
cdev examination

Initialaze, git clone https://github.com/ttdtrang/cdev-paper.git and set cdev-paper as working directory.

devtools::load_all('./')

## i Loading cdev.paper

Create expression matrix, random “normalization coefficients” and “normalized” matrix

NSAMPLES = 400 # I used 400 samples to highlight peroformance differences
nGene = 10000
m0 = matrix(rpois(NSAMPLES*nGene,100),ncol=NSAMPLES) # generate random read count matrix
v1 = runif(NSAMPLES,0.1,10) # generate "normalization coefficients" ()
m1 = sweep(m0,2,v1,'/')

Create simpler versions of cdef functions. First make a function to calculate cdev from vector of norm
coefficients

cdev.from.norm.coefs = function(c){max(c)/min(c)}

Make a function that recreates normalization coefficients from two matrices: normalized and non-normalized.
Note, that this function is only needed to construct cdev1 with same syntax as original cdev, in any real
application normalization factors can be used explicitly (see below).

norm.coefs.from.matrces = function(d1,d2){apply(d1/d2,2,median)} #actually just d1[1,]/d2[2,] can be used, but zeroes might cause problems, so I used median

Finaly, make a faster version of cdev, i have to note that it is rather trivial function that simply divide
maximal normalization coefficient by minimal one

cdev1 = function(d1,d2)cdev.from.norm.coefs(norm.coefs.from.matrces(d1,d2))

Lets compare performance of cdev function from the paper and my simple version

system.time({cdev.res=cdev(m0,m1)})

## user system elapsed
## 13.603 0.109 13.874

My version is much faster

system.time({cdev1.res=cdev1(m0,m1)})

## user system elapsed
## 0.194 0.056 0.253

Are results the same?

1

https://github.com/ttdtrang/cdev-paper.git


cat('cdev.res=',cdev.res,'\ncdev1.res=',cdev1.res)

## cdev.res= 89.9867
## cdev1.res= 89.9867

How to compare two normalization? Lets try RLE normalization for instance

library(edgeR)

## Loading required package: limma

v2 = calcNormFactors(DGEList(m0),method = 'RLE')$samples$norm.factors
m2 = sweep(m0,2,v2,'/')

Compare RLE and “random normalization”

system.time({cdev.res1=cdev(m1,m2)})

## user system elapsed
## 13.722 0.052 13.899

system.time({cdev1.res1=cdev1(m1,m2)})

## user system elapsed
## 0.235 0.020 0.259

Results are the same again

cat('cdev.res=',cdev.res1,'\ncdev1.res=',cdev1.res1)

## cdev.res= 90.01982
## cdev1.res= 90.01982

And even easier and faster way to compare two scaling normalization

system.time({cdev2.res1=cdev.from.norm.coefs(m1/m2)})

## user system elapsed
## 0.032 0.000 0.033

cdev2.res1

## [1] 90.01982

2


