A comparison of food sources of nudibranch mollusks at different depths off the Kuril Islands using fatty acid trophic markers (#63125)

First submission

Guidance from your Editor

Please submit by 26 Jul 2021 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

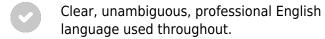
2 Figure file(s)

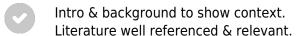
2 Table file(s)

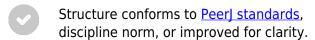
Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

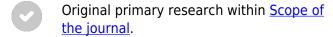

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review


When ready <u>submit online</u>.


Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING



Figures are relevant, high quality, well labelled & described.

Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.

Rigorous investigation performed to a high technical & ethical standard.

Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed.

Meaningful replication encouraged where rationale & benefit to literature is clearly stated.

All underlying data have been provided; they are robust, statistically sound, & controlled.

Speculation is welcome, but should be identified as such.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

-	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

A comparison of food sources of nudibranch mollusks at different depths off the Kuril Islands using fatty acid trophic markers

Anatolii Komisarenko ^{Corresp., 1}, Vladimir Mordukhovich ^{1, 2}, Irina Ekimova ³, Andrey Imbs ¹

Corresponding Author: Anatolii Komisarenko Email address: komisarenko.anatoly@gmail.com

Gastropod molluscs such as nudibranchs are important members of deep-sea benthic ecosystems. However, data on the trophic ecology and feeding specialization of these animals are limited to date. The method of fatty acid trophic markers (FATM) was applied to determine the dietary preferences of nudibranchs off the Kuril Islands. Fatty acid (FA) compositions of *Dendronotus* sp., *Tritonia* sp., and *Colga pacifica* collected from deep waters were analyzed and compared with those of *Aeolidia papillosa* and *Coryphella verrucosa* from the offshore zone. The high level of FATM such as 22:5n-6 and C_{20} monounsaturated FAs indicated that *Dendronotus* sp. preys on sea anemones and/or anthoathecates hydroids similarly to the shallow-water *A. papillosa* and *C. verrucosa*. The high percentage of tetracosapolyenoic acids and the ratio 24:6n-3/24:5n-6 indicated that *Tritonia* sp. preys on soft corals such as *Gersemia rubiformis* at a depth of 250 m, but soft corals of the family Primnoidae may be the main item in the diet of *Tritonia* sp. at a depth of 500 m. The high content of Δ 7,13-22:2 and 22:6n-3 shows that *C. pacifica* can feed on bryozoans. In *C. pacifica*, 22:5n-6 may be synthesized intrinsically by the mollusks, whereas odd-chain and branched saturated FAs originate from bacteria associated.

¹ Laboratory of Comparative Biochemistry, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation

 $^{^{2} \ \}mathsf{Laboratory} \ \mathsf{of} \ \mathsf{Dynamics} \ \mathsf{of} \ \mathsf{Marine} \ \mathsf{Ecosystems}, \ \mathsf{Far} \ \mathsf{Eastern} \ \mathsf{Federal} \ \mathsf{University}, \ \mathsf{Vladivostok}, \ \mathsf{Russian} \ \mathsf{Federation}$

Bepartment of Invertebrate Zoology, Lomonosov Moscow State University, Moscow, Russian Federation

A comparison of food sources of nudibranch

mollusks at different depths off the Kuril Islands using

fatty acid trophic markers

4 5

2

3

6 Anatolii A. Komisarenko¹, Vladimir V. Mordukhovich^{1,2}, Irina A. Ekimova³, Andrey B. Imbs¹

7

- 8 ¹ Laboratory of Comparative Biochemistry, A.V. Zhirmunsky National Scientific Center of
- 9 Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian
- 10 Federation
- 11 ² Laboratory of Dynamics of Marine Ecosystems, Far Eastern Federal University, Vladivostok,
- 12 Russian Federation
- 13 ³ Department of Invertebrate Zoology, Lomonosov Moscow State University, Moscow, Russian
- 14 Federation

15

- 16 Corresponding Author:
- 17 Anatolii Komisarenko
- 18 Palchevskogo str., 17, Vladivostok 690041, Russian Federation
- 19 Email address: komisarenko.anatoly@gmail.com

20

21 22

Abstract =

- 23 Gastropod molluscs such as nudibranchs are important members of deep-sea benthic ecosystems.
- 24 However, data on the trophic ecology and feeding specialization of these animals are limited to
- 25 date. The method of fatty acid trophic markers (FATM) was applied to determine the dietary
- 26 preferences of nudibranchs off the Kuril Islands. Fatty acid (FA) compositions of *Dendronotus*
- 27 sp., Tritonia sp., and Colga pacifica collected from deep waters were analyzed and compared
- 28 with those of Aeolidia papillosa and Coryphella verrucosa from the offshore zone. The high
- level of FATM such as 22:5n-6 and C_{20} monounsaturated FAs indicated that *Dendronotus* sp.
- preys on sea anemones and/or anthoathecates hydroids similarly to the shallow-water A.
- 31 papillosa and C. verrucosa. The high percentage of tetracosapolyenoic acids and the ratio 24:6n-
- 32 3/24:5n-6 indicated that *Tritonia* sp. preys on soft corals such as *Gersemia rubiformis* at a depth
- of 250 m, but soft corals of the family Primnoidae may be the main item in the diet of *Tritonia*
- sp. at a depth of 500 m. The high content of $\Delta 7,13-22:2$ and 22:6n-3 shows that C. pacifica can
- 35 feed on bryozoans. In *C. pacifica*, 22:5n-6 may be synthesized intrinsically by the mollusks,
- 36 whereas odd-chain and branched saturated FAs originate from bacteria associated.

37

- 38 Subjects Biochemistry, Marine Biology, Aquatic and Marine Chemistry
- 39 **Keywords** Nudibranchia, Fatty acids, Trophic markers, Food sources, Food webs

51

53

55

56 57

58

59

60

61

62 63

64 65

66

67

68

69

70

71 72

73

Introduction

Nudibranchs are a group of marine soft-bodied gastropod mollusks (Gastropoda: Nudibranchia Cuvier, 1817). The greatest diversity of nudibranchs is observed in warm shallow waters,

44 although nudibranchs occur worldwide, from Arctic to Antarctic regions, with some species

45 discovered at a depth near 2500 m (Ekimova et al., 2015). Identification of food sources of

46 nudibranchs is important for understanding their ecology and description of trophic interactions

47 in marine benthic ecosystems (*Ekimova et al., 2019*). Nudibranchs are carnivorous, but detritus

48 may comprise some part of their diet (Ekimova et al., 2019). Nudibranch can feed on soft corals,

49 reef-building corals, sponges, bryozoans, tunicates, barnacles, sea anemones, jellyfish,

50 ophiuroids, colonial hydroids, and other nudibranchs (Barnes & Bullough, 1996; McDonald &

Nybakken, 1997, 1999; Goodheart et al., 2017). Many nudibranch species exhibit high dietary

52 specialization (Hoover et al., 2012; Goodheart et al., 2017; Ekimova et al., 2019; Imbs &

Grigorchuk, 2019). In contrast to shallow-water species, data on feeding of deep-sea nudibranch

54 species still remain limited.

Fatty acids (FAs) have been used as biochemical markers to trace predator–prey relationships in marine ecosystems for more than 40 years (*Kelly & Scheibling, 2012; Braeckman et al., 2015; Calado & Leal, 2015*). The method of FA trophic markers (FATM) was successfully applied to determine possible origins of food in several nudibranch species from tropical shallow waters (*Zhukova, 2014*) and the deep-sea nudibranchs *Tritonia tetraquetra*, *Dendronotus* sp., and *D. robustus* collected in the Kurile Islands region (*Imbs, 2016; Imbs & Chernyshev, 2019; Imbs & Grigorchuk, 2019*). FATM have shown that *Dendronotus* sp. and *T. tetraquetra* prey on different species of cold-water soft corals, while *D. robustus* may consume hydrocorals and bryozoans (*Imbs & Grigorchuk, 2019*). Thus, the difference in the feeding specializations between two species belonging to the same genus (*Dendronotus*) and inhabiting the same waters is confirmed by using FATM.

Waters around the Kuril Islands, with their significant depth differences, are one of the world's most productive marine ecosystem (*Shuntov et al., 2019*). As a continuation of ecological studies on deep-sea mollusks, FA compositions of total lipids of three nudibranch species (*Colga pacifica, Dendronotus* sp., and *Tritonia* sp.) collected from deep waters (up to 500 m) were analyzed and compared with those of two nudibranch species (*Aeolidia papillosa* and *Coryphella verrucosa*) from the offshore zone (about 20 m) of the Kurile Islands. Dietary preferences of these five species were studied using the method of FATM. Nudibranchs are a common animal group of this area and, therefore, are important for trophic relationships in the ecosystem studied.

74 75 76

77

Materials and Methods

Sampling and fatty acid preparation 😑

78 Sampling was conducted aboard the R/V Akademik Oparin near Simushir Island (Kuril Islands,

79 Sea of Okhotsk, 47°08′ N, 152°14′ E) in July 2019. Nudibranch specimens were collected at a

80 depth of 20 m by SCUBA and at the depth of 250–500 m by dredging. The samples were represented by two families: Polyceridae (Colga pacifica (Bergh, 1894)) and Aeolidiidae 81 (Aeolidia papillosa (Linnaeus, 1761), Corvphella verrucosa (M. Sars, 1829), Tritonia sp., and 82 Dendronotus sp.). Lipids were extracted from the specimens as described by Bligh and Dved 83 84 (1959). FA methyl ethers (FAME) were prepared using the method of Carreau and Dubacq (1978) and were purified by preparative thin-layer chromatography in benzene. The 4,4-85 dimethyloxazoline (DMOX) derivatives of FA were prepared according to the method of 86 87 Svetashev (2011).

88 89

90

91

92 93

94

95

96 97

98

99

100

101102

Fatty acid analysis =

A gas chromatography analysis of FAME was conducted with a GC-2010 chromatograph (Shimadzu, Kyoto, Japan) with a flame ionization detector. An Equity-5 (Supelco, Bellefonte, USA) capillary column (30 m × 0.25 mm ID, film thickness 25 µm) was held for 2 min at 170 °C, then heated with a 2 °C · min⁻¹ ramp to 240 °C that was held for 5 min. The injector (250 °C) and detector (260 °C) temperatures were constant. Helium was used as the carrier gas at a linear velocity of 30 cm · s⁻¹. Identification of FAs was confirmed by gas chromatography—mass spectrometry (GC–MS) of their methyl esters and DMOX derivatives on a GCMS-2010 Ultra instrument (Shimadzu, Kyoto, Japan) (electron impact at 70 eV) and a MDN-5s (Supelco, Bellefonte, USA) capillary column (30 m × 0.25 mm ID). Carrier gas was He at 30 cm · s⁻¹. The GC–MS analysis of FAME was performed at 160 °C with a 2 °C · min⁻¹ ramp to 240 °C that was held for 20 min. The injector and detector temperatures were 250 °C. GC–MS of DMOX derivatives was performed at 210 °C with a 3 °C · min⁻¹ ramp to 270 °C that was held for 40 min. The injector and detector temperatures were 270 °C. Spectra were compared with the NIST library and the online FA mass spectra archive website (*Christie*, 2021).

104105

103

Statistical analysis

Significance of differences in mean contents of FA between the nudibranch species was tested by one-way analysis of variance (ANOVA) ere used after being tested for the

- 108 homogeneity of variances (Levene's test) and normality of data distribution (Shapiro-Wilk test).
- 109 Significant differences between levels were examined post hoc with Tukey–Kramer HSD
- multiple comparisons test. represent differences between the nudibranch species, the
- variables (square roots of FA contents) were included in principal components analyses (PCA).
- 112 All statistical analyses were performed using STATISTICA 5.1 (StatSoft, Inc., USA). A
- statistical probability of p < 0.05 was considered significant. Values are represented as m $= \pm$
- 114 standard deviation. Cluster analysis was performed using Wada's method (Minimum variance
- method) and the pvclust() function in the pvclust package provides p-values for hierarchical
- 116 clustering based on multiscale bootstrap resampling (Suzuki & Shimodaira, 2006) available in
- 117 the R-Studio software (R-Tools Technology, Canada).

118 119

Results

The full FA composition of total lipids in the five nudibranch species from different depths is summarized in Table S1. The average contents of the major 20 FAs are shown in Table 1. The main saturated FA (SFA) was 16:0, and the major monounsaturated FAs (MUFAs) were 20:1n-9 and 20:1n-7. Lipids of all nudibranchs contained branched and odd-chain SFAs; the highest levels of these acids were detected in some specimens of *A. papillosa* and *C. pacifica* (up to 11 and 17% of total FAs, respectively).

Acids 20:4n-6, 20:5n-3, and 22:6n-3 dominated polyunsaturated FAs (PUFAs) of the nudibranchs studied except for Tritonia sp. The lowest level of 22:6n-3 (HSD test, p = 0.0004) and considerable amounts ($F_{4,11} = 22.2735$, p < 0.0001) of very-long-chain tetracosapolyenoic acids (TPA), 24:5n-6 and 24:6n-3, were found in Tritonia sp. The ratio 24:6n-3/24:5n-6 in the specimens from a depth of 450–516 m (7.0 ± 2.2) was significantly higher ($F_{1,3} = 12.7326$, p = 0.0376) than that in the specimens from a depth of 210–247 m (1.3 ± 0.1). The level of 20:5n-3 was significantly lower (HSD test, p = 0.012) in the deep-sea C. pacifica than that in the shallowwater C. verrucosa. Unusually high percentages of 22:5n-6 were detected in two specimens of C. pacifica (9.6 and 18.6% of total FAs). papillosa contained the highest level of 22:5n-3. Several non-methylene-interrupted FAs (NMI FAs) were present in total FAs of all mollusk species. The highest level (HSD test, p = 0.0007) of $\Delta 5,11-20:2$ in the Tritonia sp. specimens distinguished them from other nudibranchs. All species (except for C. verrucosa) contained noticeable amounts of $\Delta 7,13-22:2$.

Analyses of the FA composition data (Table 1) by ANOVA identified certain FAs that were mainly responsible for the difference between species from deep and shallow waters. Compared to the shallow-water species, the deep-sea ones contained significantly higher (p < 0.05) levels of 20:4n-6 and $\Delta 7,15$ -22:2, but significantly lower (p < 0.05) levels of 14:0, 16:1n-7, 20:1n-11, 20:1n-7, 20:5n-3, 22:4n-6, and 22:5n-3. No differences (p > 0.05) were found for other FAs listed in Table 1.

Results of a cluster analysis of the FA composition data (Table 1) for the five nudibranch species are shown in Figure 1. All the studied specimens were subdivided into three groups: the first and the second groups consisted by deep-sea specimens of *Tritonia* sp. and *C. pacifica*, respectively, and the third group combined specimens of the deep-sea *Dendronotus* sp. with the shallow-water species *A. papillosa* and *C. verrucosa*.

Then, the FAs listed in Table 1 were used as variables for PCA. In this analysis, the first two PCA components explained 50% of the variance of the FA composition data. Figure 2A shows that *Tritonia* sp. is clearly separated from all other nudibranch species along the first PCA component, linking positively with 20:4n-6, 24:5n-6, and 24:6n-3, and negatively with 22:4n-6 and 22:6n-3 (Fig. 2B). The second PCA component separates *C. pacifica* from the group of *Dendronotus* sp., *A. papillosa*, and *C. verrucosa* (Fig. 2A). Figure 2B shows that the level of SFAs (16:0 and 18:0), MUFAs (20:1n-9 and 20:1n-7), and 20:5n-3 vs. the level of 22:5n-6 and NMI FAs is significant for this separation. The level of 22:5n-6 was significantly higher ($F_{1,14}$ = 6.555, p = 0.023) in the group of *Dendronotus* sp., *A. papillosa*, and *C. verrucosa* than that in *Tritonia* sp. and *C. pacifica*. The PCA results (Fig. 1) agree with the results of cluster analysis

(Fig. 2) and show a significant difference in FA profiles between the deep-sea *Tritonia* sp., *C. pacifica*, and the two shallow-water species. Both statistical methods confirm that the FA
 profiles of the deep-sea *Dendronotus* sp. and the shallow-water species are similar.

163 164

183

184

185186

187

188

189 190

191

192

193

194 195

196

197

198

199

Discussion

165 According to literature data, the nudibranchs of the genera Aeolidia, Corvphella, and Dendronotus prev on different Cnidaria groups (Hall & Todd, 1986). The nudibranch A. 166 papillosa is known to prey on sea anemones and consume their nematocyst (stinging capsular 167 organelles) to protect against other predators (Hall & Todd, 1986). The considerable levels of 168 22:5n-6 and C₂₀₋₂₂ MUFAs are characteristic for the FA composition of shallow- and deep-water 169 sea anemones (Kiyashko et al., 2014; Revel et al., 2016). Obviously, the noticeable amounts of 170 22:5n-6 and C₂₀ MUFAs that we found in A. papillosa originate from sea anemone lipids 171 consumed by this nudibranch species. Different feeding specializations on polyps of scyphoid 172 jellyfish (Hernroth & Grondahl, 1985; Ostman, 1997), soft corals (Sebens, 1983; Allmon & 173 174 Sebens, 1988), and hydroids of the orders Anthoathecata (the genera Tubularia, Clava, and Hydractinia) and Leptothecata (the genus Obelia) (Kuzirian, 1979) were reported for another 175 shallow-water nudibranch, C. verrucosa. Very-long-chain C₂₄ PUFAs are FATM of soft corals 176 177 and jellyfishes (Svetashev & Vysotskii, 1998; Imbs et al. 2010, 2016; Svetashev, 2019). TPA are 178 proposed as biomarkers for marine food web studies (Drazen et al. 2008; Blanchet-Aurigny et al. 2015). Trace amounts of C₂₄ PUFAs in C. verrucosa indicate that this species from the Kuril 179 Islands probably preys on anthoathecates hydroids, which may be a source of nematocysts 180 (Frick, 2003) and an explanation for the increasing levels of 22:5n-6 and C₂₀ MUFAs in C. 181 182 verrucosa.

The radula morphology in *Dendronotus* sp. is very similar to that of *Dendronotus lacteus* and *D. rufus* and has a large number of knife-like lateral teeth that nudibranch may use for biting off soft tissues of polyps (*Ekimova et al., 2019*). There is some evidence that *D. lacteus* and *D. rufus* feed on hydroids of the family Sertulariidae (order Leptothecata), scyphistomaes, and anemones (*Ekimova et al., 2019*). Considering the close similarity between the FATM profiles of *A. papillosa*, *C. verrucosa*, and *Dendronotus* sp., we assume that the increased 22:5n-6 and C_{20} MUFAs levels in the deep-sea nudibranch *Dendronotus* sp. from the Sea of Okhotsk indicate its preying on sea anemones and/or anthoathecates hydroids, similarly to the shallow-water species, *A. papillosa* and *C. verrucose*.

Several species of the genus Tritonia are known to be obligate predators feeding on soft corals (Allmon & Sebens, 1988; Goddard, 2006). Recently, an analysis of the FA composition of the nudibranch Tritonia tetraquetra preying on soft corals (the Sea of Okhotsk) has shown an intensive transfer of a soft coral FATM (24:5n-6 and 24:6n-3) from prey to predator (Imbs, 2016). The ratio 24:6n-3/24:5n-6 was compared between T. tetraquetra (1.1 \pm 0.2) and several soft coral species. As a result, the soft coral Gersemia rubiformis was suggested as most probable food source of T. tetraquetra-T (Tetraquetra-Tetraquetra). The high percentage of TPA in the deep-sea nudibranch Tritonia sp. also indicates preying on soft corals. Based on the ratio 24:6n-

3/24:5n-6, we can assume that *Tritonia* sp. at a depth of 250 m mainly feed on the *Gersemia* soft corals similarly to *T. tetraquetra*. The significant increase in the ratio 24:6n-3/24:5n-6 in *Tritonia* sp. with increasing depth indicates a change in the taxonomic group of soft corals consumed. Among of the deep-sea soft corals of the Sea of Okhotsk, the high ratio 24:6n-3/24:5n-6 is characteristic only of soft corals of the family Primnoidae (*Imbs et al., 2016*) that can be the major food source of *Tritonia* sp. at a depth of 500 m.

To our knowledge, food sources of *C. pacifica* have not been identified to date. There is only a brief mention that species of the genus Colga can feed on members of the phylum Bryozoa (*Grischenko & Martynov*, 1997; Behrens, 2004). A noticeable level of $\Delta 7,13-22:2$ and 22:6n-3 has been detected in total FAs of the bryozoan *Dendrobeania flustroides* from the Sea of Okhotsk (*Demidkova*, 2010). The high content of these two FAs in *C. pacifica* confirms that this deep-sea species can feed on bryozoans. Other characteristic FAs of *C. pacifica* such as 22:5n-6, odd-chain and branched SFAs may originate from own biosynthesis or associated organisms.

The unexpectedly high content of 22:5n-6 found in C. pacifica may be a result of high activity of C_2 elongase and $\Delta 4$ desaturase that convert 20:4n-6 into 22:5n-6. Such activity has been supposed in the hydrocoral Millepora to explain the extremely high levels of 22:5n-6 and 22:6n-3 (*Imbs et al.*, 2019, 2021). The relatively low level of 20:5n-3 in C. pacifica can be due to either conversion of 20:5n-3 to 22:6n-3 or a deficiency of dietary 20:5n-3 in deep waters (*Kiyashko et al.*, 2014). Odd-chain and branched SFAs in marine invertebrates indicate the presence of associated bacteria (*Kharlamenko & Kiyashko 2018*). Various bacteria have been found in visceral organs of nudibranchs (*Zhukova & Eliseikina*, 2012). An abundant bacterial community may be a cause of the highest level of "bacterial" SFAs in C. pacifica.

Conclusions

FA profiles of five nudibranch mollusk species belonging to the families Polyceridae, Tritoniidae, Dendronotidae, Coryphellidae, and Aeolidiidae, collected near Simushir Island, Sea of Okhotsk, were determined. The feeding specializations of the deep- and shallow-water species were compared on the base of their-FATM compositions. The different species from different depths, but with similar food sources, showed similar FATM profiles. The species composition of soft corals consumed by Tritonia sp. changes with increasing depth. Deep-sea nudibranchs of the genus *Colga* are most promising objects for future studies. The proportion between dietary and biosynthetic origins in their PUFAs should to be assessed.

Acknowledgements

Funding

This work was supported by the Ministry of Science and Higher Education, Russian Federation (grant 13.1902.21.0012 for ID, contract No 075-15-2020-796).

Author Contributions

- 240 Anatolii Komisarenko collected the samples, performed the lipid analyses, analysed the data,
- authored or reviewed drafts of the paper, approved the final draft.
- Vladimir Mordukhovich conceived and designed the experiments, analysed the data, authored or
- 243 reviewed drafts of the paper, approved the final draft.
- 244 Irina Ekimova collected the samples, determine the biological species, performed biological and
- 245 morphological studies, approved the final draft.
- 246 Andrey Imbs conceived and designed the experiments, contributed reagents/materials/analysis
- 247 tools, analysed the data, prepared figures and/or tables, authored or reviewed drafts of the paper,
- 248 approved the final draft.

Data Availability

- 251 The following information was supplied regarding data availability: Raw data in the format of
- 252 Word Table documents are provided as the DOCX file in the Supplemental Materials.

253254

Supplemental Information

255 Supplemental information for this article can be found online.

256

257

References

- 258 Alfaro AC. 2008. Diet of *Littoraria scabra*, while vertically migrating on mangrove trees: gut
- content, FA, and stable isotope analyses. *Estuarine, Coastal and Shelf Science* **79(4)**:718–726
- 260 DOI: 10.1016/j.ecss.2008.06.016.
- 261 Allmon RA, Sebens KP. 1988. Feeding biology and ecological impact of an introduced
- nudibranch, *Tritonia plebeia*, New England, USA. *Marine Biology* **99(3)**:375–385 DOI:
- 263 10.1007/BF02112130.
- 264 Barnes DKA, Bullough LW. 1996. Some observations on the diet and distribution of
- nudibranchs at Signy Island, Antarctica. Journal of Molluscan Studies **62**:281–287 DOI:
- 266 10.1093/mollus/62.3.281.
- **Behrens DW. 2004.** Pacific Coast Nudibranchs, Supplement II. New Species to the Pacific
- 268 Coast and New Information on the Oldies. *California Academy of Sciences* **55**:11–54.
- 269 Bertsch H. 2020. A history of eastern Pacific marine heterobranch research. *The nautilus*
- **134(2)**:71–88.
- 271 Blanchet-Aurigny A, Dubois SF, Quere C, Guillou M, Pernet, F. 2015. Trophic niche of two
- 272 co-occurring ophiuroid species in impacted coastal systems, derived from fatty acid and stable
- isotope analyses. *Marine Ecology Progress Series* **525**:127–141 DOI: 10.3354/meps11169.
- 274 Bligh EG, Dyer WJA. 1959. A rapid method of total lipid extraction and purification. Canadian
- *Journal of Biochemistry and Physiology* **37**:911–917 DOI: 10.1139/y59-099.
- 276 Boschker HTS, Kromkamp JC, Middelburg JJ. 2005. Biomarker and carbon isotopic
- constraints on bacterial and algal community structure and functioning in a turbid, tidal
- estuary. *Limnology and Oceanography* **50(1)**:70–80 DOI: 10.4319/lo.2005.50.1.0070.

- 279 Braeckman U, Provoost P, Sabbe K, Soetaert K, Middelburg JJ, Vincx M, Vanaverbeke J.
- 2015. Temporal dynamics in a shallow coastal benthic food web: Insights from fatty acid
- biomarkers and their stable isotopes. *Marine Environmental Research* **108**:55–68 DOI:
- 282 10.1016/j.marenvres.2015.04.010.
- 283 Budge SM, Iverson SJ, Koopman HN. 2006. Studying trophic ecology in marine ecosystems
- using fatty acids: A primer on analysis and interpretation. *Marine Mammal Science*
- **22(4)**:759–801 DOI: 10.1111/j.1748-7692.2006.00079.x.
- 286 Calado R, Leal MC. 2015. Trophic ecology of benthic marine invertebrates with bi-phasic life
- cycles: What Are We Still Missing? *Advances in Marine Biology* **71**:1–70 DOI:
- 288 10.1016/bs.amb.2015.07.001.
- 289 Carreau JP, Dubacq JP. 1978. Adaptation of macro-scale method to the micro-scale for FA
- methyl transesterification of biological lipid extracts. Journal of Chromatography A 151:384–
- 291 390 DOI: 10.1016/S0021-9673(00)88356-9.
- 292 Christie WW. 2020. Methyl esters of FA. Archive of mass spectra. The Lipid Web. Available at
- 293 https://www.lipidhome.co.uk/ms/methesters/me-arch/index.htm. (accessed 22 June 2021).
- 294 Dalsgaard J, St John M, Kattner G, Muller-Navarra D, Hagen W. 2003. Fatty acid trophic
- markers in the pelagic marine environment. *Advances in Marine Biology* 46:225–340 DOI:
- 296 10.1016/s0065-2881(03)46005-7.
- 297 **Demidkova DA. 2010.** The composition of fatty acids and aldehydes of the marine bryozoans
- 298 Berenicea meandrina and Dendrobeania flustroides (Bryozoa: Gymnolaemata). Russian
- *Journal of Marine Biology* **36**:300–304.
- 300 **Deniro MJ, Epstein S. 1978.** Influence of diet on distribution of carbon isotopes in animals.
- 301 *Geochimica et Cosmochimica Acta* 42(5):495-506 DOI: 10.1016/0016-7037(78)90199-0.
- 302 Drazen JC, Popp BN, Choy CA, Clemente T, De Forest L, Smith, KL. 2008. Bypassing the
- abyssal benthic food web: Macrourid diet in the eastern North Pacific inferred from stomach
- 304 content and stable isotopes analyses. *Limnology and Oceanography* **53(6)**:2644–2654 DOI:
- 305 10.4319/lo.2008.53.6.2644.
- 306 Ekimova I, Korshunova T, Schepetov D, Neretina T, Sanamyan N, Martynov A. 2015.
- 307 Integrative systematics of northern and Arctic nudibranchs of the genus *Dendronotus*
- 308 (Mollusca, Gastropoda), with descriptions of three new species. Zoological Journal of the
- 309 *Linnean Society* **173(4)**:841–886 DOI: 10.1111/zoj.12214.
- 310 Ekimova I, Valdes A, Chichvarkhin A, Antokhina T, Lindsay T, Schepetov D. 2019. Diet-
- driven ecological radiation and allopatric speciation result in high species diversity in a
- 312 temperate-cold water marine genus *Dendronotus* (Gastropoda: Nudibranchia). *Molecular*
- 313 *Phylogenetics and Evolution* **141**:106609 DOI: 10.1016/j.vmpev.2019.106609.
- 314 Goddard JHR. 2006. Stealthy slugs and communicating corals: polyp withdrawal by an
- aggregating soft coral in response to injured neighbors. Canadian Journal of Zoology 84:66-
- 316 71 DOI: 10.1139/Z05-178.
- 317 Goodheartet JA, Bazinet AL, Valdés Á, Collins AG, Cumming MP. 2017. Prey preference
- follows phylogeny: Evolutionary dietary patterns within the marine gastropod group

- 319 Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). *BMC Evolutionary Biology*
- **17**:221 DOI 10.1186/s12862-017-1066-0.
- 321 Grischenko AV, Martynov AV. 1997. Bryozoa as food items for the genera Colga and Triopha
- (Nudibranchia, Doridacea). [Abstract available from: http://www.bryozoa.net/russabst.html]
- Russian and International Conference on Bryozoa.
- 324 Hall SJ, Todd CD. 1986. Growth and reproduction in the aeolid nudibranch *Aeolidia papillosa*
- 325 (L). *Journal of Molluscan Studies* **52**:193–205 DOI: 10.1093/mollus/52.3.193.
- 326 Hall SJ, Todd CD, Gordon AD. 1982. The influence of ingestive conditioning on the prey
- species selection in *Aeolidia papillosa* (mollusca, nudibranchia). *Journal of Animal Ecology*
- **51(3)**:907–921 DOI: 10.2307/4013.
- 329 Hall SJ, Todd CD, Gordon AD. 1984. Prey-species selection by the anemone predator Aeolidia
- papillosa (L) the influence of ingestive conditioning and previous dietary history, and a test
- for switching behavior. *Journal of Experimental Marine Biology and Ecology* **82**:11–33 DOI:
- 332 10.1016/0022-0981(84)90136-9.
- 333 Hernroth L, Grondahl F. 1985. On the biology of Aurelia aurita (L) 2. Major factors
- regulating the occurrence of ephyrae and young medusae in the gullmar fjord, Western
- Sweden. Bulletin of Marine Science 37(2):567–576.
- 336 Hoover RA, Armour R, Dow I, Purcell JE. 2012. Nudibranch predation and dietary preference
- for the polyps of *Aurelia labiata* (Cnidaria: Scyphozoa). *Hydrobiologia* **690**:199–213 DOI:
- 338 10.1007/s10750-012-1044-x.
- 339 Imbs AB. 2016. High level of tetracosapolyenoic fatty acids in the cold-water mollusk *Tochuina*
- 340 *tetraquetra* is a result of the nudibranch feeding on soft corals. *Polar Biology* **39(8)**:1511–
- 341 1514 DOI: 10.1007/s00300-015-1865-y.
- 342 Imbs AB, Chernyshev AV. 2019. Tracing of lipid markers of soft corals in a polar lipidome of
- 343 the nudibranch mollusk *Tritonia tetraquetra* from the Sea of Okhotsk. *Polar Biology*
- **42(2)**:245–256 DOI: 10.1007/s00300-018-2418-y.
- 345 Imbs AB, Dang LPT, Nguyen KB. 2019. Comparative lipidomic analysis of phospholipids of
- hydrocorals and corals from tropical and cold-water regions. *Plos One* **14(4)**:e0215759 DOI:
- 347 10.1371/journal.pone.0215759.
- 348 Imbs AB, Ermolenko EV, Grigorchuk VP, Dang LPT. 2021. Seasonal variation in the
- 349 lipidome of two species of *Millepora hydrocorals* from Vietnam coastal waters (the South
- 350 China Sea). Coral Reefs **40**:719–734 DOI: 10.1007/s00338-021-02073-2.
- 351 Imbs AB, Grigorchuk VP. 2019. Lipidomic study of the influence of dietary fatty acids on
- 352 structural lipids of cold-water nudibranch mollusks. *Scientific Reports* **9**:20013 DOI:
- 353 10.1038/s41598-019-56746-8.
- 354 Imbs AB, Yakovleva IM, Latyshev NA, Pham LQ. 2010. Biosynthesis of polyunsaturated
- fatty acids in zooxanthellae and polyps of corals. Russian Journal of Marine Biology
- **36(6)**:452–457 DOI: 10.1134/S1063074010060076.
- **Joseph PS. 1982.** Temporal variability of phytoplankters in vellar estuary. *Indian Journal of*
- 358 *Marine Sciences* **11**:63–69.

- 359 Kattner J, Hagen W. 2009. Lipids in marine copepods: Latitudinal characteristics and
- perspective to global warming. In: Kainz M, Brett MT, Arts MT, eds. *Lipids in aquatic*
- 361 *ecosystems*. Berlin: Springer Verlag, 257–280 DOI: 10.1007/978-0-387-89366-2_11.
- Kelly JR, Scheibling RE. 2012. Fatty acids as dietary tracers in benthic food webs. *Marine Ecology Progress Series* 446:1–22 DOI: 10.3354/meps09559.
- 364 Kharlamenko VI, Kiyashko SI. 2018. Fatty acid and stable isotope compositions in shallow-
- water bivalve mollusks and their food. *Russian Journal of Marine Biology* 44(2):100–111
 DOI: 10.1134/S1063074018020050.
- Kinsey F. 2003. Response in nematocyst uptake by the nudibranch *Flabellina verrucosa* to the
 presence of various predators in the southern Gulf of Maine. *The Biological Bulletin* 205(3):367–376 DOI: 10.2307/1543299.
- 370 Kiyashko SI, Kharlamenko VI, Sanamyan K, Alalykina IL, Wurzberg L. 2014. Trophic
- 371 structure of the abyssal benthic community in the Sea of Japan inferred from stable isotope
- and fatty acid analyses. *Marine Ecology Progress Series* **500**:121–137 DOI:
- 373 10.3354/meps10663.
- Kuzirian AM. 1979. Taxonomy and biology of 4 New England coryphellid nudibranchs
 (gastropoda-opisthobranchia). *Journal of Molluscan Studies* 45:239–261.
- 376 Martinez-Pita I, Garcia F, Pita ML. 2005. Fatty acid composition and utilization in developing
- eggs of some marine nudibranchs (Mollusca: Gastropoda: Opistobranchia) from southwest
- 378 Spain. Journal of Shellfish Research 4:1209–1216 DOI: 10.2983/0730-
- 379 8000(2005)24[1209:FACAUI]2.0.CO;2.
- 380 Martynov A, Fletcher K, Korshunova T. 2020. A 50-year conundrum is conclusively solved:
- nudibranchs *Dendronotus albus* (= *D. diversicolor*) and *Dendronotus robilliardi* are valid
- species with compelling evidence from type materials, bibliographic sources, and molecular
- data. *Canadian Journal of Zoology* **98**:623–632 DOI: 10.1139/cjz-2019-0261.
- 384 Martynov A, Korshunova T. 2011. Opisthobranch Molluscs of the Seas of Russia. A colour
 385 guide to their taxonomy and biology. Moscow: Fiton+.
- McDonald G, Nybakken J. 1997. A worldwide review of the food of nudibranch mollusks 1.
 Introduction and the suborder Arminacea. *Veliger* 40(2):157–159.
- McDonald G, Nybakken J. 1999. A worldwide review of the food of nudibranch mollusks. Part
 II. The suborder Dendronotacea. *Veliger* 42:62–66.
- Monroig O, Tocher DR, Navarro JC. 2013. Biosynthesis of polyunsaturated fatty acids in
 marine invertebrates: recent advances in molecular mechanisms. *Marine Drugs* 11(10):3998–4018 DOI: 10.3390/md11103998.
- 393 **Ostman C. 1997.** Abundance, feeding behaviour and nematocysts of scyphopolyps (Cnidaria) and nematocysts in their predator, the nudibranch *Coryphella verrucosa* (Mollusca).
- 395 *Hydrobiologia* **355**:21–28 DOI: 10.1023/A:1003065726381.
- 396 Revel J, Massi L, Mehiri M, Boutoute M, Mayzaud P, Capron L, Sabourault C. 2016.
- Differential distribution of lipids in epidermis, gastrodermis and hosted *Symbiodinium* in the

- sea anemone Anemonia viridis. Comparative Biochemistry and Physiology A 191:140–151
- 399 DOI: 10.1016/j.cbpa.2015.10.017.
- 400 Rodkina SA, Kiyashko SI, Demchenko NL. 2020. Trophic basis of dominant amphipods in the
- gray whale feeding grounds near northeastern Sakhalin Island (the Sea of Okhotsk) inferred
- from fatty acid and stable isotope analyses. *Marine Environmental Research* **158**:104999
- 403 DOI: 10.1016/j.marenvres.2020.104999
- 404 **Sebens KP. 1983.** The larval and juvenile ecology of the temperate octocoral *Alcyonium*
- 405 *siderium* Verrill 2. Fecundity, survival, and juvenile growth. *Journal of Experimental Marine*
- 406 *Biology and Ecology* **72(3)**:263–285 DOI: 10.1016/0022-0981(83)90111-9.
- 407 Shuntov VP, Ivanov OA, Dulepova EP. 2019. Biological resources in the Sea of Okhotsk large
- marine ecosystem: their status and commercial use. *Deep Sea Research* **163**:33–45 DOI:
- 409 10.1016/j.dsr2.2019.01.006
- 410 **Stübing D, Hagen W. 2003.** Fatty acid biomarker ratios suitable trophic indicators in Antarctic
- 411 euphausiids? *Polar Biology* **26(12)**:774–782 DOI: 10.1007/s00300-003-0550-8.
- 412 Svetashev VI. 2011. Mild method for preparation of 4,4-dimethyloxazoline derivatives of
- 413 polyunsaturated fatty acids for GC–MS. *Lipids* **46(5)**:463–467 DOI: 10.1007/s11745-011-
- 414 3550-4.
- 415 Svetashev VI. 2019. Fatty acids of the medusae Aurelia aurita (Linnaeus, 1758) and Rhopilema
- 416 esculentum (Kishinouye, 1891): the presence of families of polyenoic acids with 24 and 26
- carbon atoms. *Russian Journal of Marine Biology* **45(2)**:113–117 DOI:
- 418 10.1134/S1063074019020123.
- 419 Svetashev VI, Vysotskii MV. 1998. Fatty acids of Heliopora coerulea and chemotaxonomic
- significance of tetracosapolyenoic acids in coelenterates. *Comparative biochemistry and*
- 421 *Physiology B* **119**:73–75 DOI: 10.1016/S0305-0491(97)00231-9.B
- 422 Volkman JK, Barrett SM, Blackburn SI, Mansour MP, Sikes EL, Gelin F. 1998. Microalgal
- biomarkers: a review of recent research developments. *Organic Geochemistry* **29**:1163–1179
- 424 DOI: 10.1016/S0146-6380(98)00062-X.
- 425 Zhang X, Cheng J, Han D, Chen X, Zhao X, Liu Y. 2019. Regional differences in FA
- 426 composition of sea cucumber (*Apostichopus japonicus*) and scallop (*Patinopecten vesoensis*)
- in the coastal areas of China. *Regional Studies in Marine Science* **31**:1–10 DOI:
- 428 10.1016/j.rsma.2019.100782.
- **Zhukova NV. 2007.** Lipid classes and fatty acid composition of the tropical nudibranch
- 430 mollusks *Chromodoris* sp. and *Phyllidia coelestis*. *Lipids* **42**:1169–1175 DOI:
- 431 10.1007/s11745-007-3123-8.
- 432 Zhukova NV. 2014. Lipids and fatty acids of nudibranch mollusks: potential sources of
- 433 bioactive compounds. *Marine Drugs* **12(8)**:4578–4592 DOI: 10.3390/md12084578.
- **Zhukova NV, Eliseikina MG. 2012.** Symbiotic bacteria in the nudibranch mollusk *Dendrodoris*
- *nigra*: FA composition and ultrastructure analysis. *Marine Biology* **159**:1783–1794 DOI:
- 436 10.1007/S00227-012-1969-7.

PeerJ

438	Figure titles and legends
439	Figure 1 Results of a cluster analysis of the FA composition data for the five nudibranch
440	species. The numerals on the branches represent are bootstrap probability (BP) value of a cluster
441	and approximately unbiased (AU) probability values. TS, Tritonia sp.; CP, Colga pacifica; CV,
442	Coryphella verrucosa; DS, Dendronotus sp.; AP, Aeolidia papillosa.
443	
444	Figure 2 Results of a principal component analysis (PCA) of the FA composition data for
445	the five nudibranch species. (A) The plot of the first two principal components; variables were
446	the major fatty acids (see Table 1). Ellipses were drawn manually to outline three groups
447	according to results of the cluster analysis (see Figure 1). (B) The projectiosn of 12 variables is
448	shown. TS, Tritonia sp.; CP, Colga pacifica; CV, Coryphella verrucosa; DS, Dendronotus sp.;
449	AP, Aeolidia papillosa.
450	

Table 1(on next page)

Fatty acid composition (% of total FAs) of nudibranch molluscs.

The species were collected at different depths near Simushir Island (Kuril Islands, Sea of Okhotsk). Values are means \pm SD; asterisks indicate significant differences (p < 0.05) between the groups of shallow-water species (C. verrucosa and A. papillosa) and deep-sea species (C. pacifica, Tritonia sp., and Dendronotus sp.).

4

TABLE 1 Fatty acid composition (% of total FAs) of nudibranch molluscs. The species were collected at different depths near Simushir Island (Kuril Islands, Sea of Okhotsk). Values are means \pm SD; asterisks indicate significant differences (p < 0.05) between the groups of shallow-water species (C. verrucosa and A. papillosa) and deep-sea species (C. pacifica, Tritonia sp., and Dendronotus sp.). =

Fatty acids	Species names and sampling depths				Comparison of shallow- and deep-		
	Shallow-water group		Deep-water group			water groups by ANOVA	
	Coryphella	Aeolidia	Colga pacifica,	Tritonia sp.,	Dendronotus	$F_{1,14}$	p
	verrucosa, 0–20	papillosa, 0–20	285-304 m, n =	210–516 m, <i>n</i> =	sp., 210–516 m,		
	m, n = 3	m, n = 2	3	5	n = 3		
14:0*	4.2 ± 2.4	0.8 ± 0.0	1.3 ± 0.6	0.4 ± 0.2	0.9 ± 0.4	7.612	0.015
16:0	11.2 ± 2.9	7.7 ± 0.9	9.3 ± 1.3	14.7 ± 2.2	12.6 ± 1.7	2.456	0.139
16:1n-7*	2.8 ± 1.0	0.7 ± 0.1	1.4 ± 0.2	0.6 ± 0.1	0.8 ± 0.2	7.436	0.016
18:0	2.7 ± 1.8	5.1 ± 0.0	3.7 ± 0.4	5.5 ± 1.0	8.2 ± 1.0	3.798	0.072
18:1n-9	3.5 ± 1.7	1.5 ± 0.1	1.3 ± 0.1	2.8 ± 0.6	2.5 ± 0.6	0.495	0.493
18:3n-3	1.1 ± 0.2	3.5 ± 0.6	3.5 ± 1.1	0.5 ± 0.1	0.8 ± 0.2	0.679	0.424
20:1n-11*	2.8 ± 0.1	1.3 ± 0.0	1.1 ± 0.1	0.6 ± 0.1	1.1 ± 0.5	6.982	0.019
20:1n-9	9.4 ± 2.6	1.8 ± 0.1	1.9 ± 0.5	1.5 ± 0.1	4.0 ± 1.1	3.053	0.102
20:1n-7*	5.9 ± 2.3	4.3 ± 0.0	1.9 ± 0.1	2.6 ± 0.2	3.9 ± 1.3	5.417	0.035
$\Delta 5,11-20:2$	1.3 ± 0.9	2.5 ± 0.1	0.6 ± 0.2	1.6 ± 0.5	5.5 ± 0.3	0.389	0.543
20:4n-6*	3.2 ± 0.9	3.8 ± 0.2	4.3 ± 3.0	15.1 ± 4.1	8.3 ± 2.5	6.290	0.025
20:5n-3*	25.8 ± 12.4	15.5 ± 2.8	7.4 ± 3.1	13.7 ± 2.8	18.4 ± 0.5	4.647	0.049
Δ7,13-22:2*	0.6 ± 0.2	2.6 ± 0.4	10.8 ± 4.7	8.8 ± 2.1	3.2 ± 1.1	11.629	0.004
$\Delta 7,15-22:2$	0.3 ± 0.2	1.8 ± 0.4	0.7 ± 0.1	2.5 ± 0.4	1.1 ± 0.4	1.249	0.282
22:4n-6*	3.1 ± 1.8	4.1 ± 0.1	0.9 ± 0.5	0.6 ± 0.1	1.6 ± 1.5	7.726	0.015
22:5n-6	0.1 ± 0.1	3.5 ± 0.1	18.7 ± 5.9	0.6 ± 0.2	2.8 ± 1.0	0.504	0.489
22:5n-3*	2.5 ± 1.1	8.5 ± 1.9	1.4 ± 0.6	0.9 ± 0.2	2.0 ± 0.5	11.292	0.005
22:6n-3	8.5 ± 2.1	8.3 ± 0.0	12.0 ± 3.8	0.6 ± 0.1	11.0 ± 0.7	0.274	0.609
24:5n-6	0.0 ± 0.0	0.4 ± 0.1	0.5 ± 0.4	4.8 ± 2.8	0.0 ± 0.0	2.548	0.133

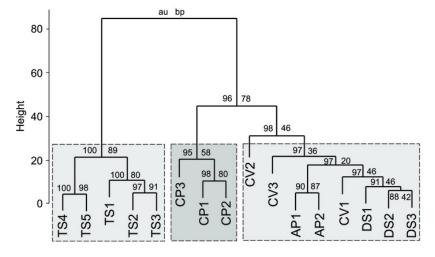

24:6n-3 0.9 ± 0.1 0.4 ± 0.0 0.7 ± 0.5 12.9 ± 2.6 0.3 ± 0.1 2.933 0.109

Figure 1

Results of a cluster analysis of the FA composition data for the five nudibranch species.

The numeral on the branches represent is bootstrap probability (BP) value of a cluster and approximately unbiased (AU) probability values. TS, *Tritonia* sp.; CP, *Colga pacifica*; CV, *Coryphella verrucosa*; DS, *Dendronotus* sp.; AP, *Aeolidia papillosa*.

PeerJ reviewing PDF | (2021:06:63125:0:1:NEW 5 Jul 2021)

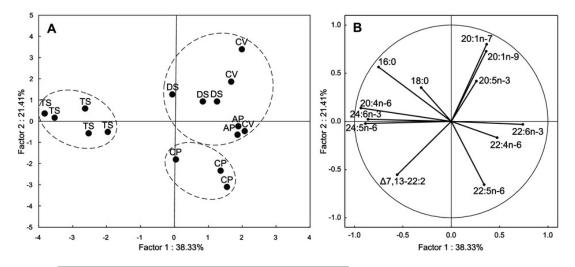


Figure 2

Results of a principal component analysis (PCA) of the FA composition data for the five nudibranch species.

(A) The plot of the first two principal components; variables were the major fatty acids (see Table 1). Ellipses were drawn manually to outline three groups according to results of the cluster analysis (see Figure 1). (B) The projectiosn of 12 variables is shown. TS, *Tritonia* sp.; CP, *Colga pacifica*; CV, *Coryphella verrucosa*; DS, *Dendronotus* sp.; AP, *Aeolidia papillosa*.

PeerJ reviewing PDF | (2021:06:63125:0:1:NEW 5 Jul 2021)