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Gastropod molluscs such as nudibranchs are important members of deep-sea benthic
ecosystems. However, data on the trophic ecology and feeding specialization of these
animals are limited to date. The method of fatty acid trophic markers (FATM) was applied
to determine the dietary preferences of nudibranchs off the Kuril Islands. Fatty acid (FA)
compositions of Dendronotus sp., Tritonia sp., and Colga pacifica collected from deep
waters were analyzed and compared with those of Aeolidia papillosa and Coryphella
verrucosa from the offshore zone. The high level of FATM such as 22:5n-6 and C,,

monounsaturated FAs indicated that Dendronotus sp. preys on sea anemones and/or
anthoathecates hydroids similarly to the-shallow-water A. papillosa and C. verrucosa. The
high percentage of tetracosapolyenoic acids and the ratio 24:6n-3/24:5n-6 indicated that
Tritonia sp. preys on soft corals such as Gersemia rubiformis at a depth of 250 m, but soft
corals of the family Primnoidae may be the main item in the diet of Tritonia sp. at a depth
of 500 m. The high content of A7,13-22:2 and 22:6n-3 shows that C. pacifica can feed on
bryozoans. In C. pacifica, 22:5n-6 may be synthesized intrinsically by the mollusks,
whereas odd-chain and branched saturated FAs originate from bacteria associatec
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Abstract

Gastropod molluscs such as nudibranchs are important members of deep-sea benthic ecosystems.
However, data on the trophic ecology and feeding specialization of these animals are limited to
date. The method of fatty acid trophic markers (FATM) was applied to determine the dietary
preferences of nudibranchs off the Kuril Islands. Fatty acid (FA) compositions of Dendronotus
sp., Tritonia sp., and Colga pacifica collected from deep waters were analyzed and compared
with those of Aeolidia papillosa and Coryphella verrucosa from the offshore zone. The high
level of FATM such as 22:5n-6 and C,, monounsaturated FAs indicated that Dendronotus sp.
preys on sea anemones and/or anthoathecates hydroids similarly to the shallow-water A.
papillosa and C. verrucosa. The high percentage of tetracosapolyenoic acids and the ratio 24:6n-
3/24:5n-6 indicated that Tritonia sp. preys on soft corals such as Gersemia rubiformis at a depth
of 250 m, but soft corals of the family Primnoidae may be the main item in the diet of Tritonia
sp. at a depth of 500 m. The high content of A7,13-22:2 and 22:6n-3 shows that C. pacifica can
feed on bryozoans. In C. pacifica, 22:5n-6 may be synthesized intrinsically by the mollusks,
whereas odd-chain and branched saturated FAs originate from bacteria associated.
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Introduction

Nudibranchs are a group of marine soft-bodied gastropod mollusks (Gastropoda: Nudibranchia
Cuvier, 1817). The greatest diversity of nudibranchs is observed in warm shallow waters,
although nudibranchs occur worldwide, from Arctic to Antarctic regions, with some species
discovered at a depth near 2500 m (Ekimova et al., 2015). Identification of food sources of
nudibranchs is important for understanding their ecology and description of trophic interactions
in marine benthic ecosystems (Ekimova et al., 2019). Nudibranchs are carnivorous, but detritus
may comprise some part of their diet (Ekimova et al., 2019). Nudibranch can feed on soft corals,
reef-building corals, sponges, bryozoans, tunicates, barnacles, sea anemones, jellyfish,
ophiuroids, colonial hydroids, and other nudibranchs (Barnes & Bullough, 1996, McDonald &
Nybakken, 1997, 1999; Goodheart et al., 2017). Many nudibranch species exhibit high dietary
specialization (Hoover et al., 2012; Goodheart et al., 2017; Ekimova et al., 2019; Imbs &
Grigorchuk, 2019). In contrast to shallow-water species, data on feeding of deep-sea nudibranch
species still remain, limited.

Fatty acids (FAs) have been used as biochemical markers to trace predator—prey
relationships in marine ecosystems for more than 40 years (Kelly & Scheibling, 2012;
Braeckman et al., 2015, Calado & Leal, 2015). The method of FA trophic markers (FATM) was
successfully applied to determine possible origins of food in several nudibranch species from
tropical shallow waters (Zhukova, 2014) and the-deep-sea nudibranchs Tritonia tetraquetra,
Dendronotus sp., and D. robustus collected in the Kurile Islands region (Imbs, 2016, Imbs &
Chernyshev, 2019; Imbs & Grigorchuk, 2019). FATM have shown that Dendronotus sp. and T.
tetraquetra prey on different species of cold-water soft corals, while D. robustus may consume
hydrocorals and bryozoans (Imbs & Grigorchuk, 2019). Thus, the difference in the feeding
specializations between two species belonging to the same genus (Dendronotus) and inhabiting
the same waters is confirmed by using FATM.

Waters around the Kuril Islands, with their significant depth differences, are one of the
world’s most productive marine ecosystem (Shuntov et al., 2019). As a continuation of
ecological studies on deep-sea mollusks, FA compositions of total lipids of three nudibranch
species (Colga pacifica, Dendronotus sp., and Tritonia sp.) collected from deep waters (up to
500 m) were analyzed and compared with those of two nudibranch species (Aeolidia papillosa
and Coryphella verrucosa) from the offshore zone (about 20 m) of the Kurile Islands. Dietary
preferences of these five species were studied using the method of FATM. Nudibranchs are a
common animal group of this area and, therefore, are important for trophic relationships in the
ecosystem studied.

Materials and Methods

Sampling and fatty acid preparation
Sampling was conducted aboard the R/V Akademik Oparin near Simushir Island (Kuril Islands,
Sea of Okhotsk, 47°08' N, 152°14" E) in July 2019. Nudibranch specimens were collected at a
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depth of 20 m by SCUBA and at the depth of 250-500 m by dredging. The-samples were
represented by two families: Polyceridae (Colga pacifica (Bergh, 1894)) and Aeolidiidae
(deolidia papillosa (Linnaeus, 1761), Coryphella verrucosa (M. Sars, 1829), Tritonia sp., and
Dendronotus sp.). Lipids were extracted from the specimens as described by Bligh and Dyed,
(1959). FA methyl ethers (FAME) were prepared using the method of Carreau and Dubacq
(1978) and were purified by preparative thin-layer chromatography in benzene. The 4,4-
dimethyloxazoline (DMOX) derivatives of FA were prepared according to the method of
Svetashev (2011).

Fatty acid analysis

A gas chromatography analysis of FAME was conducted with a GC-2010 chromatograph
(Shimadzu, Kyoto, Japan) with a flame ionization detector. An Equity-5 (Supelco, Bellefonte,
USA) capillary column (30 m x 0.25 mm ID, film thickness 25 um) was held for 2 min at 170
°C, then heated with a 2 °C - min~!' ramp to 240 °C that was held for 5 min. The injector (250 °C)
and detector (260 °C) temperatures were constant. Helium was used as the carrier gas at a linear
velocity of 30 cm - s7!. Identification of FAs was confirmed by gas chromatography—mass
spectrometry (GC—MS) of their methyl esters and DMOX derivatives on a GCMS-2010 Ultra
instrument (Shimadzu, Kyoto, Japan) (electron impact at 70 eV) and a MDN-5s (Supelco,
Bellefonte, USA) capillary column (30 m x 0.25 mm ID). Carrier gas was He at 30 cm - s7!. The
GC-MS analysis of FAME was performed at 160 °C with a 2 °C - min~! ramp to 240 °C that
was held for 20 min. The injector and detector temperatures were 250 °C. GC—-MS of DMOX
derivatives was performed at 210 °C with a 3 °C - min~! ramp to 270 °C that was held for 40
min. The injector and detector temperatures were 270 °C. Spectra were compared with the NIST
library and the online FA mass spectra archive website (Christie, 2021).

Statistical analysis

Significance of differences in mean contents of FA between the nudibranch species was tested by
one-way analysis of variance (ANOVA 1. Raw dat . ere used after being tested for the
homogeneity of variances (Levene’s test) and normality of data distribution (Shapiro—Wilk test).
Significant differences between levels were examined post hoc with Tukey—Kramer HSD
multiple comparisons test. ! ¢ represent differences between the nudibranch species, the
variables (square roots of FA contents) were included in principal components analyses (PCA).
All statistical analyses were performed using STATISTICA 5.1 (StatSoft, Inc., USA). A
statistical probability of p < 0.05 was considered significant. Values are represented as m 2 +
standard deviation. Cluster analysis was performed using Wada's method (Minimum variance
method) and the pvclust( ) function in the pvclust package provides p-values for hierarchical
clustering based on multiscale bootstrap resampling (Suzuki & Shimodaira, 2006) available in
the R-Studio software (R-Tools Technology, Canada).

Results
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The full FA composition of total lipids in the five nudibranch species from different depths is
summarized in Table S1. The average contents of the major 20 FAs are shown in Table 1. The
main saturated FA (SFA) was 16:0, and the major monounsaturated FAs (MUFAs) were 20:1n-9
and 20:1n-7. Lipids of all nudibranchs contained branched and odd-chain SFAs; the highest
levels of these acids were detected in some specimens of A. papillosa and C. pacifica (up to 11
and 17% of total FAs, respectively).

Acids 20:4n-6, 20:5n-3, and 22:6n-3 dominated polyunsaturated FAs (PUFAs) of the
nudibranchs studied except for Tritonia sp. The lowest level of 22:6n-3 (HSD test, p = 0.0004)
and considerable amounts (£, = 22.2735, p < 0.0001) of very-long-chain tetracosapolyenoic
acids (TPA), 24:5n-6 and 24:6n-3, were found in Tritonia sp. The ratio 24:6n-3/24:5n-6 in the
specimens from a depth of 450-516 m (7.0 + 2.2) was significantly higher (£, 3 = 12.7326, p =
0.0376) than that in the specimens from a depth of 210247 m (1.3 £ 0.1). The level of 20:5n-3
was significantly lower (HSD test, p = 0.012) in the deep-sea C. pacifica than that in the shallow-
water C. verrucosa. Unusually high percentages of 22:5n-6 were detected in two specimens of C.
pacifica (9.6 and 18.6% of total FAs). 1 papillosa contained the highest level of 22:5n-3.
Several non-methylene-interrupted FAs (NMI FAs) were present in total FAs of all mollusk
species. The highest level (HSD test, p = 0.0007) of A5,11-20:2 in the Tritonia sp. specimens
distinguished them from other nudibranchs. All species (except for C. verrucosa) contained
noticeable amounts of A7,13-22:2.

Analyses of the FA composition data (Table 1) by ANOVA identified certain FAs that
were mainly responsible for the difference between species from deep and shallow waters.
Compared to the-shallow-water species, the-deep-sea ones contained significantly higher (p <
0.05) levels of 20:4n-6 and A7,15-22:2, but significantly lower (p < 0.05) levels of 14:0, 16:1n-7,
20:1n-11, 20:1n-7, 20:5n-3, 22:4n-6, and 22:5n-3. No differences (p > 0.05) were found for other
FAs listed in Table 1.

Results of a cluster analysis of the FA composition data (Table 1) for the five nudibranch
species are shown in Figure 1. All the-studied specimens were subdivided into three groups: the
first and the second groups consisted by, deep-sea specimens of Tritonia sp. and C. pacifica,
respectively, and the third group combined specimens of the deep-sea Dendronotus sp. with the
shallow-water species 4. papillosa and C. verrucosa.

Then;the FAs listed in Table 1 were used as variables for PCA. In this analysis, the first
two PCA components explained 50% of the variance of the FA composition data. Figure 2A
shows that Tritonia sp. is clearly separated from all other nudibranch species along the first PCA
component, linking positively with 20:4n-6, 24:5n-6, and 24:6n-3, and negatively with 22:4n-6
and 22:6n-3 (Fig. 2B). The second PCA component separates C. pacifica from the group of
Dendronotus sp., A. papillosa, and C. verrucosa (Fig. 2A). Figure 2B shows that the level of
SFAs (16:0 and 18:0), MUFASs (20:1n-9 and 20:1n-7), and 20:5n-3 vs. the level of 22:5n-6 and
NMI FAs is significant for this separation. The level of 22:5n-6 was significantly higher (£ 14 =
6.555, p = 0.023) in the group of Dendronotus sp., A. papillosa, and C. verrucosa than that in
Tritonia sp. and C. pacifica. The PCA results (Fig. 1) agree with the results of cluster analysis
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(Fig. 2) and show a significant difference in FA profiles between the-deep-sea Tritonia sp., C.
pacifica, and the two shallow-water species. Both statistical methods confirm that the FA
profiles of the deep-sea Dendronotus sp. and the shallow-water species are similar.

Discussion

According to literature data, the nudibranchs of the genera Aeolidia, Coryphella, and
Dendronotus prey on different Cnidaria greups (Hall & Todd, 1986). The nudibranch 4.
papillosa is known to prey on sea anemones and consume their nematocyst (stinging capsular
organelles) to protect against other predators (Hall & Todd, 1986). The considerable levels of
22:5n-6 and C,.,, MUFASs are characteristic for the FA composition of shallow- and deep-water
sea anemones (Kiyashko et al., 2014, Revel et al., 2016). Obviously, the noticeable amounts of
22:5n-6 and Cyy MUFAs that we found in A. papillosa priginate from sea anemone lipids
consumed by this nudibranch species. Different feeding specializations on polyps of scyphoid
jellyfish (Hernroth & Grondahl, 1985; Ostman, 1997), soft corals (Sebens, 1983, Allmon &
Sebens, 1988), and hydroids of the orders Anthoathecata (the genera Tubularia, Clava, and
Hydractinia) and Leptothecata (the genus Obelia) (Kuzirian, 1979) were reported for another
shallow-water nudibranch, C. verrucosa. Very-long-chain C,4 PUFAs are FATM of soft corals
and jellyfishes (Svetashev & Vysotskii, 1998, Imbs et al. 2010, 2016, Svetashev, 2019). TPA are
proposed as biomarkers for marine food web studies (Drazen et al. 2008, Blanchet-Aurigny et al.
2015). Trace amounts of C,4 PUFAs in C. verrucosa indicate that this species from the Kuril
Islands probably preys on anthoathecates hydroids, which may be a source of nematocysts
(Frick, 2003) and an explanation for the increasing levels of 22:5n-6 and C,y MUFAs in C-
yerrucose,

The radula morphology in Dendronotus sp. is very similar to that of Dendronotus lacteus
and D. rufus and has a large number of knife-like lateral teeth that nudibranch may use for biting
off soft tissues of polyps (Ekimova et al., 2019). There is some evidence that D. lacteus and D.
rufus feed on hydroids of the family Sertulariidae (order Leptothecata), scyphistomaes, and
anemones (Ekimova et al., 2019). Considering the close similarity between the FATM profiles of
A. papillosa, C. verrucosa, and Dendronotus sp., we assume that the increased 22:5n-6 and Cy
MUFAs levels in the deep-sea nudibranch Dendronotus sp. from the Sea of Okhotsk jindicate its
preying on sea anemones and/or anthoathecates hydroids, similarly to the shallow-water species;
A. papillosa and C. verrucose.

Several species of the genus Tritonia are known to be obligate predators feeding on soft
corals (Allmon & Sebens, 1988, Goddard, 2006). Recently, an analysis of the FA composition of
the nudibranch Tritonia tetraquetra preying on soft corals (the Sea of Okhotsk) has shown an
intensive transfer of a soft coral FATM (24:5n-6 and 24:6n-3) from prey to predator (/mbs,
2016). The ratio 24:6n-3/24:5n-6 was compared between T. fetraquetra (1.1 = 0.2) and several
soft coral species. As a result, the soft coral Gersemia rubiformis was suggested as most
probable food source of 7. tetraquetra. (Imbs, 2016). The high percentage of TPA in the deep-
sea nudibranch Tritonia sp. also indicates preying on soft corals. Based on the ratio 24:6n-
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3/24:5n-6, we can assume that Trifonia sp. at a depth of 250 m mainly feed on the Gersemia soft
corals similarly to 7. fetraquetra. The significant increase in the ratio 24:6n-3/24:5n-6 in Tritonia
sp. with increasing depth indicates a change in the taxonomic group of soft corals consumed.
Among ofthe deep-sea soft corals of the Sea of Okhotsk, the high ratio 24:6n-3/24:5n-6 is
characteristic only-of soft corals of the family Primnoidae (Imbs et al., 2016) thatcan-be-the
major food source of Tritonia sp. at a depth of 500 m.

To our knowledge, food sources of C. pacifica have not been identified to date. There is
only a brief mention that species of the genus Colga can feed on members of the phylum
Bryozoa (Grischenko & Martynov, 1997; Behrens, 2004). A noticeable level of A7,13-22:2 and
22:6n-3 has been detected in total FAs of the bryozoan Dendrobeania flustroides from the Sea of
Okhotsk (Demidkova, 2010). The high content of these two FAs in C. pacifica confirms that this
deep-sea species ean feed on bryozoans. Other characteristic FAs of C. pacifica such as 22:5n-6,
odd-chain and branched SFAs may originate from own biosynthesis or associated organisms.

The unexpectedly high content of 22:5n-6 found in C. pacifica may be a result of high
activity of C, elongase and A4 desaturase that convert 20:4n-6 into 22:5n-6. Such activity has
been supposed in the hydrocoral Millepora to explain the extremely high levels of 22:5n-6 and
22:6n-3 (Imbs et al., 2019, 2021). The relatively low level of 20:5n-3 in C. pacifica can be due to
either conversion of 20:5n-3 to 22:6n-3 or a deficiency ef dietary 20:5n-3 in deep waters
(Kiyashko et al., 2014). Odd-chain and branched SFAs in marine invertebrates indicate the
presence of associated bacteria (Kharlamenko & Kiyashko 2018). Various bacteria have been
found in visceral organs of nudibranchs (Zhukova & Eliseikina, 2012). An abundant bacterial
community may be a cause of the highest level of “bacterial” SFAs in C. pacifica.

Conclusions

FA profiles of five nudibranch mollusk species belonging to the families Polyceridae,
Tritoniidae, Dendronotidae, Coryphellidae, and Aeolidiidae, collected near Simushir Island, Sea
of Okhotsk, were determined. The feeding specializations of the-deep- and shallow-water species
were compared on the base of their FATM gompesitions. The different species from different
depths, but with similar food sources, showed similar FATM profiles. Thespecies composition
of soft corals consumed by Tritonia sp. changes with increasing depth. Deep-sea nudibranchs of
the genus Colga are most promising objects for future studies, The proportion between dietary

and biosynthetic origins-in their PUFAs should te be assessed.
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Figure titles and legends

Figure 1 Results of a cluster analysis of the FA composition data for the five nudibranch
species. The numerals on the branches represent are bootstrap probability (BP) value of a cluster
and approximately unbiased (AU) probability values. TS, Tritonia sp.; CP, Colga pacifica; CV,
Coryphella verrucosa; DS, Dendronotus sp.; AP, Aeolidia papillosa.

Figure 2 Results of a principal component analysis (PCA) of the FA composition data for
the five nudibranch species. (A) The plot of the first two principal components; variables were
the major fatty acids (see Table 1). Ellipses were drawn manually to outline three groups
according to results of the cluster analysis (see Figure 1). (B) The projectiosn of 12 variables is
shown. TS, Tritonia sp.; CP, Colga pacifica; CV, Coryphella verrucosa; DS, Dendronotus sp.;
AP, Aeolidia papillosa.
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Table 1l(on next page)
Fatty acid composition (% of total FAs) of nudibranch molluscs.

The species were collected at different depths near Simushir Island (Kuril Islands, Sea of
Okhotsk). Values are means + SD; asterisks indicate significant differences (p < 0.05)

between the groups of shallow-water species (C. verrucosa and A. papillosa) and deep-sea

species (C. pacifica, Tritonia sp., and Dendronotus sp.).
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TABLE 1 Fatty acid composition (% of total FAs) of nudibranch molluscs. The species were collected at different depths near
Simushir Island (Kuril Islands, Sea of Okhotsk). Values are means + SD; asterisks indicate significant differences (p < 0.05) between
the groups of shallow-water species (C. verrucosa and A. papillosa) and deep-sea species (C. pacifica, Tritonia sp., and Dendronotus

sp.).

Fatty acids Species names and sampling depths Comparison of shallow- and deep-
Shallow-water group Deep-water group water groups by ANOVA
Coryphella Aeolidia Colga pacifica, Tritonia sp., Dendronotus Fia p
verrucosa, 0-20  papillosa, 0-20 285-304 m,n= 210-516 m,n=sp.,210-516 m,
m,n=3 m,n=2 3 5 n=3
14:0* 42+24 0.8+0.0 1.3+0.6 04+0.2 09+04 7.612 0.015
16:0 11.2+2.9 7.7+0.9 93+13 147+£2.2 12.6 £ 1.7 2.456 0.139
16:1n-7* 2.8+1.0 0.7+0.1 1.4+0.2 0.6+0.1 0.8+0.2 7.436 0.016
18:0 2.7+1.8 51+0.0 3.7+£04 55+1.0 82+1.0 3.798 0.072
18:1n-9 35+1.7 1.5+0.1 1.3+0.1 2.8+0.6 25+0.6 0.495 0.493
18:3n-3 1.1£0.2 35+0.6 3.5+ 1.1 0.5+0.1 0.8+0.2 0.679 0.424
20:1n-11%* 2.8+0.1 1.3+£0.0 1.1+0.1 0.6+0.1 1.1+0.5 6.982 0.019
20:1n-9 94+26 1.8+0.1 1.9+0.5 1.5+0.1 40=+1.1 3.053 0.102
20:1n-7%* 59+23 43+0.0 1.9+0.1 2.6+0.2 39+1.3 5.417 0.035
A5,11-20:2 1.3+0.9 25+0.1 0.6+0.2 1.6+0.5 55+0.3 0.389 0.543
20:4n-6* 32+09 3.8+0.2 43+3.0 15.1+4.1 83+£25 6.290 0.025
20:5n-3* 258+ 12.4 15.5+2.8 7.4+3.1 13.7+2.8 184+0.5 4.647 0.049
A7,13-22:2*%  0.6+0.2 2.6+0.4 10.8 £ 4.7 8.8+2.1 32+1.1 11.629 0.004
A7,15-22:2 03+0.2 1.8+0.4 0.7+0.1 25+04 1.1+04 1.249 0.282
22:4n-6* 3.1+1.8 4.1+0.1 09+0.5 0.6 +0.1 1.6+1.5 7.726 0.015
22:5n-6 0.1+0.1 3.5+0.1 18.7+5.9 0.6+0.2 2.8+1.0 0.504 0.489
22:5n-3* 25+1.1 85+19 1.4+0.6 09+0.2 20+0.5 11.292 0.005
22:6n-3 85+2.1 83+0.0 12.0+3.8 0.6+0.1 11.0+0.7 0.274 0.609

24:5n-6 0.0+£0.0 0.4+£0.1 0.5+04 48+28 0.0+0.0 2.548 0.133
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Figure 1

Results of a cluster analysis of the FA composition data for the five nudibranch species.

The numeral on the branches represent is bootstrap probability (BP) value of a cluster and
approximately unbiased (AU) probability values. TS, Tritonia sp.; CP, Colga pacifica; CV,

Coryphella verrucosa; DS, Dendronotus sp.; AP, Aeolidia papillosa.
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Figure 2

Results of a principal component analysis (PCA) of the FA composition data for the five
nudibranch species.

(A) The plot of the first two principal components; variables were the major fatty acids (see
Table 1). Ellipses were drawn manually to outline three groups according to results of the
cluster analysis (see Figure 1). (B) The projectiosn of 12 variables is shown. TS, Tritonia sp.;

CP, Colga pacifica; CV, Coryphella verrucosa; DS, Dendronotus sp.; AP, Aeolidia papillosa.
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