also
246	identified in the grain mycobiota (the supplemental table).
247	Quantification of Fusarium biomass
248	The amount of F. graminearum DNA in grain flour was very high, averaging 4.9 pg/ng (Table
249	3). In analysed analyzed samples of wheat grain, the amount of <i>F. graminearum</i> DNA was higher
250	than in the barley grain samples ($p = 0.032$). The amount of 3-AcDON <i>F. graminearum</i> DNA
251	was on average 1.3–1.1 times higher than the content of 15-AcDON genotype DNA. F.
252	avenaceum DNA was detected in all grain samples in an amount that was on average 160 times
253	less than that of <i>F. graminearum</i> DNA.
254	Detection of mycotoxins
255	DON was found in all samples. The content of DON reached 13,343 ppb in wheat samples and
256	7,755 ppb in barley samples. In all analysed analyzed samples, the content of DON exceeded the
l 257	maximum permissible limits (MPLs) in grain for food (700 ppb for wheat grain, 1,000 ppb for
258	barley grain) and for fodder (1,000 ppb for cereal grain), by up to 13 times (TR TS 015/2011; TR
1 259	TS 021/2011). The exception was one barley sample, in which the DON content was lower than

260 the MPL: 911 ppb.

- In addition, other type B trichothecene mycotoxins, 3-AcDON, 15-AcDON, and DON-3gl, were detected in <u>the grain</u>. Of the total content of trichothecenes, the share of DON in wheat grain was 86.5% and in barley grain was 69.5%.
- The content of ZEN produced by *F. graminearum* in wheat grain (92–3,670 ppb) was on
- average 2.1 times higher than in barley grain (111–928 ppb).
- Low contents of T-2 toxin (5 and 15 ppb) and HT-2 toxin (23 and 58 ppb) produced by F.
- 267 *sporotrichioides* were detected in two barley grain samples.
- 268 The MON produced by *F. avenaceum* was detected in all samples in amounts up to 218 ppb
- 269 without differences between crops. The mycotoxin BEA was detected in only two wheat samples
- 270 in amounts up to 13 ppb. The fumonisins NEO, DAS, and fusarenone X produced by Fusarium
- fungi were not detected in the analysed analyzed grain samples.
- 272 The mycotoxin AOH produced by *Alternaria* fungi was detected in all grain samples in small
- amounts (8–49 ppb). Moreover, the content of this mycotoxin in barley grain, 11.7 (7.6–17.2),
- was significantly lower than in wheat grain, 29.0 (14.2-49.1) (p = 0.032). AME was found in all
- 275 analysed analyzed grain samples except for two wheat samples in trace amounts. TeA was
- detected in all barley grains with a maximal level of 37.4 ppb and in 44% of wheat samples with
- a maximal level of 75.0 ppb (the supplemental table). Traces of TEN were found in all samples
- 278 (max 6.4 ppb).
- 279 Genotyping of Fusarium spp.
- Multilocus analyses of the *TEF*, *URA*, *RED*, and *Tri101* sequences were used to determine the genetic relationships among *Fusarium* strains. The dataset included 34 combined sequences of the analysed analyzed strains as well as the 12 reference sequences of *Fusarium* spp. belonging to the *Fg* group and consisted of a total of 2,941 characters (612 bp from the *TEF*, 558 bp from *URA*, 821 bp from *RED*, and 950 bp from *Tri101*). The sequence of the *F. pseudograminearum*

type strain NRRL 28334 was used as the outgroup. The resulting phylogenetic tree based on DNA sequence data of *Fusarium* species was constructed (Fig. 3). Maximum likelihood and MP bootstrap support values greater than 70%, followed by Bayesian posterior probability scores greater than 0.95, are shown at the nodes.

The topology of phylogenetic trees constructed by different methods turned out to be similar and demonstrated the phylogenetic relationships between species established earlier (Aoki et al., 2012). Twenty-nine <u>analysed_analyzed</u> *Fusarium* strains isolated from Amur grain belonged to the clade with reference strain NRRL 5883 *F. graminearum* s. str. (Fig. 3). Among the <u>analysed</u> <u>analyzed</u> strains of *F. graminearum* s. str., nine strains were the 3-AcDON chemotype while 21 strains turned out to be the 15-AcDON chemotype (Table 2).

From four doubtful *Fusarium* strains, one strain MFG 60604, isolated from wheat grain from the Altai Krai (Western Siberia), was clustered with the reference strain *F. vorosii* NRRL 45790 with high bootstrap support (ML/MP/BP: 99/99/1.0). Our phylogenetic analysis indicates that strain MFG 60604 is *F. vorosii* and it is determined as a 15-AcDON chemotype.

299 Three other doubtful strains, MFG 58836, MFG 59052, and MFG 60755, formed the clade

300 with the reference strains F. culmorum NRRL 25475 with high bootstrap support (ML/MP:

301 98/100). All three F. culmorum strains were the 3-AcDON chemotype (Table 2).

302 Discussion

Despite the long history of the FHB problem in the Russian Far East, objective data on
 pathogen composition and content of mycotoxins in naturally infected grain is clearly-under published. This was an intriguing study seeking to better understand which phylogenetic species
 and chemotypes prevailed on grain under the favourable conditions of extremely high humidity
 during floods in the Amur region in 2019.

308	The mycological analyses of grain from this region in 2019 revealed extremely high infection
309	of grain with Fusarium spp.—up to 98%. The predominant cause of FHB was the Fg group,
310	which accounted for 86% of all isolated Fusarium spp.
311	Interestingly, the amount of fungal DNA in the wheat grain was on average higher than in the
312	barley grain, while the percentage of infected grains was the same. The revealed differences may
313	be due to the abundance of fungal biomass concentrated on the surface of barley grains (husk,
314	palea, pericarp), while the wheat grain is completely permeated with fungal hyphae. In general, in
315	this situation in 2019, the infection rates for both wheat and barley were off the scale. In our
316	opinion, the highest DON content detected in this study, in the amount of 13,343 ppb, exceeds
317	the maximum amounts of this mycotoxin in grain previously detected in the Russian territory.
318	During the outbreak of FHB in southern Europe in 1985–1991 the maximal content of DON in
319	grain reached 10,000 ppb (Kononenko, 2005). Recently, in 2017, a DON amount of 7,920 ppb
320	was detected in wheat grain grown in southern Europe (Kononenko et al., 2020).
321	The content of 3-AcDON in wheat and barley grain, as well as 15-AcDON, was similar and
322	did not exceed 293 ppb. In the plant, DON can be present as a metabolite, DON-3gl, which is
323	represents up to 46% of the total amount of DON in infected wheat and maize varieties
324	(Berthiller et al. 2009). It has been shown that DON-3gl can be converted back to DON in
325	mammals (Dall'Erta et al., 2013; Tucker et al., 2019). Therefore, DON-3gl is also frequently
326	referred to as a masked mycotoxin. In our study, the maximum content of DON-3gl reached
327	3,803 ppb and was twice as high, on average, in barley grain than in wheat grain. The amounts of
328	DON-3gl come to 13.5% and 39.5% of the total amounts of DON in infected wheat and barley
329	samples, respectively. However, there were no significant differences in the content of the
330	trichothecene mycotoxin average between wheat and barley grains.

331	Using morphology to accurately assess species limits for the Fg group is not reliable. The
332	latest study of the species composition of the Fg group in the Far East led to the understanding
333	that F. graminearum s. str. is the dominant pathogen damaging grain, in addition to F.
334	ussurianum and F. vorosii (Yli-Mattila et al., 2009).
335	Before this study, we hypothesized that in the extremely humid and warmest conditions of
336	2019, in the area where FHB outbreaks were observed for at least 140 years, a number of several
337	species of the Asian clade of the Fg group will be identified. Especially considering that earlier
338	we have already found three species of the Fg group in this region: <u><i>F. graminearum</i> s. str., <i>F.</i></u>
339	ussurianum and F. vorosii (Yli-Mattila et al., 2009). Selecting freshly isolated fungi for analysis,
340	we took cultures for <u>a</u> detailed study, which included all the morphological diversity present
l 341	within the limits possible for the Fg group (pigmentation, rate of formation of macroconidia, size,
342	and shape). Multilocus phylogenetic analysis revealed that all strains from the Amur grains
343	belonged to the F. graminearum s. str.
343 344	belonged to the <i>F. graminearum</i> s. str. <u>Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i></u>
343 344 345	belonged to the <i>F. graminearum</i> s. str. <u>Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i> and to establish the quantitative presence of two different chemotypes. The <i>F. graminearum</i></u>
343 344 345 346	belonged to the <i>F. graminearum</i> s. str. <u>Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i> and to establish the quantitative presence of two different chemotypes. The <i>F. graminearum</i> strains are divided into 3-AcDON and 15-AcDON chemotypes depending on the prevailing</u>
343 344 345 346 347	belonged to the <i>F. graminearum</i> s. str. <u>Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i> and to establish the quantitative presence of two different chemotypes. The <i>F. graminearum</i> strains are divided into 3-AcDON and 15-AcDON chemotypes depending on the prevailing formation of a particular acetylated form of DON (Alexander et al., 2011; Foround et al., 2019).</u>
343 344 345 346 347 348	belonged to the <i>F. graminearum</i> s. str. <u>Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i> and to establish the quantitative presence of two different chemotypes. The <i>F. graminearum</i> strains are divided into 3-AcDON and 15-AcDON chemotypes depending on the prevailing formation of a particular acetylated form of DON (Alexander et al., 2011; Foround et al., 2019). <u>Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i> and</u></u>
343 344 345 346 347 348 349	belonged to the <i>F. graminearum</i> s. str. <u>Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i> and to establish the quantitative presence of two different chemotypes. The <i>F. graminearum</i> strains are divided into 3-AcDON and 15-AcDON chemotypes depending on the prevailing formation of a particular acetylated form of DON (Alexander et al., 2011; Foround et al., 2019). Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i> and to establish the quantitative presence of two different chemotypes. Regional differences have</u>
343 344 345 346 347 348 349 350	belonged to the <i>F. graminearum</i> s. str. <u>Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i> and to establish the quantitative presence of two different chemotypes. The <i>F. graminearum</i> strains are divided into 3-AcDON and 15-AcDON chemotypes depending on the prevailing formation of a particular acetylated form of DON (Alexander et al., 2011; Foround et al., 2019). Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i> and to establish the quantitative presence of two different chemotypes. Regional differences have been reported regarding on the occurrence of chemotypes within the <i>Fg</i> group (Foround et al.,</u>
343 344 345 346 347 348 349 350 351	 belonged to the <i>F. graminearum</i> s. str. <u>Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i></u> and to establish the quantitative presence of two different chemotypes. The <i>F. graminearum</i> strains are divided into 3-AcDON and 15-AcDON chemotypes depending on the prevailing formation of a particular acetylated form of DON (Alexander et al., 2011; Foround et al., 2019). Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i> and to establish the quantitative presence of two different chemotypes. Regional differences have been reported regarding on the occurrence of chemotypes within the <i>Fg</i> group (Foround et al., 2019; Pasquali et al., 2016). In our study, on average, the DNA content of the 3-AcDON and 15-
343 344 345 346 347 348 349 350 351 352	belonged to the <i>F. graminearum</i> s. str. <u>Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i> and to establish the quantitative presence of two different chemotypes. The <i>F. graminearum</i> strains are divided into 3-AcDON and 15-AcDON chemotypes depending on the prevailing formation of a particular acetylated form of DON (Alexander et al., 2011; Foround et al., 2019). Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i> and to establish the quantitative presence of two different chemotypes. Regional differences have been reported regarding on the occurrence of chemotypes within the <i>Fg</i> group (Foround et al., 2019; Pasquali et al., 2016). In our study, on average, the DNA content of the 3-AcDON and 15- AcDON fungus chemotypes in the grain was similar, but the DNA of the 15-AcDON chemotype</u>
343 344 345 346 347 348 349 350 351 352 353	belonged to the <i>F. graminearum</i> s. str. <u>Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i> and to establish the quantitative presence of two different chemotypes. The <i>F. graminearum</i> strains are divided into 3-AcDON and 15-AcDON chemotypes depending on the prevailing formation of a particular acetylated form of DON (Alexander et al., 2011; Foround et al., 2019). Molecular methods make it possible to reveal the intraspecific diversity of <i>F. graminearum</i> and to establish the quantitative presence of two different chemotypes. Regional differences have been reported regarding on the occurrence of chemotypes within the <i>Fg</i> group (Foround et al., 2019; Pasquali et al., 2016). In our study, on average, the DNA content of the 3-AcDON and 15- AcDON fungus chemotypes in the grain was similar, but the DNA of the 15-AcDON chemotype in wheat grain was significantly higher (4.6 times) than in barley (p = 0.014), whereas the</u>

355	insignificant. It is not known whether the observed differences are related to chemotype
356	chemotype-specific plant-host preferences. There may be a difference in pathogenicity between
357	the 3- and 15-ADON chemotypes to wheat and barley (Foroud et al., 2019; Clear et al., 2013).
358	According to our results, 30% of the analysed analyzed F. graminearum strains were the 3-
359	AcDON chemotype, while 70% of the strains were the 15-AcDON chemotype. Previously, the
360	chemotype analysis of the 105 F. graminearum strains collected in the Russian Far East in 1998-
361	2006 revealed the approximately equal occurrence of 3-AcDON (48%) and 15-AcDON (52%)
362	chemotypes (Yli-Mattila et al., 2009). An increase in the 15-ADON chemotype has recently been
363	shown in regions of Europe, where the 3-ADON chemotype was previously dominant, although
364	many of the factors affecting their distribution are still unclear (Nielsen et al., 2012; Aamot et al.,
365	2015; Pasquali et al., 2016; Foround et al., 2019). The third chemotype of F. graminearum s. str.
366	producing nivalenol (NIV) has not yet been identified in Russia or China (Shen et al., 2012),
367	although it is known to be found in Europe (Pasquali et al., 2016).
368	In our analysis, Fusarium sp. strain MFG 60604 was included that was isolated from wheat
369	grain in the Western Siberia region (the Altai Krai); phenotypically, this strain was a dubious
370	representative of the Fg group. In this region, the occurrence of F . graminearum was previously
371	not typical, but in recent years, we have been identifying this pathogen in cereal grains
372	(Gagkaeva et al., 2019). The strain MFG 60604, isolated from wheat grain from West Siberia,
373	was clustered with the reference strain F. vorosii NRRL 45790 with high bootstrap support
374	(ML/MP/BP: 98/99/1.0), which allows for accurate establishment of its species affiliation. A
375	single strain (MFG 60604) identified as F. vorosii in this study, is the only third strain of F.
376	vorosii found in Russia and the first one identified in the Siberian region. Previously identified
377	strains of F. vorosii from the Russian Far East belonged to the 15-AcDON chemotype (Yli-
l 378	Mattila et al., 2009) and so did the strain identified in this study. However, among six F. vorosii

strains originating from Korea, five were the NIV chemotype, while only one was the 15-AcDON (Lee et al., 2016). Among *F. vorosii*, no strains of the 3-AcDON chemotype have been identified, which, probably, were not detected due to the small number of strains of this species analyzed to date. In the limited surveys to date, strains of several species of <u>the</u> *Fg* group were found to represent only a single chemotype (Aoki et al., 2012).

Two strains of *F. culmorum* of closely related taxon to *Fg* group from the Western Siberia and Ural regions and one from the South European region of Russia were included in the study. The high genetic similarity of analysed analyzed *F. culmorum* strains collected from remote regions characterized by different climatic conditions (the distance between isolation points is about 2,500 km) is consistent with the previously shown information that *F. culmorum* is a single phylogenetic species with little or no differences between lineages, despite the geographic separation of genotypes (Obanor et al., 2010).

The studies <u>analysing-analyzing</u> the occurrence of *F. culmorum* chemotypes in different regions, as a rule, show a significant excess of the occurrence of the DON chemotype compared to the NIV chemotype (Laraba et al., 2017; Pasquali et al., 2016; Scherm et al., 2012). Strains of the 15-AcDON chemotype typical for *F. graminearum* were not identified among the strains of *F. culmorum*. A previous analysis of a few strains of *F. culmorum* from the Russian territory has characterized them as the 3-AcDON chemotype (Yli-Mattila et al., 2009).

Broad geographic surveys of *Fusarium* species on cereal crops are important to establish if
any present shifts in populations occur in response to environmental change. We expected the
diversity of *Fusarium* species belonging to the *Fg* group in this territory to be higher than found
in our study, since the conditions were very favorable for fungi and led to the disease epidemic.
In addition, we assumed that *F. asiaticum* may appear in the complex of pathogens, since in the
neighbouring countries of China and Japan this species is detected on cereals with a high

403	frequency (Gale et al., 2002; Láday et al., 2004; Qu et al., 2007; Suga et al., 2008). In China,			
404	where the problem of FHB is also acute, two species of the Fg group have been identified: F .			
405	graminearum s. str. and F. asiaticum (Qu et al., 2007). But in the north of China, mostly F.			
406	graminearum was dominant, and all of the 15 AcDON chemotypes (Shen et al., 2012). F.			
407	asiaticum was the predominant species in the Yangtze River Basin, and chemotypes of strains			
408	were either 3 AcDON or NIV, with 3 AcDON being predominant.			
409	Fusarium spp. continue to pose a threat to farmers, destroying crops or dramatically reducing			
410	yields, as well as to animal and human health due to the production of mycotoxins. Even in our			
411	time, when we know much more about the nature of Fusarium spp. than then 140 years ago, we			
412	are still not very successful in controlling the diseases they cause on crops if conditions are			
413	favourable for the development of pathogens. Indeed, in the process of our study, it was shown in			
414	the mass media that although the grain was harvested with great difficulty, due to the significant			
415	contamination of the grain, part of the crop, 240 tons, had to be destroyed by fire.			
416 417 418	Conclusions			
419	The high prevalence of Fusarium head blight in cereal grains cultivated in the Far East is	Formatte	d: Font: Not I	Italic
420	particularly alarming and strongly indicates the need for increased measures to prevent plant			
421	infection and improved food safety interventions. The maximum DON content in wheat grains			
422	reached 13,141 ppb in this study. Multilocus-The multilocus sequence revealed that the majority			
423	of the strains used in this study belonged to F. graminearum s. str.			
424 425 426	Acknowledgements			

427	We are grateful to the managers of the Russian Branch of BASF company for their help with the
428	grain sample collection and The authors thank Nadezhda N. Gogina from the All-Russian
429	Scientific and Technological Institute of Poultry (Moscow region) for carrying out HPLC-
430	MS/MS analysis.
431	
432	References
433 434	Aamot HU, Ward TJ, Brodal G, Vrålstad T, Larsen GB, Klemsdal SS, Elameen A, Uhlig
435	S, Hofgaard IS. 2015. Genetic and phenotypic diversity within the Fusarium graminearum
436	species complex in Norway. European Journal of Plant Pathology 142: 501-519
437	https://doi.org/10.1007/s10658-015-0629-4
438	Abramov IN. 1938. Diseases of agricultural plants on the Far East. Far Eastern State
439	Regional Publishing House, Khabarovsk. (in Russian)
440	Aldred D, Magan N. 2004. Prevention strategies for trichothecenes. Toxicology Letters
441	153:165–171 https://doi.org/10.1016/j.toxlet.2004.04.031
442	Alexander NJ, McCormick SP, Waalwijk C, van der Lee T, Proctor RH. 2011. The
443	genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium graminearum.
444	Fungal Genetics and Biology 48:485–495 https://doi.org/10.1016/j.fgb.2011.01.003
445	Aoki T, Ward T, Kistler H, O'Donnell K. 2012. Systematics, phylogeny and trichothecene
446	mycotoxin potential of Fusarium head blight cereal pathogens. Mycotoxins 62:91–102
447	https://doi.org/10.2520/myco.62.91
448	Clear RM, Tucker JR, Gaba D, Patrick SK, Lee SJ, Demeke T, Tittlemier SA, Legge WG,

449 Gräfenhan T. 2013. Deoxynivalenol levels and chemotype frequency in barley cultivars

- 450 inoculated with two chemotypes of *Fusarium graminearum*. Canadian Journal of Plant
- 451 Patholology **35:** 37–45 https://doi.org/10.1080/07060661.2012.751622
- 452 Dall'Erta A, Cirlini M, Dall'Asta M, Rio DD, Galaverna G. 2013. Masked mycotoxins are
- 453 efficiently hydrolyzed by human colonic microbiota releasing their aglycones. Chemical
- 454 Toxicology Research 26:305–312. http://dx.doi.org/10.1021/tx300438c
- 455 Foround NA, Baines D, Gagkaeva TYu, Thakor N, Badea A., Steiner B., Bürstmayr M,
- 456 Bürstmayr H. 2019. Trichothecenes in cereal grains an update. Toxins 11:634
- 457 http://dx.doi.org/10.3390/toxins11110634
- 458 Gagkaeva T, Gavrilova O, Orina A, Lebedin Y, Shanin I, Petukhov P, Eremin S. 2019.
- 459 Analysis of toxigenic Fusarium species associated with wheat grain from three regions of Russia:
- 460 Volga, Ural, and West Siberia. Toxins 11:252 https://doi.org/10.3390/toxins11050252
- 461 Gagkaeva TYu, Levitin MM, Zuev E, Terentjeva I. 2002. Evaluation of genetic resources
- 462 of wheat and barley from Far East of Russia for resistance to Fusarium head blight. Journal of
- 463 Applied Genetics **43A**:229–236
- 464 Gale LR, Chen L–F, Hernick CA, Takamura K, Kistler HC. 2002 Population analysis of
- 465 *Fusarium graminearum* from wheat fields in Eastern China. Phytopathology **92:**1315–1322
- 466 https://doi.org/10.1094/PHYTO200292121315
- 467 O'Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T. 2004. Genealogical
- 468 concordance between the mating type locus and seven other nuclear genes supports formal
- 469 recognition of nine phylogenetically distinct species within the *Fusarium graminearum* clade.
- 470 Fungal Genetics and Biology 41: 600–623 https://doi.org/10.1016/j.fgb.2004.03.003
- 471 Gerlach W, Nirenberg HI. 1982 The genus Fusarium—A Pictorial Atlas. In: Mitteilungen
- 472 aus der Biologischen Bundesanstalt fur Land- und Forstwirtschaft, Berlin-Dahlem;
- 473 Herausgegeben von der Biologischen Bundesanstalt für Land- und Forstwirtschaft, Berlin, 209

474	Ivashchenko VG, Shipilova NP, Levitin MM. 2000. Species composition of Fusarium
475	fungi on cereals in the Asian part of Russia. Mikologia I Fitopatologia 34:54-68 (In Russian)
476	Jaczewski AA. 1904. About drunken bread. Sheet for diseases and damages of cultivated
477	and wild useful plants 11:89–92 (In Russian)
478	Karlovsky P. 2011. Biological detoxification of the mycotoxin deoxynivalenol and its use
479	in genetically engineered crops and feed additives. Applied Microbiology and Biotechnology
480	91: 491–504 https://doi.org/10.1007/s00253-011-3401-5
481	Kononenko GP. 2005. The system of mycotoxicological control of objects of veterinary,
482	sanitary and environmental supervision. Theses of the doctoral dissertation, Moscow
483	Kononenko GP, Burkin AA, Zotova YeV. 2020. Mycotoxicological monitoring Part 3
484	Feedstuffs from raw grain processing. Veterinary Science Today 3:213–219
485	https://doi.org/10.29326/2304-196X-2020-3-34-213-219
486	Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary
487	genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547-1549
488	https://doi.org/10.1093/molbev/msy096
489	Láday M, Juhász. Á, Mulé G, Moretti A, Szécsi A, Logrieco A. 2004. Mitochondrial
490	DNA diversity and lineage determination of European isolates of Fusarium graminearum
491	(Gibberella zeae). European Journal Plant Pathology 110:545–550
492	https://doi.org/10.1023/B:EJPP0000032394391302c
493	Laraba I, Boureghda H, Abdallah N, Bouaicha O, Obanor F, Moretti A, Geiser DM, Kim
494	H-S, McCormick SP, ProctorRH, KellyAC, Ward TJ, O'Donnell K. 2017. Population genetic
495	structure and mycotoxin potential of the wheat crown rot and head blight pathogen Fusarium
496	culmorum in Algeria. Fungal Genetics and Biology 103:34-41
497	https://doi.org/10.1016/jfgb201704001

498	Lee T, Paek J-S, Lee K, Lee S, Choi J-H, Ham H, Hong S, Ryu J-G. 2016. Occurrence of
499	toxigenic Fusarium vorosii among small grain cereals in Korea. Plant Pathology Journal 32:407-
500	413 https://doi.org/10.5423/PPJOA0520160123
501	Leslie JF, Summerell BA. 2006. The Fusarium laboratory manual. Blackwell Publishing,
502	Ames https://doi.org/10.1002/9780470278376
503	Lord E, Leclercq M, Boc A, Diallo AB, Makarenkov V. 2012. Armadillo 11: An original
504	workflow platform for designing and conducting phylogenetic analysis and simulations. PLoS
505	ONE 7:e29903 https://doi.org/10.1371/journalpone0029903
506	Malachová A, Sulyok M, Beltrán E, Berthiller F, Krska. R. 2014. Optimization and
507	validation of a quantitative liquid chromatography-tandem mass spectrometric method covering
508	295 bacterial and fungal metabolites including all regulated mycotoxins in four model food
509	matrices. Journal of ChromatographyA 1362:145–156
510	https://doi.org/10.1016/jchroma201408037
511	Moss MO, Thrane U. 2004. Fusarium taxonomy with relation to trichothecene formation.
512	Toxicology Letters 153:23-28 https://doi.org/10.1016/jtoxlet200404021
513	Naumov NA. 1916. Drunken bread Observations under some species of genus Fusarium
514	Bureau of Mycology and Phytopathology, Petrograd (In Russian)
515	Nielsen LK, Jensen JD, Rodríguez A, Jørgensen LN, Justesen AF. 2012. TRI12 based
516	quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F
517	graminearum and F culmorum isolates in Danish small grain cereals. International Journal of
518	Food Microbiology 157:384–392 https://doi.org/10.1016/jijfoodmicro201206010
519	O'Donnell K, Kistler HC, Tacke BK, Casper HH. 2000. Gene genealogies reveal global
520	phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum,
521	the fungus causing wheat scab. PNAS 97:7905–7910 https://doi.org/10.1073/pnas130193297

522	O'Donnell K, Ward TJ, Aberra D, Kistler HC, Aoki T, Orwig N, Kimura M, Bjornstad A,
523	Klemsdal SS. 2008. Multilocus genotyping and molecular phylogenetics resolve a novel head
524	blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal
525	Genetics and Biology 45:1514–1522 https://doi.org/10.1016/jfgb200809002
526	O'Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T. 2004. Genealogical concordance
527	between the mating type locus and seven other nuclear genes supports formal recognition of nine
528	phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and
529	Biology 41: 600–623 https://doi.org/10.1016/jfgb200403003
530	Obanor F, Erginbas-Orakci G, Tunali B, Nicol JM, Chakraborty S. 2010. Fusarium
531	culmorum is a single phylogenetic species based on multilocus sequence analysis. Fungal
532	Biology 114:753-765 https://doi.org/10.1016/jfunbio201007001
533	Palchevsky NA. 1891 Diseases of cultivated cereals of the South Ussuri region Public
534	Benefit Partnership, Saint Petersburg (In Russian)
535	Pasquali M, Beyer M, Logrieco A, Audenaert K, Balmas V, Ryan Basler R, BoutignyA-
536	L, Chrpová J, Czembor E, Gagkaeva T, González-Jaén MT, Hofgaard IS, Köycü ND, Hoffmann
537	L, Lević J, Marin P, Miedaner T, Migheli Q, Moretti A, Müller MEH, Munaut F, Parikka P,
538	Pallez-Barthel M, Piec J, Scauflaire J, Scherm B, Stanković S, Thrane U, Uhlig S, Vanheule A,
539	Yli-Mattila T, Vogelgsang S. 2016. A European database of Fusarium graminearum and F
540	culmorum trichothecene genotypes. Frontiers in Microbiology 7:406
541	https://doi.org/10.3389/fmicb201600406
542	Qu B, Li HP, Zhang JB, Xu YB, Huang T, Wu AB, Zhao CS, Carter J, Nicholson P, Liao
543	YC. 2007. Geographic distribution and genetic diversity of Fusarium graminearum and
544	Fusarium asiaticum on wheat spikes throughout China. Plant Pathology 57:15–24
545	https://doi.org/10.1111/j1365-3059200701711x

546	Ramirez ML, Chulze S, Magan N. 2006. Temperature and water activity effects on
547	growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium
548	graminearum on irradiated wheat grain. International Journal of Food Microbiology 106:291-
549	296 https://doi.org/10.1016/jijfoodmicro200509004
550	Scherm B, Balmas V, Spanu F, Pani G, Delogu G, Pasquali M, Migheli Q. 2012.
551	Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Molecular Plant
552	Pathology 14:1–19 https://doi.org/10.1111/mpp12011
553	Shen CM, Hu YC, Sun HY, Li W, Guo JH, Chen HG. 2012. Geographic distribution of
554	trichothecene chemotypes of the Fusarium graminearum species complex in major winter wheat
555	production areas of China. Plant Disease 96:1172–1178 https://doi.org/10.1094/PDIS-11-11-
556	0974-RE
557	Suga H, Karugia GW, Ward T, Gale LR, Tomimura K, Nakajima T, Miyasaka A,
558	Koizumi S, Kageyama K, Hyakumachi M. 2008. Molecular characterization of the Fusarium
559	graminearum species complex in Japan. Phytopathology 98:159–166
560	https://doi.org/10.1094/PHYTO-98-2-0159
561	TASS, 2019. The flood damage in 2019 in the Amur region is estimated at more than 6
562	billion rubles. 16 Sept. 2019. https://tass.ru/ekonomika/6888626 (In Russian)
563	TR TS 015/2011 Technical regulation of the Customs Union 015/2011 "About grain
564	safety" as amended on September 15, 2017 Supplement No 2 Available online:
565	http://www.eurasiancommission.org/ru/act/texnreg/deptexreg/tr/Documents/TP_зерно.pdf (In
566	Russian) (accessed 7 May 2021)
567	TR TS 021/2011 Technical regulation of the Customs Union 021/2011 " About food

568 safety" as amended on August 8, 2019 Supplement No 3 Available online:

569	http://www.eurasiancommission.org/ru/act/texnreg/deptexreg/tr/Documents/TR%20TS%20Pishe
570	vayaProd.pdf (In Russian) (accessed 7 May 2021)
571	Tucker JR, Badea A, Blagden R, Pleskach K, Tittlemier SA, Fernando WGD. 2019.
572	Deoxynivalenol-3-glucoside content is highly associated with deoxynivalenol levels in two-row
573	barley genotypes of importance to Canadian barley breeding programs. Toxins 11:319
574	https://doi.org/10.3390/toxins11060319
575	Voronin MC. 1890. About drunken bread in the South Ussuri region. Botanical notes
576	3: 13–21 (In Russian)
577	Wang J, Li H, Qu B, Zhang J, Huang T, Chen F, Liao Y. 2008. Development of a generic
578	PCR detection of 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol- and nivalenol-chemotypes of
579	Fusarium graminearum clade. International Journal of Molecular Sciences 9:2495–2504
580	https://doi.org/10.3390/ijms9122495
581	Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O'Donnell K. 2002. Ancestral
582	polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of
583	phytopathogenic Fusarium. PNAS 99:9278–9283 https://doi.org/10.1073/pnas142307199
584	Ward TJ, Clear R, Rooney A, O'Donnell K, Gaba D, Patrick S, Starkey DE, Gilbert J,
585	Geiser DM, Nowicki TW. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen
586	populations is driving the rapid spread of more toxigenic Fusarium gramienarum in North
587	America. Fungal Genetics and Biology 45:473-484 https://doi.org/10.1016/j.fgb.2007.10.003
588	Yli-Mattila T, GagkaevaT, Ward TJ, Aoki T, Kistler HC, O'Donnell K. 2009. A novel
589	Asian clade within the Fusarium graminearum species complex includes a newly discovered
590	cereal head blight pathogen from the Far East of Russia. Mycologia 101:841-852
591	https://doi.org/10_3852/08-217
1	

- 592 Yli-Mattila T, Paavanen-Huhtala S, Parikka P, Hietaniemi V, Jestoi M, Gagkaeva T,
- 593 Sarlin T, Haikara A, Laaksonen S, Rizzo A., 2008. Real-time PCR detection and quantification of
- 594 Fusarium poae, F graminearum, F sporotrichioides and F langsethiae as compared to mycotoxin
- 595 production in grains in Finland and Russia. Archives of Phytopathology and Plant Protection
- **41:**243–260 https://doi.org/10.1080/03235400600680659