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ABSTRACT
Background: Watermelon seeds are a powerhouse of value-added traits such as
proteins, free amino acids, vitamins, and essential minerals, offering a paleo-friendly
dietary option. Despite the availability of substantial genetic variation, there is no
sufficient information on the natural variation in seed-bound amino acids or
proteins across the watermelon germplasm. This study aimed to analyze the natural
variation in watermelon seed amino acids and total protein and explore
underpinning genetic loci by genome-wide association study (GWAS).
Methods: The study evaluated the distribution of seed-bound free amino acids and
total protein in 211 watermelon accessions of Citrullus spp, including 154 of Citrullus
lanatus, 54 of Citrullus mucosospermus (egusi) and three of Citrullus amarus.
We used the GWAS approach to associate seed phenotypes with 11,456 single
nucleotide polymorphisms (SNPs) generated by genotyping-by-sequencing (GBS).
Results: Our results demonstrate a significant natural variation in different free
amino acids and total protein content across accessions and geographic regions.
The accessions with high protein content and proportion of essential amino acids
warrant its use for value-added benefits in the food and feed industries via
biofortification. The GWAS analysis identified 188 SNPs coinciding with 167
candidate genes associated with watermelon seed-bound amino acids and total
protein. Clustering of SNPs associated with individual amino acids found by
principal component analysis was independent of the speciation or cultivar groups
and was not selected during the domestication of sweet watermelon. The identified
candidate genes were involved in metabolic pathways associated with amino acid
metabolism, such as Argininosuccinate synthase, explaining 7% of the variation in
arginine content, which validate their functional relevance and potential for
marker-assisted analysis selection. This study provides a platform for exploring
potential gene loci involved in seed-bound amino acids metabolism, useful in genetic
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analysis and development of watermelon varieties with superior seed nutritional
values.

Subjects Agricultural Science, Genomics, Molecular Biology, Plant Science, Nutrition
Keywords Watermelon, GWAS, Amino acids, Proteins

INTRODUCTION
Nutritional improvement of crop plants is most critical for the overall health of people
around the world. Proteins and their structural constituents, amino acids, are
indispensable for human nutrition and health. Plant seeds store a wide range of
compounds, such as proteins, free amino acids, carbohydrates, and storage lipids,
contributing ∼70% of the world’s human caloric intake directly or indirectly as animal feed
(Sreenivasulu & Wobus, 2013). Furthermore, amino acids play vital roles in the central
metabolism of seeds and are used to synthesize seed storage proteins as precursors for
the biosynthesis of secondary metabolites and are catabolized via the tricarboxylic acid
cycle to generate energy to support seedling growth (Amir, Galili & Cohen, 2018;
Angelovici et al., 2011; Galili et al., 2014).

Humans and farm animals cannot synthesize many essential amino acids. Populations
in low-income countries that rely on a few selected crops with an imbalanced amino
acid composition develop health problems due to essential amino acid deficiencies.
Manufactured animal feed is augmented with chemically synthesized amino acids, which is
cost-intensive. Hence, strategies to increase protein levels and the concentration of
essential amino acids in food crops are of primary importance in most crop improvement
programs.

Several traditional and transgenic approaches have been successfully used to improve
protein contents and amino acid balance in plant seeds (Chakraborty et al., 2010; Jiang
et al., 2016; Newell-McGloughlin, 2008).

Watermelon seeds have been used as a principal staple food for native people in
western Africa and the Sahara Desert (Jensen et al., 2011). The watermelon seeds are
considered a potential powerhouse of proteins (30–35%), oils, B vitamins, niacin, thiamin,
and essential minerals such as iron, magnesium, manganese phosphorus, potassium,
and zinc. Because of the high protein content, omega-3 and-6 fatty acids, micronutrients,
and lack of oligosaccharides (leads to flatulence in bean-based diets) (El-Adawy &
Taha, 2001; Jyothi Lakshmi & Kaul, 2011; Rakhimov, Érmatov & Aliev, 1995; Wani et al.,
2011b) and various essential amino acids and non-protein amino acids (El-Adawy & Taha,
2001; Jyothi Lakshmi & Kaul, 2011), watermelon seeds offer a paleo-friendly and
gluten-free healthy dietary option. Arginine is one of the predominant amino acids in
watermelon seeds (Hartman et al., 2019; Perkins-Veazie et al., 2015).

Genetic screens with various approaches such as linkage mapping, quantitative trait
loci, and genome-wide association study (GWAS) have been used to genetically improve
the accumulation of nutritionally limiting seed-bound amino acids or proteins in
soybean (Lee et al., 2019; Panthee et al., 2006; Warrington et al., 2015; Zhang et al., 2018),
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chickpea (Upadhyaya et al., 2016), maize (Deng et al., 2017) and Arabidopsis (Angelovici
et al., 2013; Jander et al., 2004; Joshi et al., 2006). Despite the availability of substantial
genetic variation, the genes regulating amino acids or protein content in watermelon seeds
and the extent of variability for seed amino acids and total protein across watermelon
germplasm have not been studied. In this study, genetic components underlying natural
variation and amino acid metabolism in watermelon seeds have been elucidated.
We evaluated total amino acid and protein content in seeds of accessions representing
different Citrullus spp. of the germplasm collection available at the USDA germplasm
repository. We conducted GWAS and identified single nucleotide polymorphism (SNP)
markers associated with watermelon seed-specific amino acids and total protein.
The candidate genes identified in this study provide insights into amino acid and protein
biosynthesis and could be used in marker-assisted selection to improve the nutritional
value of watermelon and cucurbit crop seeds.

MATERIALS & METHODS
Seed sample preparation
Seeds of 154 Citrullus lanatus, 54 Citrullus mucosospermus, and three Citrullus amarus
accessions obtained from the USDA Germplasm Resources Information Network were
evaluated for amino acid content and total protein. The seed coats were removed by
using pliers or nail clippers to recover the intact endosperms. Approximately 20 mg and
10 mg shelled watermelon seeds of each accession were placed in a two-mL microcentrifuge
tube in triplicate for amino acid and protein extraction. The samples were flash-frozen
in liquid nitrogen and homogenized to a fine powder using 5 mm Demag stainless
steel balls (Abbott Ball Co., West Hartford, CT, USA) in a Harbil model 5G-HD paint
shaker.

Amino acid extraction and analysis
Amino acids were extracted using an established protocol (Joshi et al., 2019) by suspending
the homogenized samples in 100 mM cold HCl extraction buffer, then incubation on ice
(~20 min) and centrifugation @14,609×g for 20 min at 4 �C. The supernatants were
collected and filtered through a 96-well 0.45-mm-pore filter plate (Pall Life Sciences,
New York, USA). The eluents collected in 96-well trap plates were stored at −20 �C for
further amino acid quantification. The derivatization of filtrates was carried out using the
AccQ•TagTM 3X Ultra-Fluor derivatization kit (Waters Corp., Milford, MA, USA)
following the standard protocol. L-Norvaline (Sigma, St. Louis, MO, USA) was used as an
internal standard. Amino acid calibration was performed using the KairosTM Amino Acid
Kit (Waters Corp., Milford, MA, USA).

Calibration curves were built with the TargetLynxTM Application Manager (Waters
Corp., Milford, MA, USA). Amino acid detection was carried out using a Waters Acquity
H-class UPLC system equipped with Waters Xevo TQ mass spectrometer with an
electrospray ionization (ESI) probe. The Waters Acquity H-class UPLC system consists of
an autosampler, a binary solvent manager, a column heater, and aWater’s AccQ•Tag Ultra
column (2.1 mm i.d. × 140 mm, 1.7-mm particles). The mobile phase consisted of a
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water phase (A) (0.1% formic acid v/v) and acetonitrile (B) (0.1% formic acid v/v) with a
stable flow rate at 0.5 mL/min and column temperature set at 55 �C. The gradient of
non-linear separation was as follows: 0–1 min (99% A), 3.2 min (87.0% A), 8 min (86.5%
A), and 9 min (5% A). Finally, two ml of the derivatized sample was injected into the
column for analysis. IntelliStart software (Waters Corp., Milford, MA, USA) was used to
optimize each amino acid Multiple Reaction Monitoring (MRM) transition, collision
energy values, and cone voltage. ESI source was set to 150 �C with gas desolvation flow
rate 1,000 L/h, gas flow cone 20 L/h, desolvation temperature 500 �C, capillary voltage 2.0
kV, gas collision energy 15 to 30 V, and cone voltage 30 V for detecting all amino
acids. Water’s MassLynxTM software was used for instrument monitoring and data
acquisition. The TargetLynxTM Application Manager (Waters Corp., Milford, MA, USA)
was used for data integration, calibration curves, and amino acid quantification.

Total protein extraction and analysis
Total protein was extracted from homogenized seeds samples of each accession using an
extraction buffer (70 mM Tris HCl, 25 mM KCl, 1 mM MgCl2, five mM EDTA, 5%
glycerol, 0.1% Triton X-100, and 15 mM β-mercaptoethanol). The extracts were filtered
using a 96-well 0.45-mm-pore filter plate (Pall Life Sciences, New York, USA), and
filtrates were used to determine protein content with the Bradford Protein Assay Kit
(AMRESCO Inc., Solon, OH). Extracts of 20 µl were incubated with 180 µl buffer for 2 min
in a 96-well microplate (F-bottom, Greiner Bio-One, Kremsmünster, Austria) before
measuring the absorbance at 595 nm in a spectrophotometer (Multiskan GO, Thermo
Scientific, Waltham, MA, USA). Before measuring samples, 0.5 mg/mL BSA solution was
used to prepare a standard curve to detect protein concentrations, and the total protein was
reported as µg per mg of seed.

Statistical procedures such as ANOVA, Student t-Test, and the Principal component
analysis (PCA) were performed using JMPR 15.2.0 (SAS Institute Inc., Cary, NC, USA)
statistical package.

Association analysis
For GWAS, the population structure Q matrix was replaced by the PC matrix. The PC
matrix and identity by descent (IBD) were calculated by using the EIGENSTRAT
algorithm (Patterson, Price & Reich, 2006) with the SNP & Variation Suite (SVS v8.8.1;
Golden Helix, Inc., Bozeman, MT, USA) in SVS v8.1.5. GWAS involved a multiple-locus
mixed linear model developed by the EMMAX method and implemented in SVS v8.1.5.
We used a PC matrix (first two vectors) and the IBD matrix to correct population
stratification. Manhattan plots for associated SNPs were visualized in GenomeBrowse v1.0
(Golden Helix, Inc). The SNP p-values from GWAS underwent false discovery rate (FDR)
analysis. The details of 11,456 SNPs generated by genotype by sequencing (Nimmakayala
et al., 2014; Wu et al., 2019) used for association analysis and resolving population
structure are available as supplemental data with the cited papers.
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Population structure with associated SNPs
To analyze the impact of amino acid accumulation in the global collection of cultivars
and wild types on population structure, we generated the principal components, or
eigenvectors, by principal component analysis (PCA) and corresponding eigenvalues were
estimated by the associated SNPs.

RESULTS
Phenotypic variation in the seed-bound free amino acids and total
protein
We investigated the distribution of seed amino acids in 211 watermelon accessions,
including 154 of Citrullus lanatus, 54 of Citrullus mucosospermus (egusi), and three of
Citrullus amarus. We detected 28 amino acids, including 20 protein-bound and eight
non-protein amino acids (such as GABA, citrulline, ornithine) in the seeds of all
watermelon accessions. Nitrogen-rich amino acids such as glutamic acid (29.6%), followed
by arginine (17.9%), aspartic acid (9.7%), and alanine (7.6%) were the most abundant
amino acids in watermelon seeds (Fig. 1). ANOVA confirmed a significant variation in the
seed-bound free amino acids and total protein (p < 0.05). Amino acids and the total protein
content of seeds are influenced by genetic backgrounds, geographic origin, species,
agronomic conditions, and postharvest processing. The percent distribution of all
seed-bound amino acids is presented in Table S1. The highest proportion of arginine
(40.6%) and citrulline (18.1%) in seeds was measured in accessions PI 470246 (C. lanatus)
and PI 254740 (C. mucosospermus), respectively. The details of geographical origin and
continents are in Table S2. We found significant differences in the proportion of the
most abundant amino acids (glutamic acid, arginine, aspartic acid, and alanine) across
continents and species (Figs. S1–S4). For example, glutamate content was significantly
lower in European than North American and Asian accessions. Likewise, African
accessions showed the lowest arginine content compared with European and North
American accessions. Aspartic acid and alanine content were highest in African and South
American accessions, respectively. Similarly, glutamate and arginine contents were high in
C. mucosospermus, whereas C. lanatus accessions had high aspartic acid and alanine
contents. The percentages of free amino acids were submitted to the principal component
analysis (PCA), which revealed a clear separation of C. mucosospermus and the
African continent. The first two principal components accounted for 35.6% of the total
variance in the data, of which PC1 explained 23.3% of this variance and PC2 explained
12.2% (Fig. S5). The amino acids such as branched-chain amino acids (Isoleucine,
Leucine, valine), proline, asparagine, and alanine contributed positively to the construction
of PC1. In contrast, glutamate, arginine, aspartate citrulline contributed negatively to
construct PC1. Furthermore, glutamate, aspartate, and argininosuccinic acid contributed
positively to construct PC2, whereas arginine, histidine, citrulline, and ornithine
contributed negatively.

The percentage protein distribution across accessions is in Fig. 2. The accession PI
172799 had the highest seed protein content (19.5%). The crude seed protein content in the
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commercial cultivars (Black Diamond, Charleston Gray, and Crimson Sweet) has ranged
from 16% to 17.7% (Tabiri, 2016). The mean protein content across accessions by
continent is provided in Table S3. The mean protein content in accessions was significantly
higher in Europe (11.5%) and Africa (11.3%) than Asia (10.6%) and North America
(10.5%). The distribution of protein content in C. lanatus, C. mucosospermus, and
C. amarus is summarized in Fig. S6. The mean protein content was comparable in
C. mucosospermus (11.4%) and C. lanatus (11.0%) and C. amarus (10.3%).

Overall population structure
We used 11,456 SNPs generated by genotype by sequencing (Nimmakayala et al., 2014;
Wu et al., 2019) for resolving population structure. Principal component analysis
(PCA) separated ancestral species C. mucasospermous (egusi), C. lanatus (wild, landrace,
and cultivars) into two groups. The C. lanatus group showed an admixture of wild,
landrace (semi-wild), and cultivars (Fig. 3A). Many cultivars formed as a single cluster.

Glutamic Acid
Arginine
Aspartic Acid
Alanine
Serine
GABA
Glycine
Phenylalanine
Asparagine
Tryptophan
Ethanolamine
Histidine
Valine
Lysine
Tyrosine
Threonine
Proline
Citrulline
Leucine
Glutamine
Alpha Aminoadipic Acid
Methionine
Argininosuccinic Acid
L-Ornithine
Isoleucine
Hydroxylysine
Cystine
Kynurenine

Glutamic acid
(29.6%)

Arginine 
(17.9%)

Aspartic acid 
(9.7%)

Alanine 
(7.6%)

Figure 1 Percent distribution of free amino acids across seeds of selected watermelon accessions. Full-size DOI: 10.7717/peerj.12343/fig-1
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Figure 2 Percent variation in the seed protein content of watermelon accessions. The accession details of the associated seed IDs and mean total
protein content data is available in Table S3. Full-size DOI: 10.7717/peerj.12343/fig-2

Figure 3 (A) Principal component analysis (PCA) separating ancestral species C mucasospermous (egusi), C lanatus (wild, landrace, and
cultivars). (B) PCA superimposed with the arginine contents across accessions. Full-size DOI: 10.7717/peerj.12343/fig-3
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This PCA was superimposed with arginine content to understand clustering across
accessions during breeding histories for arginine content. Egusi types, wild lanatus,
landraces, and cultivars possessed low, medium, and high arginine content in all taxa in the
study (Fig. 3B). Hence, we did not notice any selection for arginine during the
domestication of sweet watermelon.

GWAS for various amino acid and total protein content
Our GWAS associated 4, 22, 11, 19, 6, 12, 6, 30, 3, 10, 5, 14, 12, 13, 8, 3, 5, 8, 7, 11, 5, 4, 6, 11,
14, 5, 8 and 7 SNPs with histidine, arginine, asparagine, glutamine, serine, glutamic
acid, aspartic acid, citrulline, threonine, glycine, alanine, GABA, proline, L-ornithine,
cystine, lysine, tyrosine, methionine, valine, isoleucine, leucine, phenylalanine,
ethanolamine, hydroxylysine, alpha aminoadipic acid, kynurenine, tryptophan, and
arginine succinic acid, respectively. We present association statistics indicating
chromosomal location, significance, FDR, regression beta (positive or negative), the
standard deviation of regression beta, sample size, call rate, phenotypic variance explained
by the SNP, minor allele frequencies of associated SNPs, type of mutation, gene name,
gene region, and harboring these SNPs for all detected amino acids in Table S4 and total
protein in Table S5. Manhattan plots showing chromosome distribution of associations for
24 seed-bound free amino acids and total protein are in Figs. 4–12, respectively.
Quantile–quantile (Q–Q) plots for various amino acids and total proteins are in shown
Figs. S7 and S8, respectively.

Population structure analysis based on associated SNPs for amino
acids and total protein
We used PCA with associated SNPs for each amino acid and total protein content in the
study. The PCA revealed how associated SNPs representing causative genes distort the
population structure compared with the overall population structure. The first two
eigenvectors of PCA cumulatively explained the percentage variation absorbed by each
amino acid (Fig. S9) and total protein (Fig. S10). Our study revealed associated SNPs when
used for PCA analysis, individual PCA for histidine, arginine, asparagine, glutamine,
serine, glutamic acid, aspartic acid, citrulline, threonine, glycine, alanine, GABA,
proline, L-ornithine, cystine, lysine, tyrosine, methionine, valine, isoleucine, leucine,
phenylalanine, ethanolamine, hydroxylysine, alpha aminoadipic acid, kynurenine,
tryptophan, and arginine succinic acid absorbed 57%, 45%, 32%, 59%, 47%, 26%, 50%,
21%, 85%, 26%, 35%, 34%, 36%, 29%, 35%, 26%, 60%, 29%, 30%, 51%, 22%, 57%, 51% and
52%, respectively of total genetic variance. PCA with associated SNPs for serine, aspartic
acid, threonine, lysine, phenylalanine, kynurenine, tryptophan, and arginine succinic
acid divided the population into three distinct clusters, although the clustering was
independent of the speciation or cultivar groups. None of the seed-bound amino acid
components was selected during the domestication of sweet watermelon. Because the
domestication of sweet watermelon is based on fruit size, rind thickness, flesh softening,
and soluble solids, seed composition may not have been directly or indirectly under
selection.
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Genes under association
Detailed annotation for the genes identified for various metabolites in the current GWAS is
in Table S4. Among the genes identified by GWAS that were common to various
metabolites, the gene most directly and highly associated with various metabolites was a
nonsynonymous SNP (S2_9832702) located in ATP-binding cassette (ABC) transporter B
family member 19 (ABCB19; ClCG02G007990), located on chromosome 2 and
showing multiple significant associations with alpha aminoadipic acid (p = 0.00000004),
glutamine (p = 0.0002), glycine (p = 0.000004), GABA (p = 0.000004), proline (p = 0.0002),
lysine (p = 0.000027), valine (p = 0.000006), leucine (0.000003), isoleucine
(p = 0.000000006), ethanolamine (p = 0.0002), cysteine (p = 0.000005) and alpha
aminoadipic acid (p = 0.00000004), which explained 9%, 10%, 8%, 11%, 7%, 9%, 11%,
9%, 8%, 5%, 7% and 11% of the phenotypic variance, respectively. This gene is known for
mediating the polar transport of auxin and is required to establish an auxin concentration
gradient, which is essential for cytoplasmic streaming that may have a role in seed
development.

Argininosuccinate synthase (ClCG03G003660), located on chromosome 3 (p = 0.0008
FDR 0.003), explained 7% of the variance for both arginine and argininosuccinic acid.

Figure 4 Manhattan plots of genome-wide association analyses for seed-bound Histidine, Arginine, and Asparagine using mixed linear model
(MLM). Coordinates of 11 chromosomes are displayed along the X-axis as color blocks with the negative log 10 of the association p-value for each
single nucleotide polymorphism displayed on the Y-axis. Full-size DOI: 10.7717/peerj.12343/fig-4
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Arogenate dehydrogenase (TyrA/ADH; ClCG11G003430), on chromosome 11, was
strongly associated with arginine (p = 0.00009), tyrosine (p = 0.0005) and argininosuccinic
acid (p = 0.0003). S7_7819769, an exonic located in sspartate semialdehyde dehydrogenase
(ClCG07G005480), was associated with asparagine (p = 0.0005), explaining 7% of the
variance.

A haplotype with two SNPs in aspartate/tyrosine/aromatic aminotransferase
(ClCG11G013620) was associated with alanine (p = 0.00002), explaining 9% of the
variance; tyrosine (p = 0.0007), 7%; and asparagine (p = 0.0000000001), 10% of the
variance. Tyrosine aminotransferase was significantly associated with arginine, alpha
aminoadipic acid, glutamic acid, asparagine, alanine, L-ornithine, and tyrosine.

A strong haplotype encompassing S2_1683683 to S2_1683687 with five SNPs is located
in pentatricopeptide repeat protein 65 (ClCG02G001590), associated with glutamine
(p = 0.0002), explaining 8% of the variance. This gene was also significantly associated with
citrulline (p = 0.0001), proline (p = 0.001), GABA (p = 0.0001), lysine (p = 0.0009) and
alpha aminoadipic acid (p = 0.0001).

Another haplotype on chromosome 11 located in glutamine–tRNA ligase
(ClCG11G004350) has three SNPs associated with citrulline (p = 0.0004).

Figure 5 Manhattan plots of genome-wide association analyses for seed-bound Glutamine, Serine, and Glutamic Acid using mixed linear
model (MLM). Coordinates of 11 chromosomes are displayed along the X-axis as color blocks with the negative log 10 of the association p-
value for each single nucleotide polymorphism displayed on the Y-axis. Full-size DOI: 10.7717/peerj.12343/fig-5
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ABA-responsive element-binding factor 2 (ClCG08G016000) was associated with
serine (p = 0.001), explaining 7% of the variance; glycine (p = 0.0001), 9%; proline
(p = 0.0000001), 12%; and valine (p = 0.0007), 7%.

Acyl-[acyl-carrier-protein] desaturase was associated in the synthesis of citrulline
(p = 0.0000001), explaining 13% of the variance; glycine (p = 0.0001), 5%; L-ornithine
(p = 0.0005), 8%; lysine (p = 0.0004), 8%; and glutamic acid (p = 0.0008) 5%.

Different ankyrin-repeat family proteins were associated with aspartic acid
(p = 1.29E−06), explaining 10% of the variance; arginine (p = 0.0004), 8%; and total
protein (p = 5.23E−08), 8%. Arogenerate dehydrogenase was associated with arginine
(p = 9.21E−05), explaining 3% of the variance; tyrosine (p = 0.0006), 7%; and
argininosuccinic acid (p = 0.0003), 5%.

E3 ubiquitin-protein ligase UPL3 (ClCG02G011880) was associated with the synthesis
of methionine (p = 1.93E−08), explaining 8% of the variance; valine (p = 0.0009), 7%;
isoleucine (p = 3.29E−07), 8%; ethanolamine (p = 8.17E−05), 8%; and alpha aminoadipic
acid (p = 0.0003), 8%. Endo-1, 3, 1, 4 beta-d-glucanase was associated with threonine
(p = 0.0006), explaining 7% of the variance; L-ornithine (p = 0.0008), 7%; and tyrosine
(p = 0.0008), 7%.

Figure 6 Manhattan plots of genome-wide association analyses for seed-bound Aspartic Acid, Citrulline, and Threonine using mixed linear
model (MLM). Coordinates of 11 chromosomes are displayed along the X-axis as color blocks with the negative log 10 of the association p-value for
each single nucleotide polymorphism displayed on the Y-axis. Full-size DOI: 10.7717/peerj.12343/fig-6
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DNA-directed RNA polymerase was associated with arginine (p = 4.73E−05),
explaining 6% of the variance; citrulline (p = 2.92E−06), 12%; asparagine (p = 6.36E−05),
5%; serine (p = 8.69E−0), 9%; glycine (p = 2.67E−07), 10%; tyrosine (p = 5.10E−06), 9%;
and methionine (p = 0.0008), 7%.

E3 ubiquitin-protein ligase UPL3 was associated with methionine (p = 1.93E−08),
explaining 8% of the variance; valine (p = 0.001), 7%; isoleucine (p = 3.29E−07), 7%;
ethanolamine (p = 8.17E−05), 10%; and alpha aminoadipic acid (p = 0.0004), 8%.

GATA transcription factor (ClCG10G013320) was associated with arginine
(p = 0.0007), explaining 7% of the variance; glutamine (p = 0.0005), 8%; and citrulline
(p = 6.78E−06), 12%. Leucine-rich receptor-like protein kinase was associated with
citrulline (p = 6.15E−07), explaining 14% of the variance; L-ornithine (p = 0.0003), 18%;
and argininosuccinic acid (p = 3.96E−06), 8%.

Oleosin, the putative gene, was associated with asparagine (p = 0.0003), explaining
8% of the variance; glutamine (p = 0.0004), 8%; and L-ornithine (0.0006), 7%.

Zinc finger family protein was associated with glutamine (p = 0.0001), explaining 9% of
the variance; glutamic acid (p = 2.24E−05), 4%; argininosuccinic acid (p = 0.001), 7%;
arginine (p = 0.0001), 9%; aspargine (p = 1.18E−05), 5%; L-ornithine (p = 4.36E−05),

Figure 7 Manhattan plots of genome-wide association analyses for seed-bound Glycine, Alanine, and GABA using mixed linear model (MLM).
Coordinates of 11 chromosomes are displayed along the X-axis as color blocks with the negative log 10 of the association p-value for each single
nucleotide polymorphism displayed on the Y-axis Full-size DOI: 10.7717/peerj.12343/fig-7
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7%; citrulline (p = 6.42E−05), 10%; tryptophan (p = 5.31E−05), 10%; aspargine
(p = 0.0006), 7%; alanine (p = 2.72E−05), 7%; total protein (p = 0.0004), 8%; and
hydroxylysine (p = 1.45E−06), 8%.

Transmembrane protein adipocyte-associated-1 homolog was significantly associated
with glycine (p = 0.0003), explaining 8% of the variance; alanine (p = 0.0009), 7%; and
valine (p = 0.0003), 8%. TOM1-like protein 2 was significantly associated with asparagine
(p = 4.67E−09), explaining 9% of the variance; glutamic acid (p = 0.0002) 9%; threonine
(p = 0.0007), 7%; glycine (p = 6.30E−07), 6%; tyrosine (p = 0.0005), 5%; and valine
(p = 3.23E−05), 10%.

Nucleotide diversity and Tajima’s D for various amino acids
We estimated nucleotide diversity (π and ϴ) and Tajima’s D using the associated SNPs for
various metabolites estimated in the current study (Table 1). These parameters were
separately estimated for wild and cultivated watermelon. None significantly differed
between wild and cultivated varieties, which indicated that the genetic mechanisms
underlying seed-bound amino acids might not undergo any selection during
domestication.

Figure 8 Manhattan plots of genome-wide association analyses for seed-bound Proline, L-Ornithine, and Cystine using mixed linear model
(MLM). Coordinates of 11 chromosomes are displayed along the X-axis as color blocks with the negative log 10 of the association p-value for each
single nucleotide polymorphism displayed on the Y-axis Full-size DOI: 10.7717/peerj.12343/fig-8
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DISCUSSION
The current study explored natural variation for various seed amino acids and provides a
list of cultivars, landraces, and egusi lines with high amino acid content for potential use in
breeding programs. Watermelon seed proteins and free amino acids are among the
most tangible paleo-friendly, nitrogen-rich, gluten-free dietary options. Seeds of egusi
cultivars are a significant part of the diet in many African countries (Giwa & Akanbi,
2020). Giwa & Akanbi (2020) reviewed various reports indicating egusi melon seed
kernels are a good source of edible oil (31–59%), protein (19–37%), fiber (3–4%), and
carbohydrate (8–20%). A coarse whitish meal of grounded seed kernel of egusi is used
to make nutritious and pleasantly nutty-tasting (Oke, 1965). A detailed metabolic
landscape of watermelon seeds using the diversity panel such as the current study would
help identify genetic loci and parental lines to develop value-added seeded varieties to
promote seeds for human consumption and culinary use (food additives) and livestock
consumption.

Nutritionally superior seeds can be developed by identifying and deploying the gene
(s)/QTLs associated with seed-specific nutraceuticals. Understanding genetic and
molecular regulation of seed-specific proteins would help identify targets for developing

Figure 9 Manhattan plots of genome-wide association analyses for seed-bound Lysine, Tyrosine, and Methionine using mixed linear model
(MLM). Coordinates of 11 chromosomes are displayed along the X-axis as color blocks with the negative log 10 of the association p-value for each
single nucleotide polymorphism displayed on the Y-axis Full-size DOI: 10.7717/peerj.12343/fig-9
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protein-rich food options. GWAS and QTL mapping has been used to analyze
seed-specific protein, oil, fatty acid, and amino acid content in various crops such as
soybean (Hwang et al., 2014; Lee et al., 2019; Zhang et al., 2019), chickpea (Upadhyaya
et al., 2016), peanut (Gangurde et al., 2020) rice (Chen et al., 2018), cotton (Yuan et al.,
2018), and maize (Cook et al., 2011). Although it is hard to generalize the outcomes due to
the species-level differences in the protein quality and composition, these studies have
allowed the identification of SNPs and unique biomarkers linked to QTL for genome
manipulation, germplasm enhancement, and the creation of high-density gene libraries.

This study performed GWAS of amino acids in watermelon seed to efficiently
identify genetic loci influencing amino acid profiles in watermelon and underlying
candidate genes and networks. We used significantly associated SNPs for these amino
acids to explore the population structure and compared them with the genome-wide
population structure to understand whether the genetic mechanisms underlying various
amino acid metabolism had no role in the domestication of sweet watermelon.
Furthermore, nucleotide diversities and Tajima’s D estimated for the SNPs underlying the
composition of amino acids did not differ between wild and cultivated watermelon
genotypes, so seed amino acid profiles were not involved in domestication.

Figure 10 Manhattan plots of genome-wide association analyses for seed-bound Valine, Isoleucine and Leucine using mixed linear model
(MLM). Coordinates of 11 chromosomes are displayed along the X-axis as color blocks with the negative log 10 of the association p-value for
each single nucleotide polymorphism displayed on the Y-axis Full-size DOI: 10.7717/peerj.12343/fig-10
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Although GWAS identified genes with strong associations with more than one
metabolite, we explored genes with known roles in regulating these metabolites. The most
intriguing nonsynonymous SNP in ABCB19 (ClCG02G007990) was associated with
multiple amino acids such as alpha aminoadipic acid, glutamine, GABA, proline, lysine,
valine, leucine, isoleucine, ethanolamine, and alpha aminoadipic acid. The encoded
protein is conserved across Cucurbits and shares more than 67% identity with several plant
species such as cotton, Medicago, and chickpea. Members of the ABC transporter
superfamily transport a wide range of molecules across various membrane types (Do,
Martinoia & Lee, 2018) and play an essential role in seed development, seed germination,

Figure 11 Manhattan plots of genome-wide association analyses for seed-bound Phenylalanine, Tryptophan, and Argininosuccinic Acid using
mixed linear model (MLM). Coordinates of 11 chromosomes are displayed along the X-axis as color blocks with the negative log 10 of the
association p-value for each single nucleotide polymorphism displayed on the Y-axis Full-size DOI: 10.7717/peerj.12343/fig-11

Figure 12 Manhattan plots of genome-wide association analyses for total seed proteins using mixed linear model (MLM). Coordinates of 11
chromosomes are displayed along the X-axis as color blocks with the negative log 10 of the association p-value for each single nucleotide poly-
morphism displayed on the Y-axis Full-size DOI: 10.7717/peerj.12343/fig-12
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organ formation, and secondary growth (Hwang et al., 2016). Regulation of ABCB19
involves intricate coordinated cellular processes, including protein-protein interactions,
vesicular trafficking, protein phosphorylation, ubiquitination, and stabilization of the
transporter complexes (Titapiwatanakun & Murphy, 2009). Establishing an auxin
concentration gradient is required, which is essential for cytoplasmic streaming (Peer,
Jenness & Murphy, 2014).

The tyrosine aminotransferase (TAT, ClCG11G017780), associated with multiple
amino acids, represents the entry point for various tyrosine degradation of natural
products’ biosynthesis in the recycling of energy and nutrients in plants (Wang et al.,
2019). The Arabidopsis ortholog of this gene is induced under conditions leading to

Table 1 Estimation of nucleotide diversity (π and ϴ) and Tajima’s D in wild accessions and cultivars
using the associated SNPs for various metabolites.

Compound Wild accessions Cultivars

PiPerBP ThetaPerBP TajimaD PiPerBP ThetaPerBP TajimaD

Histidine 0.44727 0.17781 2.796 0.42612 0.19064 2.42097

Arginine 0.37416 0.17781 3.07763 0.34586 0.19064 2.36865

Asparagine 0.39409 0.17781 2.99071 0.38203 0.19064 2.59433

Glutamine 0.34258 0.17781 2.52647 0.28994 0.19064 1.4843

Serine 0.39736 0.17781 2.59423 0.39127 0.19064 2.33932

Glutamic acid 0.33648 0.17781 2.23581 0.33306 0.19064 1.96538

Aspartic acid 0.41423 0.17781 2.79362 0.40269 0.19064 2.47245

Citrulline 0.41116 0.17781 3.80497 0.38377 0.19064 3.05821

Threonine 0.28987 0.17781 1.04887 0.29278 0.19064 0.94971

Glycine 0.50441 0.17781 4.4193 0.49677 0.19064 4.06485

Alanine 0.39035 0.17781 2.37438 0.40995 0.19064 2.42216

GABA 0.4673 0.17781 4.20796 0.46442 0.19064 3.89117

Proline 0.4213 0.17781 3.43089 0.39976 0.19064 2.88584

L-Ornithine 0.39879 0.17781 3.1656 0.38207 0.19064 2.68343

Cystine 0.31258 0.17802 1.72256 0.32379 0.19064 1.677

Lysine 0.35466 0.17781 1.65535 0.34738 0.19064 1.45748

Tyrosine 0.35377 0.17781 1.96577 0.33973 0.19064 1.64662

Methionine 0.43189 0.17781 3.25328 0.42781 0.19064 2.98728

Valine 0.42894 0.17781 3.10179 0.4346 0.19064 2.96847

Isoleucine 0.42913 0.17781 3.47525 0.40277 0.19064 2.87541

Leucine 0.43068 0.17781 2.82495 0.42798 0.19064 2.62141

Phenylalanine 0.30904 0.17781 1.36162 0.31859 0.19064 1.3155

Ethanolamine 0.24421 0.17781 0.78456 0.25513 0.19064 0.75187

Hydroxylysine 0.33186 0.17781 2.13023 0.29377 0.19064 1.39787

Alpha aminoadipic acid 0.25084 0.17781 1.06154 0.26251 0.19064 1.02139

Kynurenine 0.37664 0.17781 2.22127 0.37595 0.19064 2.04666

Tryptophan 0.38067 0.17781 2.5975 0.35361 0.19064 2.05263

Argininosuccinic acid 0.40357 0.17781 2.78851 0.37942 0.19064 2.29704
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oxidative stress and senescing leaves, developing seeds, and ABA treatment (Holländer-
Czytko et al., 2005; Winter et al., 2007). Similarly, the orthologs of the basic leucine
zipper transcription factor ABA-responsive element binding factor 2, with multiple
associations with amino acids, is a positive regulator of glucose signal transduction and
upregulates ABA-responsive gene expression (Cutler et al., 2010). Besides modulating
various plant developmental processes, ABA regulates seed maturation, dormancy, and
germination (Choi et al., 2000).

E3 ubiquitin-protein ligase UPL3 (ClCG02G011880) identified in this study encodes an
ortholog of Arabidopsis (Downes et al., 2003) and Brassica miller (Miller et al., 2019) E3
ligase UPL3. Brassica UPL3 modulates seed size and lipid content and is exploited to
increase yield. GATA transcription factor (ClCG10G013320) associated with arginine
glutamine and citrulline suggests its involvement in regulating plant nitrogen metabolism.
Several studies support GATA transcription factors’ involvement in regulating nitrogen
metabolism and amino acid-related genes in fungi and plants (Fu & Marzluf, 1990;
Hudson et al., 2011; Rastogi et al., 1997; Shin et al., 2017).

Argininosuccinate synthase or synthetase (ASS; EC 6.3.4.5) regulates the
antepenultimate step in arginine synthesis that catalyzes argininosuccinate synthesis from
citrulline and aspartate. The progressive downregulation of three argininosuccinate
synthases (ASS-1, ASS-2, and ASS-3) has been demonstrated in developing flesh and rind
tissues from watermelon to accumulate free citrulline (Guo et al., 2013; Joshi et al.,
2019; Zhu et al., 2017). However, citrulline content was relatively lower than arginine in
mature seeds, implying deregulation of citrulline catabolism in seeds. According to the
distribution of the seed-specific free (Joshi et al., 2019; Perkins-Veazie et al., 2015) and
protein-bound amino acids (Wani et al., 2011a) in watermelon, arginine is one of the
most abundant amino acid residues in the storage proteins. Arginine has the highest
nitrogen-to-carbon ratio and is suitable as a storage form of organic nitrogen in seeds.
About 40% to 50% of the total nitrogen reserve in various plants is represented by arginine
(Aninbon et al., 2017; Cortés-Giraldo et al., 2016; de Ruiter & Kollöffel, 1983; King &
Gifford, 1997; Micallef & Shelp, 1989b). Arginine plays a crucial role in nitrogen
distribution and recycling (Slocum, 2005) and affects the synthesis of storage proteins
critical for germination. In pea seeds, argininosuccinate synthetase activity was
significantly increased during the first weeks after anthesis, peaking at about 35 days and
decreasing progressively until 54 days (de Ruiter & Kollöffel, 1983), which indicates its
prominent role in arginine synthesis in seeds. Similarly, validation of 72% of arginine
requirement in developing soybean cotyledons by in situ biosyntheses (Micallef & Shelp,
1989b) and recovery of labeled arginosuccinate (Micallef & Shelp, 1989a) further support
the functional role of arginine biosynthetic enzymes in seeds.

Arogenate dehydrogenase (TyrA/ADH; ClCG11G003430) was associated with
arginine. In plants, the amino acid tyrosine is synthesized from arogenate by an enzyme
arogenate dehydrogenase (TyrA). TyrA activity has been demonstrated in several
plants (Byng et al., 1981; Connelly & Conn, 1986; Gaines et al., 1982; Rippert et al., 2009).
Tyrosine is an essential aromatic amino acid required to synthesize proteins and serves
as a precursor of several secondary metabolites families, including tocochromanols
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(vitamin E) and plastoquinones isoquinoline alkaloids and non-protein amino acids
(Tzin & Galili, 2010). In maize kernels, reduction in abundance or activity of arogenate
dehydrogenase reduced the zein protein synthesis rate (Holding et al., 2010). The broader
impact of TyrA arogenate dehydrogenases on plant growth and development and seed
yield was validated in Arabidopsis (de Oliveira et al., 2019).

Another important gene from this GWAS is the aspartate semialdehyde dehydrogenase
(ClCG07G005480), regulating the master aspartate pathway that leads to the synthesis
of lysine methionine and threonine (Jander & Joshi, 2009). Although little is known about
this gene’s functional significance in plants, its unique place in the aspartate master
pathway is indispensable for synthesizing downstream limiting amino acids. Consistent
with this concept, increased aspartate semialdehyde content in transgenic rice seeds
overexpressing feedback-insensitive aspartate kinase (AK) was converted to homoserine
and threonine in seeds (Long et al., 2013), which suggests the role of this gene as a
gatekeeper for regulating the synthesis of threonine, methionine, or lysine.

Because the current GWAS involved relatively few SNPs, it is limited in identifying
long haplotypes involving candidate genes. Nonetheless, this study identified a long
haplotype in pentatricopeptide repeat protein 65 (PPR, ClCG02G001590) with a highly
significant association with glutamine as well as four other amino acids. Mutant analysis in
Arabidopsis validated that PPR proteins significantly impact seed development and
plant growth (de Longevialle et al., 2007) and maize (Gutiérrez-Marcos et al., 2007;
Manavski et al., 2012). Recently, a defective kernel maize mutant Dek53 encoding a PPR
protein with lethal embryo and collapsed endosperm function was characterized in maize
(Dai et al., 2020) confirms the PPR role in seed development.

In our GWAS analysis of total seed protein, the study identified a gene
(ClCG03G016270) annotated as late embryogenesis abundant (LEA) protein. This
protein’s amino acid sequence shares high homology (>90%) with other known LEA
proteins in plants. LEA proteins accumulate to high levels during the last stage of seed
formation (Hundertmark & Hincha, 2008) and play various roles, especially induction
during water deficit (Tunnacliffe & Wise, 2007). LEA proteins also play a crucial role in
normal seed development and plant growth (Manfre, Lanni & Jr Marcotte, 2006). Recently,
the presence of the seed maturation protein domain and a progressive increase in the
expression of this gene (ClLEA-25; Cla011279) during fruit maturation was validated in
watermelon (Celik Altunoglu et al., 2017).

CONCLUSIONS
Watermelon seeds are a staple food for people in different parts of the world. Watermelon
seed proteins and free amino acids contribute to the most tangible paleo-friendly
protein-rich and gluten-free dietary options. Our results demonstrate a significant natural
variation in different free amino acids and total protein content across accessions and
geographic regions. The accessions with high protein content and a proportion of essential
amino acids can be used for value-added benefits in the food and feed industries via
biofortification. This study is the first to reveal the genetic architecture of seed-bound
amino acids in a watermelon GWAS of 211 diverse accessions of Citrullus spp. with 11,456
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SNPs generated by genotyping by sequencing (GBS) analysis. The GWAS identified
quantitative gene loci (QTL) and several candidate genes involved in the metabolism of
individual amino acids. The candidate genes identified here could help study the
seed-bound amino acid accumulation, facilitate marker-assisted selection and provide
novel targets for editing to accelerate nutrigenomics and associated breeding programs.
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