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In ecology and evolution GLMMs are becoming increasingly used to test for differences in
variation by treatment at multiple hierarchical levels. Yet, the specific sampling schemes
that optimize the power of an experiment to detect differences in random effects by
treatment/group remain unknown. In this paper we develop a blueprint for conducting
power analyses for GLMMs focusing on detecting differences in variance by treatment. We
present parameterization and power analyses for random-intercepts and random-slopes
GLMMs because of their generality as focal parameters for most applications and because
of their immediate applicability to emerging questions in the field of behavioral ecology.
We focus on the extreme case of hierarchically structured binomial data, though the
framework presented here generalizes easily to any error distribution model. First, we
determine the optimal ratio of individuals to repeated measures within individuals that
maximizes power to detect differences by treatment in among-individual variation in
intercept, among-individual variation in slope, and within-individual variation in intercept.
Second, we explore how power to detect differences in target variance parameters is
affected by total variation. Our results indicate heterogeneity in power across ratios of
individuals to repeated measures with an optimal ratio determined by both the target
variance parameter and total sample size. Additionally, power to detect each variance
parameter was low overall (in most cases >1,000 total observations per treatment needed
to achieve 80% power) and decreased with increasing variance in non-target random
effects. With growing interest in variance as the parameter of inquiry, these power
analyses provide a crucial component for designing experiments focused on detecting
differences in variance. We hope to inspire novel experimental designs in ecology and
evolution investigating the causes and implications of individual-level phenotypic variance,
such as the adaptive significance of within-individual variation.
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Abstract 
 
In ecology and evolution GLMMs are becoming increasingly used to test for differences 
in variation by treatment at multiple hierarchical levels. Yet, the specific sampling 
schemes that optimize the power of an experiment to detect differences in random effects 
by treatment/group remain unknown. In this paper we develop a blueprint for conducting 
power analyses for GLMMs focusing on detecting differences in variance by treatment. 
We present parameterization and power analyses for random-intercepts and random-
slopes GLMMs because of their generality as focal parameters for most applications and 
because of their immediate applicability to emerging questions in the field of behavioral 
ecology. We focus on the extreme case of hierarchically structured binomial data, though 
the framework presented here generalizes easily to any error distribution model. First, we 
determine the optimal ratio of individuals to repeated measures within individuals that 
maximizes power to detect differences by treatment in among-individual variation in 
intercept, among-individual variation in slope, and within-individual variation in 
intercept. Second, we explore how power to detect differences in target variance 
parameters is affected by total variation. Our results indicate heterogeneity in power 
across ratios of individuals to repeated measures with an optimal ratio determined by 
both the target variance parameter and total sample size. Additionally, power to detect 
each variance parameter was low overall (in most cases >1,000 total observations per 
treatment needed to achieve 80% power) and decreased with increasing variance in non-
target random effects. With growing interest in variance as the parameter of inquiry, 
these power analyses provide a crucial component for designing experiments focused on 
detecting differences in variance. We hope to inspire novel experimental designs in 
ecology and evolution investigating the causes and implications of individual-level 
phenotypic variance, such as the adaptive significance of within-individual variation.  
 
Key-words: individual variation, behavioral ecology, reaction norm, plasticity, binomial 
distribution, hierarchical, sampling scheme 
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Introduction 1	
  

 Recent advances in computing power and access to increasingly sophisticated 2	
  

statistical tools such as generalized linear mixed effects models are changing research in 3	
  

ecology, evolution and behavior. Research questions and data analyses are no longer 4	
  

confined to the assumptions of clean experimental designs based on agricultural plots and 5	
  

Normal error distributions. Researchers now commonly incorporate multiple levels of 6	
  

hierarchical nesting (e.g. repeated measures) and can analyze data using a wide array of 7	
  

non-Gaussian error distribution models. This change is epitomized by the recent increase 8	
  

in use of linear and generalized linear mixed models ([G]LMMs: Touchon, J. & McCoy, 9	
  

W.M. unpublished data). These powerful tools permit appropriate modeling of variation 10	
  

among groups and across space and time, allowing for more accurate extrapolation of 11	
  

statistical results to unobserved data, as well as statistical tests of variance components 12	
  

(Gelman & Hill, 2006; Bolker et al., 2009; Zuur et al., 2009; Zuur, Hilbe & Leno, 2013).  13	
  

 The upsurge in the use of LMM and GLMM has been facilitated by several recent 14	
  

methods papers (Bolker et al., 2009; Martin et al., 2011; Dingemanse & Dochtermann, 15	
  

2013; Schielzeth & Nakagawa, 2013) and textbooks (Gelman & Hill, 2006; Zuur et al., 16	
  

2009; Zuur, Hilbe & Leno, 2013; Bolker, 2015) specifically aimed at non-statisticians. 17	
  

While these resources have accelerated the adoption of these tools, there are still too few 18	
  

resources guiding researchers through the choices that must be made prior to the 19	
  

initiation of a new experiment, such as the sampling scheme that will optimize the power 20	
  

of an experiment requiring analysis by linear (Moineddin, Matheson & Glazier, 2007; 21	
  

Scherbaum & Ferreter, 2009; Martin et al., 2011) and generalized linear (Johnson et al., 22	
  

2014) mixed models. In this paper, we develop a blueprint for conducting power analyses 23	
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for GLMMs using the lme4 package (Bates et al., 2014) in the R statistical programming 24	
  

environment (R Development Core Team, 2015). We focus on a specific application 25	
  

aimed at detecting differences in variance by treatment at multiple hierarchical levels.  26	
  

 Power analysis is fundamental to good experimental design, but is often overlooked 27	
  

(Jennions & Moller, 2003), or in the case of GLMMs, simply too difficult to implement 28	
  

for many practitioners. Power analyses can be especially daunting for GLMMs because 29	
  

they require large simulations with complex, non-Normal and non-independent data 30	
  

structures (Johnson et al., 2014). In this paper we take advantage of recent developments 31	
  

in the lme4 package in R that simplify the process of simulating appropriate data. 32	
  

Despite the increasing use of GLMMs in ecology and evolution and growing interest in 33	
  

variance, we are aware of no papers that present power analyses for statistical tests on 34	
  

variance using GLMMs, and only one paper presenting power analyses for fixed effects 35	
  

in GLMMs (Johnson et al., 2014). Indeed, Johnson et al.’s (2014) analysis illustrates that 36	
  

power analyses conducted for hierarchically structured experiments that do not 37	
  

incorporate random effects can generate biased estimates of fixed effects, highlighting the 38	
  

need for a better understanding of these approaches. 39	
  

While most applications of GLMMs to date have focused on detecting differences 40	
  

in fixed effects while appropriately accounting for random effects (e.g. Johnson et al., 41	
  

2014), GLMMs are under rapid development and many new applications are now 42	
  

possible (e.g. modeling heterogeneous error variance: Kizilkaya & Tempelman 2005, 43	
  

Cernicchiaro et al., 2013). With growing interest in variance as the parameter of inquiry 44	
  

(Moore, Brodie & Wolf, 1997; Lynch & Walsh, 1998; Benedetti-Cecchi, 2003; Hill & 45	
  

Zhang, 2004; Nussey, Wilson & Brommer, 2007; Dingemanse et al., 2010; Tonsor, 46	
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Elnaccash & Scheiner, 2013; Westneat, Wright & Dingemanse, 2014), there is an 47	
  

increased need for accessible, flexible simulation-based power analyses that assess power 48	
  

to detect differences in random effects by treatment—the magnitude of variation present 49	
  

among repeated measures at a specific hierarchical level (Gelman & Hill, 2006; Zuur et 50	
  

al., 2009).  51	
  

 Here we present parameterization and power analyses for random-intercepts and 52	
  

random-slopes GLMMs that test for differences in variation by treatment in three key 53	
  

parameters: 1) Among-group variation in intercept; 2) Within-group variation in 54	
  

intercept; 3) Among-group variation in slope. We examine each of these comparisons in 55	
  

two contexts. First, we describe the optimal ratio of groups to observations within groups 56	
  

that maximizes power to detect differences in each variance parameter. In experiments 57	
  

with binomially distributed response variables, observations within groups are organized 58	
  

into j sampling occasions, each containing n Bernoulli observations. Here we discuss the 59	
  

ratio of groups to total observations within groups (n*j), and consider different partitions 60	
  

of n and j. Second, we explore how power to detect differences in specific variance 61	
  

parameters is affected by increasing variation in non-target parameters (e.g., how power 62	
  

to detect differences in among-group variation decreases as within-group variance 63	
  

increases). We consider both random-intercepts and random-slopes models because of 64	
  

their generality as focal parameters for most applications, and choose to focus on the 65	
  

extreme case of hierarchically structured binomial data because binary response data (e.g. 66	
  

the presence or absence of a behavior) contains the least possible amount of information 67	
  

per observation and yet is a common data format for a variety of endpoints measured in 68	
  

ecology.  69	
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 We use vocabulary and examples from behavioral ecology to illustrate our models 70	
  

because of their immediate applicability to emerging questions in this field. Specifically, 71	
  

we evaluate power to detect significant differences in among-individual variation in 72	
  

reaction norm intercept and slope, and within-individual variation in intercept between 73	
  

groups of individuals (Nussey, Wilson & Brommer, 2007; Dingemanse et al., 2010). Our 74	
  

methods extend current approaches used in behavioral ecology for quantifying among-75	
  

individual variation away from simply testing whether there is significant deviation from 76	
  

a null model of no variation (Martin et al., 2011; Van de Pol et al., 2012; Dingemanse & 77	
  

Dochtermann, 2013) toward quantifying and contrasting the magnitude of among- and 78	
  

within-individual variation among multiple groups of individuals.  79	
  

 In an effort to present a framework that is customizable for a diversity of research 80	
  

problems, we focus on a general sampling scheme in which several Bernoulli 81	
  

observations (n > 1) within multiple sampling occasions (j > 1) are available for each 82	
  

individual. Under this sampling scheme multiple probabilities of “success” (e.g. the 83	
  

probability of displaying a behavior) are available for each individual, which is necessary 84	
  

for quantifying within-individual variation (variation among sampling occasions in the 85	
  

probability an individual displays a behavior). However, we note that often in behavioral 86	
  

ecology only a single Bernoulli observation (n = 1) is available for each sampling 87	
  

occasion j. We include a description on how to modify this general case to accommodate 88	
  

single observations per sampling occasion in Supplement 1. Finally, while we focus on 89	
  

the binomial GLMM, the framework presented here generalizes easily to other error 90	
  

distribution models such as Normal, log-Normal, or Gamma (for continuous responses) 91	
  

or Poisson or negative binomial (for count responses). 92	
  

PeerJ reviewing PDF | (2015:06:5396:0:0:NEW 16 Jun 2015)

Reviewing Manuscript



6	
  

 93	
  

Methods 94	
  

Linear Mixed Model 95	
  

 We begin by introducing a general linear mixed model (LMM) to illustrate the 96	
  

variance components we are interested in (Figure 1) and their applications in behavioral 97	
  

ecology. We provide only a brief introduction to LMMs here because they have been 98	
  

extensively discussed in several recent reviews and textbooks (Gelman & Hill, 2006; 99	
  

Zuur et al., 2009; Stroup, 2012; Zuur, Hilbe & Leno, 2013; Dingemanse & Dochtermann, 100	
  

2013; Bates et al., 2014; Bolker, 2015). We use the notation of Stroup (2012) to facilitate 101	
  

a transition to the binomial GLMM model, which is the focus of our power analyses. 102	
  

A two treatment linear mixed model can be written as: 103	
  

[1] yijk | b0ik, b1ik ~ Normal(µijk, σ2
εk) 104	
  

[2] ηijk = β0k + b0ik + (β1k + bik)Xij 105	
  

[3] Identity link: ηijk = µijk 106	
  

[4]  107	
  

Here, a single phenotypic measurement yijk of individual i, in environment j and 108	
  

treatment k is composed of three components: the treatment mean in environment j (β0k + 109	
  

β1k Xij), the unique average response of individual i across the environmental gradient (b0k 110	
  

+ b1k Xij), and a residual error due to the variation around the mean of individual i (σ2
εk), 111	
  

which is assumed to be homogenous across X and among all individuals in treatment k, 112	
  

but is allowed to vary by treatment. Individuals vary from the treatment mean reaction 113	
  

norm in both their intercept (b0ik) and slope (b1ik), which together compose the total 114	
  

phenotypic variance attributable to among-individual variation. This individual 115	
  

 [   ]       ([ ], [         ]) b0ik 
b1ik 
 

~ MVN 
 

σ2
0k       σ01k 

σ01k     σ2
1k 

0 
0 
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contribution is quantified using a random intercepts and slopes model with a multivariate 116	
  

Normal (MVN) distribution [4]. Variation among individuals in intercept and slope are 117	
  

σ2
0k and σ2

1k respectively; covariance between intercept and slope is given by σ01k. In a 118	
  

LMM, the linear predictor directly predicts the mean, as shown by the identity link 119	
  

function in equation [3]. In a GLMM, the linear predictor predicts a function of the mean 120	
  

g(x), which must be linearized through the use of non-identity link functions; for 121	
  

example, we use the standard logit (log-odds) link for Binomial GLMM. 122	
  

 123	
  

Among-individual variation in intercept 124	
  

 In behavioral ecology among-individual variation in intercept σ2
0k describes the 125	
  

amount of variation around average behavior that occurs among individuals (Figure 1). In 126	
  

field studies, σ2
0k describes variation in individuals’ average behavior in the mean-127	
  

centered environment (Nussey, Wilson & Brommer, 2007; Westneat et al., 2011). 128	
  

Previous work has demonstrated that individuals from a diversity of taxa vary in their 129	
  

average behavior across different environments (Bell, Hankison & Laskowski, 2009). 130	
  

Yet, comparisons of among- and within-individual variation in average behavior (or other 131	
  

forms of plasticity) among groups, populations, or treatments remain underrepresented 132	
  

(e.g. Westneat et al., 2011; Dingemanse et al., 2012). For example, Westneat et al., 133	
  

(2011) found that female house sparrows vary less from one another in their average 134	
  

provisioning behavior than male sparrows. In the model presented here, the random 135	
  

intercept (b0ik) for each individual (e.g. male and female nest provisioning rates are drawn 136	
  

from Normal distributions with different variances) is drawn from a treatment-specific 137	
  

Normal distribution.  138	
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 139	
  

Within-Individual Variation in Intercept 140	
  

 Within-individual variation in intercept (σ2
εk) is defined as the amount individuals 141	
  

vary around their own average behavior. Within-individual variation is routinely used for 142	
  

the calculation of repeatability in studies of animal personality (Bell, Hankison & 143	
  

Laskowski, 2009; Dingemanse et al., 2010) or more often is simply regarded as noise, 144	
  

despite the well established ecological and evolutionary implications of within-individual 145	
  

variation (Stamps, Briffa & Biro, 2012; Biro & Adriasenssens, 2013; Westneat, Wright & 146	
  

Dingemanse, 2014; Cleasby & Nakagawa, 2015). For example, a variable predator 147	
  

environment may select for individual prey that vary greatly around their mean behavior 148	
  

to remain unpredictable (Stamps, Briffa & Biro, 2012). LMMs can directly quantify 149	
  

patterns of within-individual variation when repeated measures within multiple 150	
  

individuals are available, facilitating comparisons of individual consistency between 151	
  

groups of individuals (Dingemanse et al., 2013). Here we are interested in determining if 152	
  

σ2
εk differs by treatment. In other words, do individuals in one population or treatment 153	
  

exhibit more intra-individual behavioral variation than individuals from a second 154	
  

population or treatment? 155	
  

 156	
  

Among-Individual variation in slope 157	
  

 Substantial empirical work has shown that individual animals in a variety of taxa 158	
  

display variation in phenotypic plasticity (Martin & Réale, 2008; Mathot et al., 2011; 159	
  

Dingemanse et al., 2012); using mixed models to quantify this variation has been the 160	
  

primary focus of several recent papers (Martin et al., 2011; Van de Pol, 2012; 161	
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Dingemanse and Dochtermann, 2013). Among-individual variation in phenotypic 162	
  

plasticity has implications for the rate of evolutionary change, population stability and 163	
  

population persistence (Wolf & Weissing, 2012; Dingemanse & Wolf, 2013); thus 164	
  

defining those populations exhibiting greater individual variation in plasticity could help 165	
  

distinguish stable populations and populations with a high probability of micro-166	
  

evolutionary change (Pigliucci, 2001; Ghalambor, Angeloni & Carroll, 2010). To 167	
  

quantify group differences in plasticity variation, multiple measurements within each 168	
  

individual across an environmental gradient are required. Here we are interested in 169	
  

determining if σ2
1k differs by treatment. 	
  170	
  

 171	
  

Binomial GLMM 172	
  

 We assess power of a binomial GLMM for detecting differences in variation by 173	
  

treatment. This model can be written as: 174	
  

[5] yijk | b0ik, b1ik, vijk ~ Binomial(Nijk, πijk) 175	
  

[6] ηijk = β0 + b0ik + (β1 + b1ik)Xij + vijk 176	
  

[7] Inverse-logit: πijk = 1/(1 + e –η
ijk) 177	
  

[8] 178	
  

[9] vijk ~ Normal(0, σ2
vk) 179	
  

 Here, yijk  is the number of “successes” in Nijk observations of the ith individual in 180	
  

treatment k at the jth sampling occasion. When an environmental covariate (X) is present, 181	
  

one sampling occasion occurs at each level of the covariate j. In the absence of an 182	
  

environmental covariate, the linear predictor reduces to ηijk = β0 + b0ik + vijk and the jth 183	
  

occasion is simply a repeated sampling occasion in the same conditions. Note, when Nijk 184	
  

 [   ]       ([ ], [         ]) b0ik 
b1ik 
 

~ MVN 
 

σ2
0k       σ01k 

σ01k     σ2
1k 

0 
0 
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= 1 there is only 1 observation per sampling occasion j, making yijk a Bernoulli response 185	
  

variable (see Supplement 1). When yijk is Bernoulli, overdispersion (vijk) and thus within-186	
  

individual variation is not identifiable.  187	
  

 In this model πijk describes the underlying probability of individual i in treatment 188	
  

k at occasion j exhibiting a behavior. Variation in π is determined by the linear 189	
  

combination of predictors on the logit (log-odds) scale: group intercept (β0), group slope 190	
  

(β1), individual unique intercept (b0ik), slope (b1ik), and observation level overdispersion 191	
  

that decreases predictive power at each observation (vijk). This linear predictor is 192	
  

transformed with the inverse logit link to produce πijk, which follows a logit-Normal-193	
  

binomial mixed distribution.  194	
  

 We use an observation-level random effect to model additive overdispersion 195	
  

(Browne et al., 2005), which models increased variance (following a Normal distribution 196	
  

with variance σ2
vk) in the linear predictor on the link scale (Nakagawa & Schielzeth, 197	
  

2010). Overdispersion is used to quantify within-individual variation because it models 198	
  

variation in 𝜋 between each sampling occasion j for each individual. Here the magnitude 199	
  

of overdispersion is allowed to vary by treatment (for an example of multiple data sets 200	
  

where this occurs see Hinde & Demetrio, 2007), which is a focus of our power analysis.  201	
  

 The transformation through the inverse-logit function makes each of the three 202	
  

target variance components difficult to visualize with a concise figure. However, because 203	
  

the binomial GLMM model follows similar patterns as the LMM, we present power 204	
  

analyses for the binomial GLMM using the visual aid presented for the LMM (Figure 1). 205	
  

Finally, we simulate data for a fully balanced design without losing generality. See 206	
  

Martin et al., 2011 and Van de Pol, 2012 for a discussion on experimental designs where 207	
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individuals are assayed in partially overlapping environments and when only single 208	
  

measurements are obtained for some individuals.  209	
  

 210	
  

Simulations 211	
  

All data were simulated in the R statistical programming environment using 212	
  

newly developed simulation capabilities of the lme4 package (Bates et al., 2014). 213	
  

Guidelines for parameterizing the GLMMs and running data simulations and power 214	
  

analyses are provided in Supplement 1. For a given total sample size, we present 215	
  

simulations for determining the optimal ratio of total number of individuals versus the 216	
  

number of repeated measures within individuals needed to provide power to detect a 217	
  

difference among treatments 80% of the time. We conducted simulations for multiple 218	
  

ratios of individuals to total observations within individuals, varying both sampling 219	
  

occasions (j) and Bernoulli observations within sampling occasions (n). Next, we 220	
  

describe simulations that evaluate how increasing “noise” (variation in non-target random 221	
  

effects) affects power to detect differences in targeted variance comparisons.  222	
  

For both scenarios we simulate data with biologically relevant parameter values 223	
  

that illustrate common trends in power. At extreme parameter values the trends presented 224	
  

here may not hold due to interactions between the variance components that arise at the 225	
  

boundaries of binomial space. We do not dwell on these exceptions since they are 226	
  

unrealistic for most empirical data sets, but suggest exploration of these exceptions with 227	
  

code provided in Supplement 1.  228	
  

We ran 2800 simulations for each combination of parameter values. The 229	
  

significance of a given random effect was assessed using likelihood ratio tests (LRTs) 230	
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between models with and without the focal random effect. To correct for the known 231	
  

conservatism of the LRT when testing for σ2 = 0 (due to a null value on the boundary of 232	
  

parameter space), we adopted the standard correction of dividing all p-values by 2 233	
  

(Pinheiro & Bates, 2000; Verbeke & Molenberghs, 2000; Fitzmaurice, Laird & Ware, 234	
  

2004; Zuur et al., 2009). This correction was appropriate for all p-values because each 235	
  

LRT compared models that differed in only a single degree of freedom. Power is 236	
  

estimated as the percentage of simulations that provide a corrected p-value smaller than 237	
  

0.05. We insured the validity of a nominal p-value of 0.05 by confirming that 2800 238	
  

simulations of a scenario where standard deviations did not differ at all did not result in 239	
  

rejecting the null hypothesis more than 5% of the time. Under extremely low numbers of 240	
  

individuals (~2-4) power to detect differences in the null case exceeded 5% (~10-15%), 241	
  

possibly inflating power in these cases. Regardless, random effects cannot be reliably 242	
  

estimated with such low sample sizes and therefore in most cases such experimental 243	
  

designs should be avoided. 244	
  

 245	
  

Scenario 1: Determining the optimal sampling scheme 246	
  

 Most researchers face limitations imposed by time, money and access to samples, 247	
  

and are therefore confronted with the question of how resources should be divided 248	
  

between individuals and measures within individuals. To investigate the optimal 249	
  

allocation of sampling effort between the number of individuals and number of 250	
  

observations per individual, we simulated two data sets for each variance comparison 251	
  

(See Table 1 for a summary of all simulations). 252	
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 First, using three hypothetical total numbers of Bernoulli observations per 253	
  

treatment (total sample size per treatment, TSST), we manipulated either the ratio of 254	
  

individuals to sampling occasions (σ2
0k and σ2

1k), or the ratio of individuals to Bernoulli 255	
  

observations within sampling occasions (σ2
vk). For comparisons of σ2

0k and σ2
1k we 256	
  

manipulated the ratio of individuals to sampling occasions, holding the number of 257	
  

Bernoulli observations constant at 5, because power follows a non-monotonic pattern 258	
  

across these ratios for σ2
0k and σ2

1k (Figures 2, 3). Conversely, for comparisons of σ2
vk we 259	
  

manipulated the ratio of individuals to Bernoulli observations and held the number of 260	
  

sampling occasions constant at 5 because power follows a non-monotonic pattern across 261	
  

ratios of individuals to Bernoulli observations for σ2
vk (Figure 4). For comparisons of 262	
  

σ2
0k, and σ2

vk we simulated TSST of 600, 1200 and 2400, and for comparisons of σ2
1k 263	
  

TSST were 300, 600, and 1200. For example, for b1ik with a TSST of 300, the most 264	
  

extreme ratios were 30 individuals with 2 sampling occasions and 2 individuals with 30 265	
  

sampling occasions. While using only 2 samples for a grouping variable (individuals) is 266	
  

never suggested for a random effect, we include this combination as an illustration of the 267	
  

low power that results from an ill-conceived sampling scheme. For each variance 268	
  

comparison we simulated three different effect sizes (2, 2.5, and 3 fold difference in 269	
  

standard deviation by treatment). 	
  270	
  

 Next, we simulated data sets with increasing numbers of Bernoulli observations 271	
  

for comparisons of σ2
0k and σ2

1k (Figure 5A, B) and with increasing numbers of sampling 272	
  

occasions for comparisons of σ2
vk (Figure 5C). For these simulations we used 1, 3, 5, 10 273	
  

and 15 Bernoulli observations or sampling occasions. Ratios of individuals to sampling 274	
  

occasions (σ2
0k and σ2

1k) or individuals to Bernoulli observations (σ2
vk) followed the 275	
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intermediate TSST from the simulations described above. For example, for comparisons 276	
  

of σ2
0k we simulated 1, 3, 5, 10 and 15 Bernoulli observations for ratios of individuals to 277	
  

sampling occasions ranging from 120:2 to 2:120. For all comparisons we simulated data 278	
  

using an effect size of a 2.5 fold difference in standard deviation by treatment. 	
  279	
  

In all Scenario 1 simulations, both β0 and β1 were constrained to a single value for 280	
  

all treatments. For comparisons of among-individual variation in intercept no 281	
  

environmental covariate was used, and σ2
vk was held constant among treatments. For 282	
  

comparisons of among-individual variation in slope we held σ2
vk constant. Finally, for 283	
  

comparisons of within-individual variation in intercept, no environmental covariate was 284	
  

included and σ2
0k was held constant among treatments. All parameter values used in 285	
  

simulations for both Scenarios can be found in Table S1. 286	
  

Our goal in Scenario 1 was to isolate changes in a single variance parameter, but 287	
  

exploration of the dependence among multiple variance components and the mean may 288	
  

be warranted if it is relevant for a specific problem. Incorporating concurrent changes in 289	
  

intercept, slope and overdispersion parameters can be easily implemented with slight 290	
  

modifications to the code presented in the online supplement. We show initial results of 291	
  

relaxing some of these assumptions in Scenario 2, but full exploration of these 292	
  

possibilities are beyond the scope of this paper. 293	
  

 294	
  

Scenario 2: Measuring the ratio of overdispersion to effect size 295	
  

 Decreasing the ratio of the variance in the target random effect to total variance 296	
  

influences power to detect differences in the target variance among treatments. Therefore, 297	
  

we simulated four levels of “noise” (magnitude of non-target random effect variance) 298	
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assuming a Normal distribution with increasing standard deviations (0.1, 0.5, 1.0, 2.0) 299	
  

(Figure 6). These correspond to ratios of target variance parameter effect size to non-300	
  

target variance of 25:1, 5:1, 5:2, and 5:4. For comparisons of σ2
0k and σ2

1k,“noise” was 301	
  

simulated with increasing variation in within-individual variation (σ2
vk), while for 302	
  

comparisons of σ2
vk noise was simulated with among-individual variation in intercept 303	
  

(σ2
0k). For each variance parameter ratios of individuals to repeated measures followed 304	
  

the largest TSST sampling scheme used in Scenario 1 and an ES of a 2.5x difference in 305	
  

standard deviation by treatment.  306	
  

 307	
  

Results 308	
  

Scenario 1: Determining the optimal sampling scheme 309	
  

 Power to detect differences between treatments for each variance component 310	
  

increases with total sample size (TSST) and effect size (ES) (Figures 2-5). For a given 311	
  

TSST power depends on the ratio of the number of individuals to the number of repeated 312	
  

measures per individual. However, the optimal ratio of individuals to repeated measures 313	
  

varies depending on TSST and target variance parameter. For example, power to detect 314	
  

both σ2
0k and σ2

1k is non-monotonic across ratios of individuals to sampling occasions 315	
  

(Figures 2, 3), but is an increasing function of the number of Bernoulli observations 316	
  

within sampling occasions (Figure 5A, B). Power to detect σ2
0k is maximized at a ratio of 317	
  

individuals to repeated measures of approximately 6:5 under low sample sizes (TSST = 318	
  

600) (Figure 2A) but a ratio of approximately 2:1 is optimal under larger sample sizes 319	
  

(TSST = 2400) (Figure 2C). 	
  320	
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 At low sample sizes (TSST = 300), power to detect σ2
1k is maximized at a ratio of 321	
  

approximately 12:5 (Figure 3A), while larger sample sizes (TSST = 600, 1200) favor a 322	
  

ratio heavily weighted towards having more individuals (approximately 5:1) versus more 323	
  

repeated measures (Figure 3B, C). Power to detect σ2
1k	
  is higher overall and less sensitive 324	
  

to deviations from the optimum ratio than power to detect σ2
0k (Figure 3). 	
  325	
  

 Power to detect σ2
vk follows a strikingly different pattern than σ2

0k and σ2
1k. Power 326	
  

to detect σ2
vk is non-monotonic across ratios of individuals to the number of Bernoulli 327	
  

observations within sampling occasions (Figure 4), and is an increasing function of the 328	
  

number of sampling occasions (Figure 5C). At low sample sizes (e.g. TSST = 600) power 329	
  

to detect σ2
vk is maximized by devoting nearly all of the available resources to repeated 330	
  

measures within individuals (Figure 4A); however, at larger sample sizes (e.g. TSST = 331	
  

2,400) power is maximized at a ratio of individuals to Bernoulli observations of 332	
  

approximately 1:2 (Figure 4).	
  333	
  

 334	
  

Scenario 2: Power under increasing non-target random effect variance  335	
  

 Power to detect differences in variance components is strongly affected by the 336	
  

proportion of total variance that can be attributed to the target variance component 337	
  

(Figure 6). Increasing variance in non-target random effects decreases power to detect 338	
  

differences in the target variance parameter by treatment. However, the ratio of target to 339	
  

non-target variance does not alter the optimal ratio of individuals to repeated measures 340	
  

for the target variance comparison (Figure 6). Panel A demonstrates that power to detect 341	
  

σ2
0k decreases substantially as the magnitude of within-individual variation increases. 342	
  

Detecting differences in σ2
1k depends only on total random effect variation at extreme 343	
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ratios of individuals to sampling occasions (e.g. 80:3) (Figure 6B). Finally, detection of 344	
  

σ2
vk is largely independent of the magnitude of among-individual variation at large ratios 345	
  

of ES to non-target variance, as indicated by overlapping curves in Figure 6C. However, 346	
  

when among-individual variation in intercept is very large (Figure 6C: Red curve), power 347	
  

to detect σ2
vk decreases because individual mean responses approach 0 or 1, reducing the 348	
  

amount of detectable within-individual variation.	
  349	
  

 350	
  

Discussion 351	
  

The power analyses presented here establish a framework for designing 352	
  

experiments focused on detecting differences in variance components by treatment using 353	
  

GLMMs. These results should serve as a baseline upon which researchers can expand to 354	
  

address their own specific problems. Nevertheless, our findings reveal some important 355	
  

general trends that should be considered when designing experiments. Our results 356	
  

demonstrate heterogeneity in power across sampling schemes (ratio of individuals to 357	
  

repeated measures and partitioning of repeated measures into sampling occasions and 358	
  

Bernoulli observations), and differences in which sampling scheme maximizes power for 359	
  

different components of variance (Figures 2-5). As expected, power declines rapidly for 360	
  

low sample sizes and small effect sizes (Figures 2-4). However, for large TSST and 361	
  

relatively large effect sizes (3 SD difference between treatments), > 80% power is 362	
  

retained across many different combinations of individuals to repeated measures for each 363	
  

component of variance (Figures 2-5). Not surprisingly, power to detect differences in the 364	
  

target random effect declines with increasing variance in the non-target random effects 365	
  

(Figure 6).   366	
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 Power to detect σ2
0k is non-monotonic across ratios of individuals to sampling 367	
  

occasions, and is an increasing function of the number of Bernoulli observations per 368	
  

sampling occasion. Power is maximized with ratios weighted towards having more 369	
  

individuals (Figure 2), and quickly declines with alternative sampling ratios when total 370	
  

sample sizes and effect sizes are small. The analyses are however more robust to 371	
  

deviations from this ratio when TSST and ES are large (Figure 2C). Finally, of all the 372	
  

random effect parameters we analyzed, power to detect σ2
0k is the most sensitive to the 373	
  

amount of “noise” present in the model, decreasing rapidly with increasing within-374	
  

individual variation (Figure 6). 	
  375	
  

 Power to detect σ2
1k is also non-monotonic across ratios of individuals to 376	
  

sampling occasions, and is maximized with a ratio of individuals to sampling occasions 377	
  

ranging from 2:1 to 5:1 as TSST increases (Figure 3). On average, testing for differences 378	
  

in σ2
1k	
  are more powerful than for σ2

0k across all sampling schemes and ES (Figures 2, 3), 379	
  

and requires fewer samples to obtain 80% power. 	
  380	
  

 Finally, power to detect σ2
vk is non-monotonic across ratios of individuals to 381	
  

Bernoulli observations and is an increasing function of the number of sampling 382	
  

occasions. Depending on sample size, sampling schemes ranging from maximizing 383	
  

Bernoulli observations to ratios of individuals to Bernoulli observations of 1:2 maximizes 384	
  

power (Figure 4). Unlike σ2
0k, power to detect σ2

vk is largely independent of additional 385	
  

variance in the model (Figure 6C), such that power to detect σ2
vk is nearly equivalent at 386	
  

all levels of σ2
0k except under the case of extreme values of σ2

0k. 387	
  

Collectively these results indicate the importance of clearly defining a biological 388	
  

question, designating the focal random effect, and knowing the expected magnitude of 389	
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total variation when determining the appropriate experimental sampling design and TSST. 390	
  

Even at larger effect sizes, failure to account for system noise can lead to insufficient 391	
  

power and a failed experiment. Our findings should serve as a strong warning to 392	
  

empiricists interested in variance components that power analyses should be performed 393	
  

when designing experiments in order to overcome the problems of overall low power, 394	
  

large heterogeneity in power to detect different variance components, and heterogeneity 395	
  

in sampling scheme required to optimize power. 396	
  

By introducing new strategies for analyzing variance among treatments we hope to 397	
  

inspire novel experimental designs in ecology and evolution. For example, the power 398	
  

analyses presented here can inform the design of experiments aimed at quantifying 399	
  

heterogeneous within-individual variation by environment, which may lead to novel 400	
  

insights on the adaptive significance of within-individual variation (Westneat, Wright & 401	
  

Dingemanse, 2014).   402	
  

In addition, these analyses answer the calls of researchers over the last decade for 403	
  

methods to investigate effects of treatment level variance on the variance of dependent 404	
  

variables (Benedetti-Cecchi, 2003). Transitions from one discrete environment to another 405	
  

(e.g. presence or absence of predators) are often classified as a form environmental 406	
  

variation, but switching between two distinct but relatively constant environments does 407	
  

not reflect environmental variation per se, such as temporal changes in the magnitude, 408	
  

pattern, and/or frequency of the environmental over time (Benedetti-Cecchi, 2003; 409	
  

Benedetti-Cecchi et al., 2006; Miner & Vonesh, 2004; Lawson et al., 2015). When this 410	
  

form of environmental variation is manipulated or natural variation exploited in an 411	
  

experimental context, within-individual variation can be described as the variable 412	
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response of individuals to this variation in the environment. In this context, within-413	
  

individual variation may itself be a form of phenotypic plasticity, and may have profound 414	
  

implications for understanding the evolution of environmentally induced plasticity, and 415	
  

the evolution of labile traits generally (Stamps, Briffa & Biro, 2012; Biro & 416	
  

Adriasenssens, 2013; Westneat, Wright & Dingemanse, 2014).    417	
  

 418	
  

Further Considerations 419	
  

Heterogeneous within-individual variation 420	
  

 In our power analyses we have made a few important simplifying assumptions. 421	
  

First, we assume that within-individual variation in both intercept and slope is 422	
  

homogenous among individuals within the same treatment. Additionally, we assume 423	
  

homogeneity of within-individual variance across an environmental gradient. However, 424	
  

these assumptions may not be true for some natural or experimental populations. In fact, 425	
  

it has recently been proposed that assessing the magnitude of variation in within-426	
  

individual error variance within a single individual across an environmental gradient or 427	
  

among individuals exposed to the same environment/treatment is an important metric that 428	
  

may help to explain the evolution of plasticity (Cleasby & Nakagawa, 2015; Westneat, 429	
  

Wright & Dingemanse, 2014). Power to detect differences in the magnitude of among-430	
  

individual variation in within-individual variation by treatment (Cleasby & Nakagawa, 431	
  

2015) and heterogeneity of variance across an environmental gradient are interesting 432	
  

research questions that deserve attention, but are beyond the scope of this article. We also 433	
  

note that practicality limits exploration of increasingly complicated scenarios, despite 434	
  

their conceivable statistical feasibility and intrinsic charm due to complex novelty. 435	
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 436	
  

Covariance among intercept, slope, and variance components  437	
  

All of our simulations assessed power to detect differences in a single target 438	
  

variance comparison between treatments, holding all other variance parameters constant 439	
  

(Table S1). However, manipulating non-target variation generates additional variation 440	
  

that is expected to decrease power to detect differences in the target variance parameter. 441	
  

Because we assumed no slope variation in models where intercepts were allowed to vary 442	
  

and no intercept variation in the models focused on variation in slopes, we did not discuss 443	
  

power to detect covariance terms. However, these parameters can co-vary and the 444	
  

covariation among these parameters may contain a wealth of biologically relevant 445	
  

information. For example, covariation between phenotypic plasticity and within-446	
  

individual variation may be tightly linked via developmental tradeoffs, which can lead to 447	
  

greater developmental instability in highly plastic individuals (Tonsor, Elnaccash & 448	
  

Scheiner, 2013). Indeed, it is not known whether an individual’s reaction norm slope and 449	
  

within-individual variation around that reaction norm are always linked or if these 450	
  

relationships can be context-dependent. Similarly, we do not know if stronger behavioral 451	
  

responses lead to greater canalization of behavior. Understanding how to parameterize 452	
  

GLMM and how to optimize experiments to detect these covariances will be a useful step 453	
  

toward advancing evolutionary theory on adaptive, maladaptive and random patterns of 454	
  

variation. 455	
  

Covariance between intercept and slope has been described extensively in 456	
  

theoretical papers and has been explored in earlier power analyses for LMM 457	
  

(Dingemanse & Dochtermann, 2013); however, empirical studies documenting 458	
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significant covariance between these parameters remain rare (Mathot et al., 2011; 459	
  

Dingemanse et al., 2012). While covariance among these parameters may be uncommon, 460	
  

it is also likely that most experiments have insufficient power to detect such covariance. 461	
  

Additional analyses that determine power to detect significant differences in intercept and 462	
  

slope covariation for GLMMs is another important step considering the lack of current 463	
  

evidence for covariation reported in the literature. 464	
  

 465	
  

Within-individual variation in slope 466	
  

 Research, including ours, on among-individual variation in plasticity assumes 467	
  

fully repeatable plasticity within each individual, causing among-individual differences in 468	
  

phenotypic plasticity to be calculated using a single reaction norm for each individual 469	
  

(Dingemanse & Wolf, 2013). However, quantifying only a single reaction norm for each 470	
  

individual fails to capture any potential variation in plastic responses within an individual 471	
  

around its mean reaction norm, which may inflate estimates of among-individual 472	
  

variation and mask important variation that is subject to selection (Dingemanse & Wolf, 473	
  

2013). Despite the reasonable assumption that each experimental individual would 474	
  

exhibit variation in their reaction norm if it were repeatedly measured, we are aware of no 475	
  

studies that demonstrate repeatable behavioral plasticity for a single individual when 476	
  

assessed multiple times.  477	
  

 478	
  

Heterogeneity in sampling scheme and environment 479	
  

 In our simulations all individuals were measured an equal number of times and all 480	
  

treatments contained the same number of individuals, a luxury often not available to 481	
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empiricists that often deal with missing data and unbalanced designs. Intuitively, 482	
  

unbalanced sampling schemes will lower the power to detect among-individual variation 483	
  

(Van de Pol, 2012); however we do not know the rate at which statistical power is lost 484	
  

with the magnitude of imbalance for a particular sampling design. Future research should 485	
  

follow the lead of Van de Pol, 2012 to determine how power to assess differences in 486	
  

variance for GLMM is affected by incomplete sampling, specifically when only a single 487	
  

measure is available for some individuals.  488	
  

 489	
  

Experiments with more than two treatments 490	
  

 Finally, these power analyses were created for a two-treatment scenario--491	
  

“homogenous” environmental variation treatment and a “variable” environmental 492	
  

variation treatment. However, it is commonplace to have more than two treatments.  493	
  

Fortunately, our framework for conducting power analyses can be easily generalized for 494	
  

exploring power for experiments with more than two treatments (see supplemental 495	
  

material). In addition, syntax for the lme4 package in R for specifying GLMM is highly 496	
  

flexible and can be written to restrict variance components to be the same in any number 497	
  

of treatments, while unique variance estimates can be obtained for any other given 498	
  

treatment. For example in a four treatment experiment composed of four levels of 499	
  

predator cue, two variance estimates could be obtained for among-individual variation 500	
  

(e.g. a single estimate for the three treatments with the lowest levels of predator cue and 501	
  

one estimate for the highest level of predator cue).  502	
  

 503	
  

Conclusions  504	
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Random intercepts and slopes GLMMs are well established both ecology and 505	
  

evolution and behavioral ecology. Despite their ubiquity, the use of GLMMs to compare 506	
  

variance components among populations or among experimental treatments is rare. We 507	
  

call for future work analyzing the accuracy and precision of estimates comparing random 508	
  

effects by treatment for GLMMs (which our code facilitates) similar to the work of 509	
  

Moineddin, Matheson & Glazier, 2007 and Van de Pol, 2012 on the accuracy and 510	
  

precision of random effects estimates. As Van de Pol points out, just because power is 511	
  

high does not ensure the accuracy and precision of estimates. Finally, with expanding 512	
  

interest in a variety of variance parameters (e.g. heterogeneity in within-individual 513	
  

variation), we hope the power analyses presented here will spur novel empirical research 514	
  

and assist readers in constructing appropriate experimental designs and statistical models 515	
  

to test how variance components are shaped by ecological and evolutionary processes.  516	
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29	
  

Figure 1. Reaction norm plots for a two treatment LMM. In all graphs bolded black lines depict treatment 676	
  
mean reaction norms and thin lines depict reaction norms of individuals. Grey envelopes in (C) illustrate 677	
  
the magnitude of within-individual intercept variation. Here among-individual variation in intercept (A), 678	
  
slope (B), and within-individual variation in intercept (C) is larger in treatment 2. 679	
  
 680	
  
Figure 2. Power to detect differences by treatment in σ0 for three effect sizes (ratio of σ0 between 681	
  
treatments) and three TSST (total sample size per treatment). Each scenario was simulated with 5 Bernoulli 682	
  
observations per sampling occasion. 683	
  
 684	
  
Figure 3. Power to detect differences by treatment in σ1 for three effect sizes and three TSST. Each scenario 685	
  
was simulated with 5 Bernoulli observations per sampling occasion. 686	
  
 687	
  
Figure 4. Power to detect differences by treatment in σv for three effect sizes and three TSST. Each scenario 688	
  
was simulated with 5 sampling occasions. 689	
  
 690	
  
Figure 5. Power to detect differences by treatment in σ0 (A) and σ1 (B) under increasing Bernoulli 691	
  
observations per sampling occasion; σv (C) under increasing sampling occasions. In (A) and (B) ratios of 692	
  
individuals to sampling occasions follow figures 2B and 3B respectively. In (C) ratios of individuals to 693	
  
Bernoulli observations follows figure 4B. 694	
  
 695	
  
Figure 6. Power to detect differences by treatment in σ0 (A) and σ1 (B) under increasing variation in σv; σv 696	
  
(C) under increasing variation in σ0. Noise is given as the ratio of effect size to variation in the non-target 697	
  
variance parameter. In (A) and (B) ratios of individuals to sampling occasions follow figures 2C and 3C 698	
  
respectively. In (C) ratios of individuals to Bernoulli observations follows figure 4C. 699	
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Table 1(on next page)

Parameter values for all simulations

Table 1: For example, Scenario 1: Figure 2C illustrates power to detect differences in σ2
0k

across ratios of individuals to sampling occasions with a TSST of 2,400 at effect sizes of 2x,

2.5x, and 3x difference in standard deviation by treatment.
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Table	
  1.	
  Parameter	
  values	
  for	
  all	
  simulations.	
  For	
  example,	
  Scenario	
  1:	
  Figure	
  2C	
  illustrates	
  power	
  to	
  detect	
  differences	
  in	
  σ2
0k across 

ratios of individuals to sampling occasions with a TSST of 2,400 at effect sizes of 2x, 2.5x, and 3x difference in standard deviation by treatment. 	
  
 

Target 
Variance  

 
σ2

0k 
 

σ2
1k 

 
σ2

vk 

Scenario 1 2 1 2 1 2 

Figure 2A 2B 2C 5A 6A 3A 3B 3C 5B 6B 4A 4B 4C 5C 6C 

Parameter Sampling Occasions Bernoulli  
Obs σ2

vk   
Sampling Occasions 

Bernoulli  
Obs σ2

vk Bernoulli Observations 

 
Sampling 
Occasions 

 

σ2
0k 

TSST 600 1,200 2,400 240 - 3,600 2,400 300 600 1,200 120- 1,800 1,200 600 1,200 2,400 240 - 3,600 2,400 

# Individuals 2-60 2-120 2-240 120-2 2-240 2-30 2-60 2-120 60-2 2-120 2-60 2-120 2-240 2-120 2-240 

# Sampling 
Occasions 60-2 120-2 240-2 2-120 240-2 30-2 60-2 120-2 2-60 120-2 5 5 5 1-15 5 

# Bernoulli 
Observations  5 5 5 1- 15 5 5 5 5 1-15 5 60-2 120-2 240-2 120-2 240-2 

Effect Sizes 2; 2.5; 3 2; 2.5; 3 2; 2.5; 3 2.5 2.5 2; 2.5; 3 2; 2.5; 3 2; 2.5; 3 2.5 2.5 2; 2.5; 3 2; 2.5; 3 2; 2.5; 3 2.5 2.5 
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Figure 1(on next page)

Reaction norm plots for a two treatment LMM

Figure 1: In all graphs bolded black lines depict treatment mean reaction norms and thin

lines depict reaction norms of individuals. Grey envelopes in (C) illustrate the magnitude of

within-individual intercept variation. Here among-individual variation in intercept (A), slope

(B), and within-individual variation in intercept (C) is larger in treatment 2.
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Figure 2(on next page)

Power to detect differences by treatment in among-indiviudal variation in intercept

Figure 2: Power to detect differences by treatment in σ0 for three effect sizes (ratio of σ0

between treatments) and three TSST (total sample size per treatment). Each scenario was

simulated with 5 Bernoulli observations per sampling occasion.
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Figure 3(on next page)

Power to detect differences by treatment in among-indiviudal variation in slope

Figure 3: Power to detect differences by treatment in σ1 for three effect sizes and three

TSST. Each scenario was simulated with 5 Bernoulli observations per sampling occasion.
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Figure 4(on next page)

Power to detect differences by treatment in within-indiviudal variation in intercept

Figure 4: Power to detect differences by treatment in σv for three effect sizes and three

TSST. Each scenario was simulated with 5 sampling occasions.
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Figure 5(on next page)

Power under increasing Bernoulli observations or sampling occasions

Figure 5: Power to detect differences by treatment in σ0 (A) and σ1 (B) under increasing

Bernoulli observations per sampling occasion; σv (C) under increasing sampling occasions. In

(A) and (B) ratios of individuals to sampling occasions follow figures 2B and 3B respectively.

In (C) ratios of individuals to Bernoulli observations follows figure 4B.
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Figure 6(on next page)

Power under increasing non-target variation

Figure 6: Power to detect differences by treatment in σ0 (A) and σ1 (B) under increasing

variation in σv; σv (C) under increasing variation in σ0. Noise is given as the ratio of effect size

to variation in the non-target variance parameter. In (A) and (B) ratios of individuals to

sampling occasions follow figures 2C and 3C respectively. In (C) ratios of individuals to

Bernoulli observations follows figure 4C.
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