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Gastropod molluscs such as nudibranchs are important members of deep-sea benthic
ecosystems. However, data on the trophic ecology and feeding specialization of these
animals are limited to date. The method of fatty acid trophic markers (FATM) was applied
to determine the dietary preferences of nudibranchs off the Kuril Islands. Fatty acid (FA)
compositions of Dendronotus sp., Tritonia sp., and Colga pacifica collected from deep
waters were analyzed and compared with those of Aeolidia papillosa and Coryphella
verrucosa from the offshore zone. The high level of FATM such as 22:5n-6 and C20

monounsaturated FAs indicated that Dendronotus sp. preys on sea anemones and/or
anthoathecates hydroids similarly to the shallow-water A. papillosa and C. verrucosa. The
high percentage of tetracosapolyenoic acids and the ratio 24:6n-3/24:5n-6 indicated that
Tritonia sp. preys on soft corals such as Gersemia rubiformis at a depth of 250 m, but soft
corals of the family Primnoidae may be the main item in the diet of Tritonia sp. at a depth
of 500 m. The high content of Δ7,13-22:2 and 22:6n-3 shows that C. pacifica can feed on
bryozoans. In C. pacifica, 22:5n-6 may be synthesized intrinsically by the mollusks,
whereas odd-chain and branched saturated FAs originate from bacteria associated.
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22 Abstract

23 Gastropod molluscs such as nudibranchs are important members of deep-sea benthic ecosystems. 

24 However, data on the trophic ecology and feeding specialization of these animals are limited to 

25 date. The method of fatty acid trophic markers (FATM) was applied to determine the dietary 

26 preferences of nudibranchs off the Kuril Islands. Fatty acid (FA) compositions of Dendronotus 

27 sp., Tritonia sp., and Colga pacifica collected from deep waters were analyzed and compared 

28 with those of Aeolidia papillosa and Coryphella verrucosa from the offshore zone. The high 

29 level of FATM such as 22:5n-6 and C20 monounsaturated FAs indicated that Dendronotus sp. 

30 preys on sea anemones and/or anthoathecates hydroids similarly to the shallow-water A. 

31 papillosa and C. verrucosa. The high percentage of tetracosapolyenoic acids and the ratio 24:6n-

32 3/24:5n-6 indicated that Tritonia sp. preys on soft corals such as Gersemia rubiformis at a depth 

33 of 250 m, but soft corals of the family Primnoidae may be the main item in the diet of Tritonia 

34 sp. at a depth of 500 m. The high content of Δ7,13-22:2 and 22:6n-3 shows that C. pacifica can 

35 feed on bryozoans. In C. pacifica, 22:5n-6 may be synthesized intrinsically by the mollusks, 

36 whereas odd-chain and branched saturated FAs originate from bacteria associated.

37

38 Subjects Biochemistry, Marine Biology, Aquatic and Marine Chemistry

39 Keywords Nudibranchia, Fatty acids, Trophic markers, Food sources, Food webs
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40

41 Introduction

42 Nudibranchs are a group of marine soft-bodied gastropod mollusks (Gastropoda: Nudibranchia 

43 Cuvier, 1817). The greatest diversity of nudibranchs is observed in warm shallow waters, 

44 although nudibranchs occur worldwide, from Arctic to Antarctic regions, with some species 

45 discovered at a depth near 2500 m (Ekimova et al., 2015). Identification of food sources of 

46 nudibranchs is important for understanding their ecology and description of trophic interactions 

47 in marine benthic ecosystems (Ekimova et al., 2019). Nudibranchs are carnivorous, but detritus 

48 may comprise some part of their diet (Ekimova et al., 2019). Nudibranch can feed on soft corals, 

49 reef-building corals, sponges, bryozoans, tunicates, barnacles, sea anemones, jellyfish, 

50 ophiuroids, colonial hydroids, and other nudibranchs (Barnes & Bullough, 1996; McDonald & 

51 Nybakken, 1997, 1999; Goodheart et al., 2017). Many nudibranch species exhibit high dietary 

52 specialization (Hoover et al., 2012; Goodheart et al., 2017; Ekimova et al., 2019; Imbs & 

53 Grigorchuk, 2019). In contrast to shallow-water species, data on feeding of deep-sea nudibranch 

54 species still remain limited.

55 Fatty acids (FAs) have been used as biochemical markers to trace predator–prey 

56 relationships in marine ecosystems for more than 40 years (Kelly & Scheibling, 2012; 

57 Braeckman et al., 2015; Calado & Leal, 2015). The method of FA trophic markers (FATM) was 

58 successfully applied to determine possible origins of food in several nudibranch species from 

59 tropical shallow waters (Zhukova, 2014) and the deep-sea nudibranchs Tritonia tetraquetra, 

60 Dendronotus sp., and D. robustus collected in the Kurile Islands region (Imbs, 2016; Imbs & 

61 Chernyshev, 2019; Imbs & Grigorchuk, 2019). FATM have shown that Dendronotus sp. and T. 

62 tetraquetra prey on different species of cold-water soft corals, while D. robustus may consume 

63 hydrocorals and bryozoans (Imbs & Grigorchuk, 2019). Thus, the difference in the feeding 

64 specializations between two species belonging to the same genus (Dendronotus) and inhabiting 

65 the same waters is confirmed by using FATM.

66 Waters around the Kuril Islands, with their significant depth differences, are one of the 

67 world’s most productive marine ecosystem (Shuntov et al., 2019). As a continuation of 

68 ecological studies on deep-sea mollusks, FA compositions of total lipids of three nudibranch 

69 species (Colga pacifica, Dendronotus sp., and Tritonia sp.) collected from deep waters (up to 

70 500 m) were analyzed and compared with those of two nudibranch species (Aeolidia papillosa 

71 and Coryphella verrucosa) from the offshore zone (about 20 m) of the Kurile Islands. Dietary 

72 preferences of these five species were studied using the method of FATM. Nudibranchs are a 

73 common animal group of this area and, therefore, are important for trophic relationships in the 

74 ecosystem studied.

75

76 Materials and Methods

77 Sampling and fatty acid preparation

78 Sampling was conducted aboard the R/V Akademik Oparin near Simushir Island (Kuril Islands, 

79 Sea of Okhotsk, 47°08ʹ N, 152°14ʹ E) in July 2019. Nudibranch specimens were collected at a 
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80 depth of 20 m by SCUBA and at the depth of 250–500 m by dredging. The samples were 

81 represented by two families: Polyceridae (Colga pacifica (Bergh, 1894)) and Aeolidiidae 

82 (Aeolidia papillosa (Linnaeus, 1761), Coryphella verrucosa (M. Sars, 1829), Tritonia sp., and 

83 Dendronotus sp.). Lipids were extracted from the specimens as described by Bligh and Dyed 

84 (1959). FA methyl ethers (FAME) were prepared using the method of Carreau and Dubacq 

85 (1978) and were purified by preparative thin-layer chromatography in benzene. The 4,4-

86 dimethyloxazoline (DMOX) derivatives of FA were prepared according to the method of 

87 Svetashev (2011).

88

89 Fatty acid analysis

90 A gas chromatography analysis of FAME was conducted with a GC-2010 chromatograph 

91 (Shimadzu, Kyoto, Japan) with a flame ionization detector. An Equity-5 (Supelco, Bellefonte, 

92 USA) capillary column (30 m × 0.25 mm ID, film thickness 25 µm) was held for 2 min at 170 

93 °C, then heated with a 2 °C · min–1 ramp to 240 °C that was held for 5 min. The injector (250 °C) 

94 and detector (260 °C) temperatures were constant. Helium was used as the carrier gas at a linear 

95 velocity of 30 cm · s–1. Identification of FAs was confirmed by gas chromatography−mass 
96 spectrometry (GC−MS) of their methyl esters and DMOX derivatives on a GCMS-2010 Ultra 

97 instrument (Shimadzu, Kyoto, Japan) (electron impact at 70 eV) and a MDN-5s (Supelco, 

98 Bellefonte, USA) capillary column (30 m × 0.25 mm ID). Carrier gas was He at 30 cm · s–1. The 

99 GC−MS analysis of FAME was performed at 160 °C with a 2 °C · min–1 ramp to 240 °C that 

100 was held for 20 min. The injector and detector temperatures were 250 °C. GC−MS of DMOX 

101 derivatives was performed at 210 °C with a 3 °C · min–1 ramp to 270 °C that was held for 40 

102 min. The injector and detector temperatures were 270 °C. Spectra were compared with the NIST 

103 library and the online FA mass spectra archive website (Christie, 2021).

104

105 Statistical analysis

106 Significance of differences in mean contents of FA between the nudibranch species was tested by 

107 one-way analysis of variance (ANOVA). Raw data were used after being tested for the 

108 homogeneity of variances (Levene’s test) and normality of data distribution (Shapiro–Wilk test). 

109 Significant differences between levels were examined post hoc with Tukey–Kramer HSD 

110 multiple comparisons test. To represent differences between the nudibranch species, the 

111 variables (square roots of FA contents) were included in principal components analyses (PCA). 

112 All statistical analyses were performed using STATISTICA 5.1 (StatSoft, Inc., USA). A 

113 statistical probability of p < 0.05 was considered significant. Values are represented as mean ± 

114 standard deviation. Cluster analysis was performed using Wada's method (Minimum variance 

115 method) and the pvclust( ) function in the pvclust package provides p-values for hierarchical 

116 clustering based on multiscale bootstrap resampling (Suzuki & Shimodaira, 2006) available in 

117 the R-Studio software (R-Tools Technology, Canada).

118

119 Results
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120 The full FA composition of total lipids in the five nudibranch species from different depths is 

121 summarized in Table S1. The average contents of the major 20 FAs are shown in Table 1. The 

122 main saturated FA (SFA) was 16:0, and the major monounsaturated FAs (MUFAs) were 20:1n-9 

123 and 20:1n-7. Lipids of all nudibranchs contained branched and odd-chain SFAs; the highest 

124 levels of these acids were detected in some specimens of A. papillosa and C. pacifica (up to 11 

125 and 17% of total FAs, respectively).

126 Acids 20:4n-6, 20:5n-3, and 22:6n-3 dominated polyunsaturated FAs (PUFAs) of the 

127 nudibranchs studied except for Tritonia sp. The lowest level of 22:6n-3 (HSD test, p = 0.0004) 

128 and considerable amounts (F4,11 = 22.2735, p < 0.0001) of very-long-chain tetracosapolyenoic 

129 acids (TPA), 24:5n-6 and 24:6n-3, were found in Tritonia sp. The ratio 24:6n-3/24:5n-6 in the 

130 specimens from a depth of 450–516 m (7.0 ± 2.2) was significantly higher (F1,3 = 12.7326, p = 

131 0.0376) than that in the specimens from a depth of 210–247 m (1.3 ± 0.1). The level of 20:5n-3 

132 was significantly lower (HSD test, p = 0.012) in the deep-sea C. pacifica than that in the shallow-

133 water C. verrucosa. Unusually high percentages of 22:5n-6 were detected in two specimens of C. 

134 pacifica (9.6 and 18.6% of total FAs). A. papillosa contained the highest level of 22:5n-3. 

135 Several non-methylene-interrupted FAs (NMI FAs) were present in total FAs of all mollusk 

136 species. The highest level (HSD test, p = 0.0007) of Δ5,11-20:2 in the Tritonia sp. specimens 

137 distinguished them from other nudibranchs. All species (except for C. verrucosa) contained 

138 noticeable amounts of Δ7,13-22:2.

139 Analyses of the FA composition data (Table 1) by ANOVA identified certain FAs that 

140 were mainly responsible for the difference between species from deep and shallow waters. 

141 Compared to the shallow-water species, the deep-sea ones contained significantly higher (p < 

142 0.05) levels of 20:4n-6 and Δ7,15-22:2, but significantly lower (p < 0.05) levels of 14:0, 16:1n-7, 

143 20:1n-11, 20:1n-7, 20:5n-3, 22:4n-6, and 22:5n-3. No differences (p > 0.05) were found for other 

144 FAs listed in Table 1.

145 Results of a cluster analysis of the FA composition data (Table 1) for the five nudibranch 

146 species are shown in Figure 1. All the studied specimens were subdivided into three groups: the 

147 first and the second groups consisted by deep-sea specimens of Tritonia sp. and C. pacifica, 

148 respectively, and the third group combined specimens of the deep-sea Dendronotus sp. with the 

149 shallow-water species A. papillosa and C. verrucosa.

150 Then, the FAs listed in Table 1 were used as variables for PCA. In this analysis, the first 

151 two PCA components explained 50% of the variance of the FA composition data. Figure 2A 

152 shows that Tritonia sp. is clearly separated from all other nudibranch species along the first PCA 

153 component, linking positively with 20:4n-6, 24:5n-6, and 24:6n-3, and negatively with 22:4n-6 

154 and 22:6n-3 (Fig. 2B). The second PCA component separates C. pacifica from the group of 

155 Dendronotus sp., A. papillosa, and C. verrucosa (Fig. 2A). Figure 2B shows that the level of 

156 SFAs (16:0 and 18:0), MUFAs (20:1n-9 and 20:1n-7), and 20:5n-3 vs. the level of 22:5n-6 and 

157 NMI FAs is significant for this separation. The level of 22:5n-6 was significantly higher (F1,14 = 

158 6.555, p = 0.023) in the group of Dendronotus sp., A. papillosa, and C. verrucosa than that in 

159 Tritonia sp. and C. pacifica. The PCA results (Fig. 1) agree with the results of cluster analysis 
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160 (Fig. 2) and show a significant difference in FA profiles between the deep-sea Tritonia sp., C. 

161 pacifica, and the two shallow-water species. Both statistical methods confirm that the FA 

162 profiles of the deep-sea Dendronotus sp. and the shallow-water species are similar.

163

164 Discussion

165 According to literature data, the nudibranchs of the genera Aeolidia, Coryphella, and 

166 Dendronotus prey on different Cnidaria groups (Hall & Todd, 1986). The nudibranch A. 

167 papillosa is known to prey on sea anemones and consume their nematocyst (stinging capsular 

168 organelles) to protect against other predators (Hall & Todd, 1986). The considerable levels of 

169 22:5n-6 and C20-22 MUFAs are characteristic for the FA composition of shallow- and deep-water 

170 sea anemones (Kiyashko et al., 2014; Revel et al., 2016). Obviously, the noticeable amounts of 

171 22:5n-6 and C20 MUFAs that we found in A. papillosa originate from sea anemone lipids 

172 consumed by this nudibranch species. Different feeding specializations on polyps of scyphoid 

173 jellyfish (Hernroth & Grondahl, 1985; Ostman, 1997), soft corals (Sebens, 1983; Allmon & 

174 Sebens, 1988), and hydroids of the orders Anthoathecata (the genera Tubularia, Clava, and 

175 Hydractinia) and Leptothecata (the genus Obelia) (Kuzirian, 1979) were reported for another 

176 shallow-water nudibranch, C. verrucosa. Very-long-chain C24 PUFAs are FATM of soft corals 

177 and jellyfishes (Svetashev & Vysotskii, 1998; Imbs et al. 2010, 2016; Svetashev, 2019). TPA are 

178 proposed as biomarkers for marine food web studies (Drazen et al. 2008; Blanchet-Aurigny et al. 

179 2015). Trace amounts of C24 PUFAs in C. verrucosa indicate that this species from the Kuril 

180 Islands probably preys on anthoathecates hydroids, which may be a source of nematocysts 

181 (Frick, 2003) and an explanation for the increasing levels of 22:5n-6 and C20 MUFAs in C. 

182 verrucosa.

183 The radula morphology in Dendronotus sp. is very similar to that of Dendronotus lacteus 

184 and D. rufus and has a large number of knife-like lateral teeth that nudibranch may use for biting 

185 off soft tissues of polyps (Ekimova et al., 2019). There is some evidence that D. lacteus and D. 

186 rufus feed on hydroids of the family Sertulariidae (order Leptothecata), scyphistomaes, and 

187 anemones (Ekimova et al., 2019). Considering the close similarity between the FATM profiles of 

188 A. papillosa, C. verrucosa, and Dendronotus sp., we assume that the increased 22:5n-6 and C20 

189 MUFAs levels in the deep-sea nudibranch Dendronotus sp. from the Sea of Okhotsk indicate its 

190 preying on sea anemones and/or anthoathecates hydroids, similarly to the shallow-water species, 

191 A. papillosa and C. verrucose.

192 Several species of the genus Tritonia are known to be obligate predators feeding on soft 

193 corals (Allmon & Sebens, 1988; Goddard, 2006). Recently, an analysis of the FA composition of 

194 the nudibranch Tritonia tetraquetra preying on soft corals (the Sea of Okhotsk) has shown an 

195 intensive transfer of a soft coral FATM (24:5n-6 and 24:6n-3) from prey to predator (Imbs, 

196 2016). The ratio 24:6n-3/24:5n-6 was compared between T. tetraquetra (1.1 ± 0.2) and several 

197 soft coral species. As a result, the soft coral Gersemia rubiformis was suggested as most 

198 probable food source of T. tetraquetra. (Imbs, 2016). The high percentage of TPA in the deep-

199 sea nudibranch Tritonia sp. also indicates preying on soft corals. Based on the ratio 24:6n-
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200 3/24:5n-6, we can assume that Tritonia sp. at a depth of 250 m mainly feed on the Gersemia soft 

201 corals similarly to T. tetraquetra. The significant increase in the ratio 24:6n-3/24:5n-6 in Tritonia 

202 sp. with increasing depth indicates a change in the taxonomic group of soft corals consumed. 

203 Among of the deep-sea soft corals of the Sea of Okhotsk, the high ratio 24:6n-3/24:5n-6 is 

204 characteristic only of soft corals of the family Primnoidae (Imbs et al., 2016) that can be the 

205 major food source of Tritonia sp. at a depth of 500 m. 

206 To our knowledge, food sources of C. pacifica have not been identified to date. There is 

207 only a brief mention that species of the genus Colga can feed on members of the phylum 

208 Bryozoa (Grischenko & Martynov, 1997; Behrens, 2004). A noticeable level of Δ7,13-22:2 and 

209 22:6n-3 has been detected in total FAs of the bryozoan Dendrobeania flustroides from the Sea of 

210 Okhotsk (Demidkova, 2010). The high content of these two FAs in C. pacifica confirms that this 

211 deep-sea species can feed on bryozoans. Other characteristic FAs of C. pacifica such as 22:5n-6, 

212 odd-chain and branched SFAs may originate from own biosynthesis or associated organisms.

213 The unexpectedly high content of 22:5n-6 found in C. pacifica may be a result of high 

214 activity of C2 elongase and Δ4 desaturase that convert 20:4n-6 into 22:5n-6. Such activity has 

215 been supposed in the hydrocoral Millepora to explain the extremely high levels of 22:5n-6 and 

216 22:6n-3 (Imbs et al., 2019, 2021). The relatively low level of 20:5n-3 in C. pacifica can be due to 

217 either conversion of 20:5n-3 to 22:6n-3 or a deficiency of dietary 20:5n-3 in deep waters 

218 (Kiyashko et al., 2014). Odd-chain and branched SFAs in marine invertebrates indicate the 

219 presence of associated bacteria (Kharlamenko & Kiyashko 2018). Various bacteria have been 

220 found in visceral organs of nudibranchs (Zhukova & Eliseikina, 2012). An abundant bacterial 

221 community may be a cause of the highest level of “bacterial” SFAs in C. pacifica.

222

223 Conclusions

224 FA profiles of five nudibranch mollusk species belonging to the families Polyceridae, 

225 Tritoniidae, Dendronotidae, Coryphellidae, and Aeolidiidae, collected near Simushir Island, Sea 

226 of Okhotsk, were determined. The feeding specializations of the deep- and shallow-water species 

227 were compared on the base of their FATM compositions. The different species from different 

228 depths, but with similar food sources, showed similar FATM profiles. The species composition 

229 of soft corals consumed by Tritonia sp. changes with increasing depth. Deep-sea nudibranchs of 

230 the genus Colga are most promising objects for future studies. The proportion between dietary 

231 and biosynthetic origins in their PUFAs should to be assessed. 

232
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438 Figure titles and legends

439 Figure 1  Results of a cluster analysis of the FA composition data for the five nudibranch 
440 species. The numerals on the branches represent are bootstrap probability (BP) value of a cluster 

441 and approximately unbiased (AU) probability values. TS, Tritonia sp.; CP, Colga pacifica; CV, 

442 Coryphella verrucosa; DS, Dendronotus sp.; AP, Aeolidia papillosa.

443

444 Figure 2  Results of a principal component analysis (PCA) of the FA composition data for 
445 the five nudibranch species. (A) The plot of the first two principal components; variables were 

446 the major fatty acids (see Table 1). Ellipses were drawn manually to outline three groups 

447 according to results of the cluster analysis (see Figure 1). (B) The projectiosn of 12 variables is 

448 shown. TS, Tritonia sp.; CP, Colga pacifica; CV, Coryphella verrucosa; DS, Dendronotus sp.; 

449 AP, Aeolidia papillosa.

450
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Table 1(on next page)

Fatty acid composition (% of total FAs) of nudibranch molluscs.

The species were collected at different depths near Simushir Island (Kuril Islands, Sea of
Okhotsk). Values are means ± SD; asterisks indicate significant differences (p < 0.05)
between the groups of shallow-water species (C. verrucosa and A. papillosa) and deep-sea
species (C. pacifica, Tritonia sp., and Dendronotus sp.).

PeerJ reviewing PDF | (2021:06:63125:0:1:NEW 5 Jul 2021)

Manuscript to be reviewed



1 TABLE 1  Fatty acid composition (% of total FAs) of nudibranch molluscs. The species were collected at different depths near 

2 Simushir Island (Kuril Islands, Sea of Okhotsk). Values are means ± SD; asterisks indicate significant differences (p < 0.05) between 

3 the groups of shallow-water species (C. verrucosa and A. papillosa) and deep-sea species (C. pacifica, Tritonia sp., and Dendronotus 

4 sp.).

5

Species names and sampling depthsFatty acids

Shallow-water group Deep-water group

Comparison of shallow- and deep-

water groups by ANOVA

Coryphella 

verrucosa, 0–20 

m, n = 3

Aeolidia 

papillosa, 0–20 

m, n = 2

Colga pacifica, 

285–304 m, n = 

3

Tritonia sp., 

210–516 m, n = 

5

Dendronotus 

sp., 210–516 m, 

n = 3

F1,14 p

14:0* 4.2 ± 2.4 0.8 ± 0.0 1.3 ± 0.6 0.4 ± 0.2 0.9 ± 0.4 7.612 0.015

16:0 11.2 ± 2.9 7.7 ± 0.9 9.3 ± 1.3 14.7 ± 2.2 12.6 ± 1.7 2.456 0.139

16:1n-7* 2.8 ± 1.0 0.7 ± 0.1 1.4 ± 0.2 0.6 ± 0.1 0.8 ± 0.2 7.436 0.016

18:0 2.7 ± 1.8 5.1 ± 0.0 3.7 ± 0.4 5.5 ± 1.0 8.2 ± 1.0 3.798 0.072

18:1n-9 3.5 ± 1.7 1.5 ± 0.1 1.3 ± 0.1 2.8 ± 0.6 2.5 ± 0.6 0.495 0.493

18:3n-3 1.1 ± 0.2 3.5 ± 0.6 3.5 ± 1.1 0.5 ± 0.1 0.8 ± 0.2 0.679 0.424

20:1n-11* 2.8 ± 0.1 1.3 ± 0.0 1.1 ± 0.1 0.6 ± 0.1 1.1 ± 0.5 6.982 0.019

20:1n-9 9.4 ± 2.6 1.8 ± 0.1 1.9 ± 0.5 1.5 ± 0.1 4.0 ± 1.1 3.053 0.102

20:1n-7* 5.9 ± 2.3 4.3 ± 0.0 1.9 ± 0.1 2.6 ± 0.2 3.9 ± 1.3 5.417 0.035

Δ5,11-20:2 1.3 ± 0.9 2.5 ± 0.1 0.6 ± 0.2 1.6 ± 0.5 5.5 ± 0.3 0.389 0.543

20:4n-6* 3.2 ± 0.9 3.8 ± 0.2 4.3 ± 3.0 15.1 ± 4.1 8.3 ± 2.5 6.290 0.025

20:5n-3* 25.8 ± 12.4 15.5 ± 2.8 7.4 ± 3.1 13.7 ± 2.8 18.4 ± 0.5 4.647 0.049

Δ7,13-22:2* 0.6 ± 0.2 2.6 ± 0.4 10.8 ± 4.7 8.8 ± 2.1 3.2 ± 1.1 11.629 0.004

Δ7,15-22:2 0.3 ± 0.2 1.8 ± 0.4 0.7 ± 0.1 2.5 ± 0.4 1.1 ± 0.4 1.249 0.282

22:4n-6* 3.1 ± 1.8 4.1 ± 0.1 0.9 ± 0.5 0.6 ± 0.1 1.6 ± 1.5 7.726 0.015

22:5n-6 0.1 ± 0.1 3.5 ± 0.1 18.7 ± 5.9 0.6 ± 0.2 2.8 ± 1.0 0.504 0.489

22:5n-3* 2.5 ± 1.1 8.5 ± 1.9 1.4 ± 0.6 0.9 ± 0.2 2.0 ± 0.5 11.292 0.005

22:6n-3 8.5 ± 2.1 8.3 ± 0.0 12.0 ± 3.8 0.6 ± 0.1 11.0 ± 0.7 0.274 0.609

24:5n-6 0.0 ± 0.0 0.4 ± 0.1 0.5 ± 0.4 4.8 ± 2.8 0.0 ± 0.0 2.548 0.133
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24:6n-3 0.9 ± 0.1 0.4 ± 0.0 0.7 ± 0.5 12.9 ± 2.6 0.3 ± 0.1 2.933 0.109

6
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Figure 1
Results of a cluster analysis of the FA composition data for the five nudibranch species.

The numeral on the branches represent is bootstrap probability (BP) value of a cluster and
approximately unbiased (AU) probability values. TS, Tritonia sp.; CP, Colga pacifica; CV,
Coryphella verrucosa; DS, Dendronotus sp.; AP, Aeolidia papillosa.
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Figure 2
Results of a principal component analysis (PCA) of the FA composition data for the five
nudibranch species.

(A) The plot of the first two principal components; variables were the major fatty acids (see
Table 1). Ellipses were drawn manually to outline three groups according to results of the
cluster analysis (see Figure 1). (B) The projectiosn of 12 variables is shown. TS, Tritonia sp.;
CP, Colga pacifica; CV, Coryphella verrucosa; DS, Dendronotus sp.; AP, Aeolidia papillosa.
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