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ABSTRACT
In ecology and evolution generalized linear mixed models (GLMMs) are becoming
increasingly used to test for differences in variation by treatment at multiple
hierarchical levels. Yet, the specific sampling schemes that optimize the power of
an experiment to detect differences in random effects by treatment/group remain
unknown. In this paper we develop a blueprint for conducting power analyses for
GLMMs focusing on detecting differences in variance by treatment. We present
parameterization and power analyses for random-intercepts and random-slopes
GLMMs because of their generality as focal parameters for most applications
and because of their immediate applicability to emerging questions in the field
of behavioral ecology. We focus on the extreme case of hierarchically structured
binomial data, though the framework presented here generalizes easily to any error
distribution model. First, we determine the optimal ratio of individuals to repeated
measures within individuals that maximizes power to detect differences by treatment
in among-individual variation in intercept, among-individual variation in slope,
and within-individual variation in intercept. Second, we explore how power to detect
differences in target variance parameters is affected by total variation. Our results
indicate heterogeneity in power across ratios of individuals to repeated measures
with an optimal ratio determined by both the target variance parameter and total
sample size. Additionally, power to detect each variance parameter was low overall (in
most cases >1,000 total observations per treatment needed to achieve 80% power)
and decreased with increasing variance in non-target random effects. With growing
interest in variance as the parameter of inquiry, these power analyses provide a crucial
component for designing experiments focused on detecting differences in variance.
We hope to inspire novel experimental designs in ecology and evolution investigating
the causes and implications of individual-level phenotypic variance, such as the
adaptive significance of within-individual variation.
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INTRODUCTION
Recent advances in computing power and access to increasingly sophisticated statistical

tools such as generalized linear mixed effects models are changing research in ecology,

evolution and behavior. Research questions and data analyses are no longer confined to

the assumptions of clean experimental designs based on agricultural plots and Normal

error distributions. Researchers now commonly incorporate multiple levels of hierarchical

nesting (e.g., repeated measures) and can analyze data using a wide array of non-Gaussian

error distribution models. This change is epitomized by the recent increase in use of

linear and generalized linear mixed models ([G]LMMs: Bolker et al., 2009; J Touchon &

WM McCoy, 2014, unpublished data). These powerful tools permit appropriate modeling

of variation among groups and across space and time, allowing for more accurate extrapo-

lation of statistical results to unobserved data, as well as statistical tests of variance compo-

nents (Gelman & Hill, 2006; Bolker et al., 2009; Zuur et al., 2009; Zuur, Hilbe & Leno, 2013).

The upsurge in the use of LMM and GLMM has been facilitated by several recent

methods papers (Bolker et al., 2009; Martin et al., 2011; Dingemanse & Dochtermann,

2013; Schielzeth & Nakagawa, 2013) and textbooks (Gelman & Hill, 2006; Zuur et al., 2009;

Zuur, Hilbe & Leno, 2013; Bolker, 2015) specifically aimed at non-statisticians. While these

resources have accelerated the adoption of these tools, there are still too few resources

guiding researchers through the choices that must be made prior to the initiation of a new

experiment, such as the sampling scheme that will optimize the power of an experiment

requiring analysis by linear (Moineddin, Matheson & Glazier, 2007; Scherbaum & Ferreter,

2009; Martin et al., 2011) and generalized linear (Johnson et al., 2014) mixed models. In this

paper, we develop a blueprint for conducting power analyses for GLMMs using the lme4

package (Bates et al., 2014) in the R statistical programming environment (R Development

Core Team, 2014). We focus on a specific application aimed at detecting differences in

variance among- and within-groups between clusters of groups, such as differences in

the amount of variation among individuals (group) between the treatments (cluster) of a

manipulative or observational experiment.

Power analysis is fundamental to good experimental design, but is often overlooked

(Jennions & Møller, 2003), or in the case of GLMMs, simply too difficult to implement

for many practitioners. Power analyses can be especially daunting for GLMMs because

they require large simulations with complex, non-Normal and non-independent data

structures (Johnson et al., 2014). In this paper we take advantage of recent developments in

the lme4 package in R that simplify the process of simulating appropriate data (>version

1.1–6). Despite the increasing use of GLMMs in ecology and evolution and growing

interest in variance, we are aware of no papers that present power analyses for statistical

tests on variance using GLMMs, and only one paper presenting power analyses for fixed

effects in GLMMs (Johnson et al., 2014). Indeed, Johnson et al.’s (2014) analysis illustrates

that power analyses conducted for hierarchically structured experiments that do not

incorporate random effects can generate biased estimates of fixed effects, highlighting

the need for a better understanding of these approaches.
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While most applications of GLMMs to date have focused on detecting differences

in fixed effects while appropriately accounting for random effects (e.g., Johnson et al.,

2014), GLMMs are under rapid development and many new applications are now

possible (e.g., modeling heterogeneous error variance: Kizilkaya & Tempelman, 2005;

Cernicchiaro et al., 2013). With growing interest in variance as the parameter of inquiry

(Moore, Brodie & Wolf, 1997; Lynch & Walsh, 1998; Benedetti-Cecchi, 2003; Hill & Zhang,

2004; Nussey, Wilson & Brommer, 2007; Dingemanse et al., 2010; Tonsor, Elnaccash &

Scheiner, 2013; Westneat, Wright & Dingemanse, 2014), there is an increased need for

accessible, flexible simulation-based power analyses that assess power to detect differences

in random effects—the magnitude of variation present among repeated measures at a

specific hierarchical level (Gelman & Hill, 2006; Zuur et al., 2009)—by treatment.

Here we present parameterization and power analyses for random-intercepts and

random-slopes GLMMs that test for differences in variation among- and within-groups

(e.g., differences in the amount of variation among- and within-individuals in different

treatments of an experiment). We focus on three key parameters: (1) Among-group

variation in intercept; (2) Within-group variation in intercept; (3) Among-group variation

in slope. We examine each of these comparisons in two contexts. First, we describe

the optimal ratio of groups (e.g., hospitals, schools or individuals) to observations

within groups (e.g., patients, students, repeated observations of each individual) that

maximizes power to detect differences in each variance parameter. In experiments with

binomially distributed response variables, observations within groups are organized into

j sampling occasions, each containing n Bernoulli observations (e.g., individuals are each

measured n times for the presence or absence of a behavior in each sampling occasion

j). Here we discuss the ratio of groups to total observations within groups (n ∗ j), and

consider how varying n and j affect power to detect each variance parameter. Second,

we explore how power to detect differences in specific variance parameters is affected

by increasing variation in non-target parameters (e.g., how power to detect differences

in among-group variation decreases as within-group variance increases). We consider

both random-intercepts and random-slopes models because of their generality as focal

parameters for most applications, and choose to focus on the extreme case of hierarchically

structured binomial data because binary response data (e.g., the presence or absence of a

behavior) contains the least possible amount of information per observation and yet is a

common data format for a variety of endpoints measured in ecology.

We use vocabulary and examples from behavioral ecology to illustrate our models

because of their immediate applicability to emerging questions in this field. Specifically, we

evaluate power to detect significant differences in among-individual variation in reaction

norm intercept and slope, and within-individual variation in intercept between individuals

(i.e., among individuals aggregated by treatment) (Nussey, Wilson & Brommer, 2007;

Dingemanse et al., 2010). Our methods extend current approaches used in behavioral

ecology for quantifying among-individual variation away from simply testing whether

there is significant deviation from a null model of no variation (Martin et al., 2011; Van

de Pol, 2012; Dingemanse & Dochtermann, 2013)toward quantifying and contrasting
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the magnitude of among- and within-individual variation among multiple groups of

individuals.

While we focus on behavioral ecology as the primary application for these power

analyses, these analyses are generally appropriate for comparing variation in hierarchically

structured data. For example, similar methods could be used to evaluate power to detect

the effects of a new experimental district-wide policy on variation among schools in stu-

dent performance, or to evaluate variation among individuals in foraging success between

populations (e.g., birds in an urban environment experience canalized behavior relative to

birds in a natural environment, possibly reducing diversification; see De León et al., 2011).

In an effort to present a framework that is customizable for a diversity of research

problems, we focus on a general sampling scheme in which several Bernoulli observations

(n > 1) within multiple sampling occasions (j > 1) are available for each individual.

Under this sampling scheme multiple probabilities of “success” (e.g., the probability of

displaying a behavior) are available for each individual, which is necessary for quantifying

within-individual variation (variation in the probability an individual displays a behavior

between sampling occasions). However, we note that often in behavioral ecology only a

single Bernoulli observation (n = 1) is available for each sampling occasion j. We include

a description on how to modify this general case to accommodate single observations per

sampling occasion in Supplemental Information 1. Finally, while we focus on the binomial

GLMM, the framework presented here generalizes easily to other error distribution models

such as Normal, log-Normal, or Gamma (for continuous responses) or Poisson or negative

binomial (for count responses).

METHODS
Linear mixed model
We begin by introducing a general linear mixed model (LMM) to illustrate the variance

components we are interested in (Fig. 1) and their applications in behavioral ecology.

We provide only a brief introduction to LMMs here because they have been extensively

discussed in several recent reviews and textbooks (Gelman & Hill, 2006; Zuur et al., 2009;

Stroup, 2012; Zuur, Hilbe & Leno, 2013; Dingemanse & Dochtermann, 2013; Bates et al.,

2014; Bolker, 2015). We use the notation of Stroup (2012) to facilitate a transition to the

binomial GLMM model, which is the focus of our power analyses.

A two treatment linear mixed model can be written as:

yijk|b0ik,b1ik ∼ Normal(µijk,σ
2
εk) (1)

ηijk = β0k + b0ik + (β1k + bik)Xijk (2)

Identity link: ηijk = µijk (3)
b0ik

b1ik


∼ MVN


0

0


,


σ 2

0k σ01k

σ0lk σ 2
1k


. (4)

Here, a single phenotypic measurement yijk is of individual i, at level j of the covariate X

(in studies of animal behavior the covariate of interest is often an environmental gradient)

Kain et al. (2015), PeerJ, DOI 10.7717/peerj.1226 4/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.1226/supp-1
http://dx.doi.org/10.7717/peerj.1226/supp-1
http://dx.doi.org/10.7717/peerj.1226/supp-1
http://dx.doi.org/10.7717/peerj.1226


Figure 1 Reaction norm plots for a two treatment LMM. In all graphs bolded black lines depict
treatment mean reaction norms and thin lines depict reaction norms of individuals. Grey envelopes in
(C) illustrate the magnitude of within-individual intercept variation. Here among-individual variation
in intercept (A), slope (B), and within-individual variation in intercept (C) is larger in treatment 2.

in treatment k. This model is composed of three components: the treatment mean in

environment j (β0k + β1kXijk), the unique average response of individual i across the

environmental gradient (b0k + b1kXijk), and a residual error due to the variation around the

mean of individual i(σ 2
εk), which is assumed to be homogenous across X and among

all individuals in treatment k, but is allowed to vary by treatment. Individuals vary

from the treatment mean reaction norm in both their intercept (b0ik) and slope (b1ik),

which together compose the total phenotypic variance attributable to among-individual

variation. This individual contribution is quantified using a random intercepts and slopes

model with a multivariate Normal (MVN) distribution (4). Variation among individuals

in intercept and slope are σ 2
0k and σ 2

1k respectively; covariance between intercept and slope

is given by σ01k. In a LMM, the linear predictor directly predicts the mean, as shown by the
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identity link function in Eq. (3). In a GLMM, the linear predictor predicts a function of the

mean g(x), which must be linearized through the use of non-identity link functions; for

example, we use the standard logit (log-odds) link for Binomial GLMM.

Among-individual variation in intercept
In behavioral ecology among-individual variation in intercept σ 2

0k describes the amount of

variation around average behavior that occurs among individuals (Fig. 1). In field studies,

σ 2
0k often describes variation among individuals in their average behavior in the average

environment (see Nussey, Wilson & Brommer, 2007; Westneat et al., 2011). Previous work

has demonstrated that individuals from a diversity of taxa vary in their average behavior

in many different environments (Bell, Hankison & Laskowski, 2009). Yet, comparisons of

among- and within-individual variation in average behavior (or other forms of plasticity)

among populations or treatments remain underrepresented (e.g., Westneat et al., 2011;

Dingemanse et al., 2012). For example, Westneat et al. (2011) found that female house

sparrows vary less from one another in their average provisioning behavior than male

sparrows. In the model presented here, the random intercept (b0ik) for each individual

(e.g., male and female nest provisioning rates are drawn from Normal distributions with

different variances) is drawn from a treatment-specific Normal distribution.

Within-individual variation in intercept
Within-individual variation in intercept (σ 2

εk) is defined as the amount individuals

vary around their own average behavior. Within-individual variation is routinely used

for the calculation of repeatability in studies of animal personality (Bell, Hankison &

Laskowski, 2009; Dingemanse et al., 2010) or more often is simply regarded as noise,

despite the well established ecological and evolutionary implications of within-individual

variation (Stamps, Briffa & Biro, 2012; Biro & Adriaenssens, 2013; Westneat, Wright &

Dingemanse, 2014; Cleasby, Nakagawa & Schielzeth, 2015). For example, a variable predator

environment may select for individual prey that vary greatly around their mean behavior to

remain unpredictable (Stamps, Briffa & Biro, 2012). LMMs can directly quantify patterns

of within-individual variation when repeated measures within multiple individuals

are available, facilitating comparisons of consistency responses between individuals

(Dingemanse & Dochtermann, 2013). Here we are interested in determining if σ 2
εk differs

by treatment. In other words, do individuals in one population or treatment exhibit

more intra-individual behavioral variation than individuals from a second population

or treatment?

Among-individual variation in slope
Substantial empirical work has shown that individual animals in a variety of taxa display

variation in phenotypic plasticity (Martin & Réale, 2008; Mathot et al., 2011; Dingemanse

et al., 2012); using mixed models to quantify this variation has been the primary focus of

several recent papers (Martin et al., 2011; Van de Pol, 2012; Dingemanse & Dochtermann,

2013). Among-individual variation in phenotypic plasticity has implications for the rate of

evolutionary change, population stability and population persistence (Wolf & Weissing,

2012; Dingemanse & Wolf, 2013); thus defining those populations exhibiting greater
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individual variation in plasticity could help distinguish stable populations and populations

with a high probability of micro-evolutionary change (Pigliucci, 2001; Ghalambor,

Angeloni & Carroll, 2010). To quantify group differences in plasticity variation, multiple

measurements within each individual across an environmental gradient are required. Here

we are interested in determining if σ 2
1k differs by treatment.

Binomial GLMM
We assess power of a binomial GLMM for detecting differences in variation by treatment.

This model can be written as:

yijk|b0ik,b1ik,vijk ∼ Binomial(Nijk,πijk) (5)

ηijk = β0 + b0ik + (β1 + b1ik)Xijk + vijk (6)

Inverse-logit: πijk = 1/(1 + e−ηijk) (7)
b0ik

b1ik


∼ MVN


0

0


,


σ 2

0k σ01k

σ01k σ 2
1k


(8)

vijk ∼ Normal (0,σ 2
vk). (9)

Here, yijk is the number of “successes” in Nijk observations of the ith individual in

treatment k at the jth sampling occasion. When an environmental covariate (X) is present,

we assume one sampling occasion occurs at each level of the covariate j. Here, in the

absence of an environmental covariate, the linear predictor reduces to ηijk = β0 + b0ik + vijk

and the jth occasion is simply a repeated sampling occasion in the same conditions. Note,

when Nijk = 1 there is only 1 observation per sampling occasion j, making yijk a Bernoulli

response variable (see Supplemental Information 1). When yijk is Bernoulli, overdispersion

(vijk) and thus within-individual variation is not identifiable.

In this model πijk describes the underlying probability of individual i in treatment k at

occasion j exhibiting a behavior. Variation in π isdetermined by the linear combination of

predictors on the logit (log-odds) scale: group intercept (β0), group slope (β1), individual

unique intercept (b0ik), slope (b1ik), and observation level overdispersion that decrease

predictive power at each observation (vijk). This linear predictor is transformed with

the inverse-logit link to produce πijk, which follows a logit-Normal-binomial mixed

distribution.

We use an observation-level random effect to model additive overdispersion (Browne et

al., 2005), which models increased variance (following a Normal distribution with variance

σ 2
vk) in the linear predictor on the link scale (Nakagawa & Schielzeth, 2010). Overdispersion

is used to quantify within-individual variation because it models variation in π between

each sampling occasion j for each individual. Here the magnitude of overdispersion is

allowed to vary by treatment (for an example of multiple data sets where this occurs see

Hinde & Demétrio, 1998), which is a focus of our power analysis.

The transformation through the inverse-logit function makes each of the three target

variance components difficult to visualize with a concise figure. However, because the

binomial GLMM model follows similar patterns as the LMM, we present power analyses
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for the binomial GLMM using the visual aid presented for the LMM (Fig. 1). Finally, we

simulate data for a fully balanced design without losing generality. See Martin et al. (2011)

and Van de Pol (2012) for a discussion on experimental designs where individuals are

assayed in partially overlapping environments and when only single measurements are

obtained for some individuals.

Simulations
All data were simulated in the R statistical programming environment using newly

developed simulation capabilities of the lme4 package (>version 1.1–6, Bates et al., 2014).

Guidelines for parameterizing the GLMMs and running data simulations and power

analyses are provided in Supplemental Information 1. For a given total sample size, we

present simulations for determining the optimal ratio of total number of individuals versus

the number of repeated measures within individuals needed to provide power to detect

a difference among treatments 80% of the time. We conducted simulations for multiple

ratios of individuals to total observations within individuals, varying both sampling

occasions (j) and Bernoulli observations within sampling occasions (n). Next, we describe

simulations that evaluate how increasing “noise” (variation in non-target random effects)

affects power to detect differences in targeted variance comparisons.

For both scenarios we simulate data with biologically relevant parameter values that

illustrate common trends in power. At extreme parameter values the trends presented

here may not hold due to interactions between the variance components that arise at

the boundaries of binomial space. We do not dwell on these exceptions since they are

unrealistic for most empirical data sets, but suggest exploration of these exceptions with

code provided in Supplemental Information 1.

We ran 2,800 simulations for each combination of parameter values. The significance

of a given random effect was assessed using likelihood ratio tests (LRTs) between models

with and without the focal random effect. To correct for the known conservatism of the

LRT when testing for σ 2
= 0 (due to a null value on the boundary of parameter space),

we adopted the standard correction of dividing all p-values by 2 (Pinheiro & Bates,

2001; Verbeke & Molenberghs, 2000; Fitzmaurice, Laird & Ware, 2004; Zuur et al., 2009).

This correction was appropriate for all p-values because each LRT compared models

that differed in only a single degree of freedom. Power is estimated as the percentage of

simulations that provide a corrected p-value smaller than 0.05. We insured the validity of a

nominal p-value of 0.05 by confirming that 2,800 simulations of a scenario with equivalent

standard deviations in both treatments did not result in rejecting the null hypothesis more

than 5% of the time. Under extremely low numbers of individuals (∼2–4) power to detect

differences in the null case exceeded 5% (∼10–15%), possibly inflating power in these

cases. Regardless, random effects cannot be reliably estimated with such low sample sizes

and therefore in most cases such experimental designs should be avoided.

Scenario 1: Determining the optimal sampling scheme
Most researchers face limitations imposed by time, money and access to samples, and

are therefore confronted with the question of how resources should be divided between
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individuals and measures within individuals. To investigate the optimal allocation of

sampling effort between the number of individuals and number of observations per

individual, we simulated two data sets for each variance comparison (see Table 1 for a

summary of all simulations).

First, using three hypothetical total numbers of Bernoulli observations per treatment

(total sample size per treatment, TSST), we manipulated either the ratio of individuals

to sampling occasions (σ 2
0k and σ 2

1k), or the ratio of individuals to Bernoulli observations

within sampling occasions (σ 2
vk). For comparisons of σ 2

0k and σ 2
1k we manipulated the

ratio of individuals to sampling occasions, holding the number of Bernoulli observations

constant at 5, because power follows a non-monotonic pattern across these ratios for

σ 2
0k and σ 2

1k(Figs. 2 and 3). Conversely, for comparisons of σ 2
vk we manipulated the ratio

of individuals to Bernoulli observations and held the number of sampling occasions

constant at 5 because power follows a non-monotonic pattern across ratios of individuals

to Bernoulli observations for σ 2
vk (Fig. 4). For comparisons of σ 2

0k, and σ 2
vk we simulated

TSST of 600, 1,200 and 2,400, and for comparisons of σ 2
1k TSST were 300, 600, and 1,200.

For example, for b1ik with a TSST of 300, the most extreme ratios were 30 individuals

with 2 sampling occasions and 2 individuals with 30 sampling occasions. While using

only 2 samples for a grouping variable (individuals) is never suggested for a random

effect, we include this combination as an illustration of the low power that results from an

ill-conceived sampling scheme. For each variance comparison we simulated three different

effect sizes (2, 2.5, and 3 fold difference in standard deviation by treatment).

Next, we simulated data sets with increasing numbers of Bernoulli observations for

comparisons of σ 2
0k and σ 2

1k (Figs. 5A and 5B) and with increasing numbers of sampling

occasions for comparisons of σ 2
vk (Fig. 5C). For these simulations we used 1, 3, 5, 10 and 15

Bernoulli observations or sampling occasions. Ratios of individuals to sampling occasions

(σ 2
0k and σ 2

1k) or individuals to Bernoulli observations (σ 2
vk) followed the intermediate

TSST from the simulations described above. For example, for comparisons of σ 2
0k we

simulated 1, 3, 5, 10 and 15 Bernoulli observations for ratios of individuals to sampling

occasions ranging from 120:2 to 2:120. For all comparisons we simulated data using an

effect size of a 2.5 fold difference in standard deviation by treatment.

In all Scenario 1 simulations, both β0 and β1 were constrained to a single value

for all treatments. For comparisons of among-individual variation in intercept no

environmental covariate was used causing each sampling occasion to occur in the same

conditions. Additionally, σ 2
vk was held constant among treatments. For comparisons of

among-individual variation in slope we held σ 2
vk constant. Finally, for comparisons of

within-individual variation in intercept, no environmental covariate was included and σ 2
0k

was held constant among treatments. All parameter values used in simulations for both

Scenarios can be found in Table S1.

Our goal in Scenario 1 was to isolate changes in a single variance parameter, but

exploration of the dependence among multiple variance components and the mean may

be warranted if it is relevant for a specific problem. Incorporating concurrent changes

in intercept, slope and overdispersion parameters can be easily implemented with slight
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Table 1 Parameter values for all simulations. For example, Scenario 1: Fig. 2C illustrates power to detect differences in σ 2
0k across ratios of individuals to sampling

occasions with a TSST of 2,400 at effect sizes of 2×, 2.5×, and 3×difference in standard deviation by treatment.

Target
variance

σ 2
0k σ 2

1k σ 2
vk

Scenario 1 2 1 2 1 2

Figure 2A 2B 2C 5A 6A 3A 3B 3C 5B 6B 4A 4B 4C 5C 6C

Parameter Sampling occasions Bernoulli
obs

σ 2
vk Sampling occasions Bernoulli

obs
σ 2

vk Bernoulli observations Sampling
occasions

σ 2
0k

TSST 600 1,200 2,400 240–3,600 2,400 300 600 1,200 120–1,800 1,200 600 1,200 2,400 240–3,600 2,400

# Individuals 2–60 2–120 2–240 120–2 2–240 2–30 2–60 2–120 60–2 2–120 2–60 2–120 2–240 2–120 2–240

# Sampling
occasions

60–2 120–2 240–2 2–120 240–2 30–2 60–2 120–2 2–60 120–2 5 5 5 1–15 5

# Bernoulli
observations

5 5 5 1–15 5 5 5 5 1–15 5 60–2 120–2 240–2 120–2 240–2

Effect sizes 2; 2.5; 3 2; 2.5; 3 2; 2.5; 3 2.5 2.5 2; 2.5; 3 2; 2.5; 3 2; 2.5; 3 2.5 2.5 2; 2.5; 3 2; 2.5; 3 2; 2.5; 3 2.5 2.5
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Figure 2 Power to detect differences by treatment in among-indiviudal variation in intercept. Power
to detect differences in σ0k for three effect sizes (ratio of σ0k between treatments) and three TSST (total
sample size per treatment). Colored circles indicate the ratio of individuals to sampling occasions that
optimizes power for each effect size. Each scenario was simulated with 5 Bernoulli observations per
sampling occasion.
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Figure 3 Power to detect differences by treatment in among-indiviudal variation in slope. Power to
detect differences in σ1k for three effect sizes and three TSST . Colored circles indicate the ratio of
individuals to sampling occasions that optimizes power for each effect size. Each scenario was simulated
with 5 Bernoulli observations per sampling occasion.
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Figure 4 Power to detect differences by treatment in within-indiviudal variation in intercept. Power
to detect differences in σvk for three effect sizes and three TSST . Colored circles indicate the ratio
of individuals to Bernoulli observations that optimizes power for each effect size. Each scenario was
simulated with 5 sampling occasions.
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Figure 5 Power under increasing Bernoulli observations or sampling occasions. Power to detect
differences in σ0k (A) and σ1k (B) under increasing Bernoulli observations per sampling occasion; σvk (C)
under increasing sampling occasions. In (A) and (B) ratios of individuals to sampling occasions follow
Figs. 2B and 3B respectively. In (C) ratios of individuals to Bernoulli observations follows Fig. 4B. In (A)
and (B) colored circles indicate the ratio of individuals to sampling occasions that optimizes power for
each level of Bernoulli observations. In (C) colored circles indicate the ratio of individuals to Bernoulli
observations that optimizes power for each level of sampling occasions.
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modifications to the code presented in the online supplement. We show initial results of

relaxing some of these assumptions in Scenario 2, but full exploration of these possibilities

are beyond the scope of this paper.

Scenario 2: Measuring the ratio of overdispersion to effect size
Decreasing the ratio of the variance in the target random effect to total variance influences

power to detect differences in the target variance among treatments. Therefore, we

simulated four levels of “noise” (magnitude of non-target random effect variance)

assuming a Normal distribution with increasing standard deviations (0.1, 0.5, 1.0, 2.0)

(Fig. 6). These correspond to ratios of target variance parameter effect size to non-target

variance of 25:1, 5:1, 5:2, and 5:4. For comparisons of σ 2
0k and σ 2

1k,“noise” was simulated

with increasing variation in within-individual variation (σ 2
vk), while for comparisons of

σ 2
vk noise was simulated with among-individual variation in intercept (σ 2

0k). For each

variance parameter ratios of individuals to repeated measures followed the largest TSST

sampling scheme used in Scenario 1 and an ES of a 2.5× difference in standard deviation

by treatment.

RESULTS
Scenario 1: Determining the optimal sampling scheme
Power to detect differences between treatments for each variance component increases

with total sample size (TSST) and effect size (ES) (Figs. 2–5). For a given TSST power

depends on the ratio of the number of individuals to the number of repeated measures

per individual; however, the optimal ratio of individuals to repeated measures varies

depending on TSST and target variance parameter. For example, power to detect both

σ 2
0k and σ 2

1k is non-monotonic across ratios of individuals to sampling occasions (Figs. 2

and 3), but is an increasing function of the number of Bernoulli observations within

sampling occasions (Figs. 5A and 5B). Additionally, for each variance parameter the ratio

of individuals to repeated measures within individuals that maximizes power is dependent

on both TSST and ES. As TSST and ES increases, greater numbers of individuals relative to

repeated measures within individuals leads to higher power for each variance parameter.

At a low sample size (TSST = 600) (Fig. 2A) power to detect σ 2
0k ismaximized at a ratio of

individuals to sampling occasions of 6:5 at smaller effect sizes (2×, 2.5×) and 10:3 at a large

effect size (3×). Under a larger sample size and a small effect size (TSST = 2,400, ES = 2×)

(Fig. 2C) power is maximized at a ratio of approximately 2:1, while under a large sample

size and large effect size (TSST = 2,400, ES = 2.5×, 3×) (Fig. 2C), power is maximized at

ratios ranging from approximately 5:1 to 13:1.

At a low sample size and effect size (TSST = 300, ES = 2×), power to detect σ 2
1k

is maximized at a ratio of 12:5 (Fig. 3A), while larger sample sizes and effect sizes

(e.g., TSST = 600, ES = 2.5×, 3.0×; TSST = 1,200, ES = 2.5×, 3×) favor ratios heavily

weighted towards having more individuals versus more repeated measures (ratios ranging

from approximately 5:1 to 10:1; Figs. 3B and 3C). Power to detect σ 2
1k is higher overall and

less sensitive to deviations from the optimum ratio than power to detect σ 2
0k (Fig. 3).
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Figure 6 Power under increasing non-target variation. Power to detect differences in σ0k (A) and σ1k
(B) under increasing variation in σvk; σvk (C) under increasing variation in σ0k. Noise is given as the
ratio of effect size to variation in the non-target variance parameter. In (A) and (B) ratios of individuals
to sampling occasions follow Figs. 2C and 3C respectively. In (C) ratios of individuals to Bernoulli
observations follows Fig. 4C. Colored circles indicate the ratio of individuals to sampling occasions (A,
B) or Bernoulli observations (C) that optimizes power for each level of noise.
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Power to detect σ 2
vk follows a strikingly different pattern than σ 2

0k and σ 2
1k. Power to

detect σ 2
vk is non-monotonic across ratios of individuals to the number of Bernoulli

observations within sampling occasions (Fig. 4), and is an increasing function of the

number of sampling occasions (Fig. 5C). At low sample sizes (e.g., TSST = 600) power

to detect σ 2
vk ismaximized by devoting nearly all of the available resources to repeated

measures within individuals (ratios of approximately 1:30 to 3:40; Fig. 4A); however, at a

large sample size and effect size (e.g., TSST = 2,400, ES = 3.0) power is maximized at a

ratio of individuals to Bernoulli observations of approximately 5:6 (Fig. 4C).

Scenario 2: Power under increasing non-target random effect
variance
Power to detect differences in variance components is strongly affected by the proportion

of total variance that can be attributed to the target variance component (Fig. 6).

Increasing variance in non-target random effects decreases power to detect differences

in the target variance parameter by treatment. However, the ratio of target to non-target

variance does not alter the optimal ratio of individuals to repeated measures for the

target variance comparison (Fig. 6). Figure 6A demonstrates that power to detect

σ 2
0k decreases substantially as the magnitude of within-individual variation increases.

Detecting differences in σ 2
1k depends only on total random effect variation at extreme

ratios of individuals to sampling occasions (e.g., 80:3) (Fig. 6B). Finally, detection of σ 2
vk

is largely independent of the magnitude of among-individual variation at large ratios of

ES to non-target variance, as indicated by overlapping curves in Fig. 6C. However, when

among-individual variation in intercept is very large (Fig. 6C: Red curve), power to detect

σ 2
vk decreases because individual mean responses approach 0 or 1, reducing the amount of

detectable within-individual variation.

DISCUSSION
The power analyses presented here establish a framework for designing experiments

focused on detecting differences in variance components by treatment using GLMMs.

These results should serve as a baseline upon which researchers can expand to address

their own specific problems. Nevertheless, our findings reveal some important general

trends that should be considered when designing experiments. Our results demonstrate

heterogeneity in power across sampling schemes (ratio of individuals to repeated

measures and partitioning of repeated measures into sampling occasions and Bernoulli

observations), and differences in which sampling scheme maximizes power for different

components of variance (Figs. 2–5). As expected, power declines rapidly for low sample

sizes and small effect sizes (Figs. 2–4). However, for large TSST and relatively large effect

sizes (3 SD difference between treatments), >80% power is retained across many different

combinations of individuals to repeated measures for each component of variance

(Figs. 2–5). Not surprisingly, power to detect differences in the target random effect

declines with increasing variance in the non-target random effects (Fig. 6).

Power to detect σ 2
0k is non-monotonic across ratios of individuals to sampling occasions,

and is an increasing function of the number of Bernoulli observations per sampling
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occasion. Power is maximized with ratios weighted towards having more individuals

(Fig. 2), and quickly declines with alternative sampling ratios when total sample sizes and

effect sizes are small. The analyses are however more robust to deviations from this ratio

when TSST and ES are large (Fig. 2C). Finally, of all the random effect parameters we

analyzed, power to detect σ 2
0k isthe most sensitive to the amount of “noise” present in the

model, decreasing rapidly with increasing within-individual variation (Fig. 6).

Power to detect σ 2
1k isalso non-monotonic across ratios of individuals to sampling

occasions, and is maximized with a ratio of individuals to sampling occasions ranging from

2:1 to 5:1 as TSST increases (Fig. 3). On average, testing for differences in σ 2
1k are more

powerful than for σ 2
0k across all sampling schemes and ES (Figs. 2 and 3), and requires

fewer samples to obtain 80% power.

Finally, power to detect σ 2
vk isnon-monotonic across ratios of individuals to Bernoulli

observations and is an increasing function of the number of sampling occasions.

Depending on sample size, sampling schemes ranging from maximizing Bernoulli

observations to ratios of individuals to Bernoulli observations of 1:2 maximizes power

(Fig. 4). Unlike σ 2
0k, power to detect σ 2

vk is largely independent of additional variance in the

model (Fig. 6C), such that power to detect σ 2
vk isnearly equivalent at all levels of σ 2

0k except

under the case of extreme values of σ 2
0k.

Collectively these results indicate the importance of clearly defining a biological

question, designating the focal random effect, and knowing the expected magnitude of

total variation when determining the appropriate experimental sampling design and TSST .

Even at larger effect sizes, failure to account for system noise can lead to insufficient power

and a failed experiment. Our findings should serve as a strong warning to empiricists

interested in variance components that power analyses should be performed when

designing experiments in order to overcome the problems of overall low power, large

heterogeneity in power to detect different variance components, and heterogeneity in

sampling scheme required to optimize power.

By introducing new strategies for analyzing variance among treatments we hope to

inspire novel experimental designs in ecology and evolution. For example, the power

analyses presented here can inform the design of experiments aimed at quantifying

heterogeneous within-individual variation by environment, which may lead to novel

insights on the adaptive significance of within-individual variation (Westneat, Wright &

Dingemanse, 2014).

In addition, these analyses answer the calls of researchers over the last decade for

methods to investigate effects of treatment level variance on the variance of dependent

variables (Benedetti-Cecchi, 2003). Transitions from one discrete environment to another

(e.g., presence or absence of predators) are often classified as a form environmental

variation, but switching between two distinct but relatively constant environments does

not reflect environmental variation per se, such as temporal changes in the magnitude,

pattern, and/or frequency of the environmental over time (Benedetti-Cecchi, 2003;

Benedetti-Cecchi et al., 2006; Miner & Vonesh, 2004; Lawson et al., 2015). When this form of

environmental variation is manipulated or natural variation exploited in an experimental
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context, within-individual variation can be described as the variable response of indi-

viduals to this variation in the environment. In this context, within-individual variation

may itself be a form of phenotypic plasticity, and may have profound implications for

understanding the evolution of environmentally induced plasticity, and the evolution of

labile traits generally (Stamps, Briffa & Biro, 2012; Biro & Adriaenssens, 2013; Westneat,

Wright & Dingemanse, 2014).

Further considerations
Heterogeneous within-individual variation
In our power analyses we have made a few important simplifying assumptions. First,

we assume that within-individual variation in both intercept and slope is homogenous

among individuals within the same treatment. Additionally, we assume homogeneity of

within-individual variance across an environmental gradient. However, these assumptions

may not be true for some natural or experimental populations. In fact, it has recently been

proposed that assessing the magnitude of variation in within-individual error variance

within a single individual across an environmental gradient or among individuals exposed

to the same environment/treatment is an important metric that may help to explain

the evolution of plasticity (Cleasby, Nakagawa & Schielzeth, 2015; Westneat, Wright &

Dingemanse, 2014). Power to detect differences in the magnitude of among-individual

variation in within-individual variation by treatment (Cleasby, Nakagawa & Schielzeth,

2015) and heterogeneity of variance across an environmental gradient are interesting

research questions that deserve attention, but are beyond the scope of this article. We also

note that practicality limits exploration of increasingly complicated scenarios, despite their

conceivable statistical feasibility and intrinsic charm due to complex novelty.

Covariance among intercept, slope, and variance components
All of our simulations assessed power to detect differences in a single target variance com-

parison between treatments, holding all other variance parameters constant (Table S1).

However, manipulating non-target variation generates additional variation that is expected

to decrease power to detect differences in the target variance parameter. Because we

assumed no slope variation in models where intercepts were allowed to vary and no

intercept variation in the models focused on variation in slopes, we did not discuss power

to detect covariance terms. However, these parameters can co-vary and the covariation

among these parameters may contain a wealth of biologically relevant information. For

example, covariation between phenotypic plasticity and within-individual variation may

be tightly linked via developmental tradeoffs, which can lead to greater developmental

instability in highly plastic individuals (Tonsor, Elnaccash & Scheiner, 2013). Indeed,

it is not known whether an individual’s reaction norm slope and within-individual

variation around that reaction norm are always linked or if these relationships can be

context-dependent. Similarly, we do not know if stronger behavioral responses lead to

greater canalization of behavior. Understanding how to parameterize GLMM and how to

optimize experiments to detect these covariances will be a useful step toward advancing

evolutionary theory on adaptive, maladaptive and random patterns of variation.
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Covariance between intercept and slope has been described extensively in theoretical

papers and has been explored in earlier power analyses for LMM (Dingemanse &

Dochtermann, 2013); however, empirical studies documenting significant covariance

between these parameters remain rare (Mathot et al., 2011; Dingemanse et al., 2012).

While covariance among these parameters may be uncommon, it is also likely that most

experiments have insufficient power to detect such covariance. Additional analyses that

determine power to detect significant differences in intercept and slope covariation for

GLMMs is another important step considering the lack of current evidence for covariation

reported in the literature.

Within-individual variation in slope
Research, including ours, on among-individual variation in plasticity assumes fully

repeatable plasticity within each individual, causing among-individual differences in

phenotypic plasticity to be calculated using a single reaction norm for each individual

(Dingemanse & Wolf, 2013). However, quantifying only a single reaction norm for each

individual fails to capture any potential variation in plastic responses within an individual

around its mean reaction norm, which may inflate estimates of among-individual variation

and mask important variation that is subject to selection (Dingemanse & Wolf, 2013).

Despite the reasonable assumption that each experimental individual would exhibit

variation in their reaction norm if it were repeatedly measured, we are aware of no studies

that demonstrate repeatable behavioral plasticity for a single individual when assessed

multiple times.

Heterogeneity in sampling scheme and environment
In our simulations all individuals were measured an equal number of times and all

treatments contained the same number of individuals, a luxury often not available

to empiricists that often deal with missing data and unbalanced designs. Intuitively,

unbalanced sampling schemes will lower the power to detect among-individual variation

(Van de Pol, 2012); however we do not know the rate at which statistical power is lost with

the magnitude of imbalance for a particular sampling design. In highly unbalanced designs

or when data have many missing observations state-space models may be a more powerful

alternative to GLMMs for separating different types of variability (Schnute, 1994). Future

research should follow the lead of Van de Pol (2012) to determine how power to assess

differences in variance for GLMM is affected by incomplete sampling, specifically when

only a single measure is available for some individuals.

Experiments with more than two treatments
Finally, these power analyses were created for a two-treatment scenario—“homogenous”

environmental variation treatment and a “variable” environmental variation treatment.

However, it is commonplace to have more than two treatments. Fortunately, our

framework for conducting power analyses can be easily generalized for exploring power

for experiments with more than two treatments (see Supplemental Information 1). In ad-

dition, syntax for the lme4 package in R for specifying GLMM is highly flexible and can be

written to restrict variance components to be the same in any number of treatments, while

Kain et al. (2015), PeerJ, DOI 10.7717/peerj.1226 20/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.1226/supp-1
http://dx.doi.org/10.7717/peerj.1226/supp-1
http://dx.doi.org/10.7717/peerj.1226/supp-1
http://dx.doi.org/10.7717/peerj.1226


unique variance estimates can be obtained for any other given treatment. For example in a

four treatment experiment composed of four levels of predator cue, two variance estimates

could be obtained for among-individual variation (e.g., a single estimate for the three

treatments with the lowest levels of predator cue and one estimate for the highest level of

predator cue). As in the two-treatment scenario, differences in variance among treatments

in a multi-treatment scenario can be evaluated with a likelihood ratio test.

CONCLUSIONS
Despite the ubiquity of random intercepts and slopes GLMMs in ecology, evolution, and

behavior, the use of GLMMs to compare variance components among populations or

among experimental treatments is rare. We hope the power analyses presented here will

spur novel empirical research and assist readers in constructing appropriate experimental

designs and statistical models to test how variance components are shaped by ecological

and evolutionary processes. We emphasize a clearly defined biological question and

designation of the focal random effect when designing experiments for this application

due to unique ratios of individuals to repeated measures required to optimize power for

each variance parameter and low overall power (in most cases >1,000 total Bernoulli

observations per treatment needed to achieve 80% power). Finally, we call for future work

analyzing the accuracy and precision of estimates comparing random effects by treatment

for GLMMs (which our code facilitates) similar to the work of Moineddin, Matheson &

Glazier (2007) and Van de Pol (2012) on the accuracy and precision of random effects

estimates. As Van de Pol points out, just because power is high does not ensure the accuracy

and precision of estimates.
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