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ABSTRACT
Normalization of RNA-seq data has been an active area of research since the problem
was first recognized a decade ago. Despite the active development of new normalizers,
their performance measures have been given little attention. To evaluate normalizers,
researchers have been relying on ad hoc measures, most of which are either qualitative,
potentially biased, or easily confounded by parametric choices of downstream analysis.
We propose a metric called condition-number based deviation, or cdev, to quantify
normalization success. cdev measures how much an expression matrix differs from
another. If a ground truth normalization is given, cdev can then be used to evaluate the
performance of normalizers. To establish experimental ground truth, we compiled an
extensive set of public RNA-seq assays with external spike-ins. This data collection,
together with cdev, provides a valuable toolset for benchmarking new and existing
normalization methods.

Subjects Bioinformatics, Computational Biology, Data Science
Keywords RNA-seq, Benchmarking, Assessment, Transcriptomics, Transcriptomic profiling,
Normalization, SVD, Spike-ins, Performance measure, Public datasets

INTRODUCTION
Between-sample normalization has long been recognized as a critical step in processing
and analyzing RNA-sequencing (RNA-seq) data. The problem has been studied for a
decade, resulting in a large array of methods (Bullard et al., 2010; Robinson & Oshlack,
2010; Anders & Huber, 2010; Kadota, Nishiyama & Shimizu, 2012; Li et al., 2012; Glusman
et al., 2013; Maza et al., 2013; Chen et al., 2014; Zhuo et al., 2016; Roca et al., 2017; Tran et
al., 2020; Dos Santos, Desgagné-Penix & Germain, 2020; Wang, 2020). Despite such active
development of new normalizers, evaluation schemes have mostly been impromptu.
The performance of normalizers has been measured either directly on their output,
i.e., the normalized expression levels, or indirectly via the results of downstream
analyses, such as differential expression (DE) detection, classification, or clustering.
As a prominent application of RNA-seq data, DE analysis has been routinely used to assess
normalization quality (Bullard et al., 2010; Dillies et al., 2013; Maza et al., 2013; Peixoto et
al., 2015; Evans, Hardin & Stoebel, 2017). Picking a DE calling method from a plethora of
options (Soneson & Delorenzi, 2013;Tang et al., 2015) ismostly arbitrary, yetmay introduce
unknown biases. Clustering is another common indicator of normalization performance
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(Rapaport et al., 2013; Risso et al., 2014a). Intuitively, the clustering of successfully
normalized expression profiles should reflect natural and meaningful partition of the
samples, such as tissue types, source organisms, cancer subtypes, etc. The recovery of
such partitions can be measured by rand index, Jaccard similarity, etc., which then serve
as the proxies for normalization performance. Except for clustering based on principal
component analysis (PCA) which can be easily reproduced thanks to the uniqueness of
the singular value decomposition, most clustering analyses are the result of multi-faceted
decision regarding the selection and transformation of features, the type of distance
measure, the clustering algorithm and its parameters. Eventually, such analysis may be
too low in resolution to differentiate normalization methods (Rapaport et al., 2013). Other
machine learning applications such as classification and clinical outcome prediction
have also been used to evaluate the quality of RNA-seq processing workflow, including
normalization (Zyprych-Walczak et al., 2015; Tong et al., 2020). Similar to clustering, these
applications involve hyper-parametric choices such as the type of feature transformation,
the feature selection procedure, the type of classifier, etc. all of which effectively create
an unlimited number of workflows, each of which may lead to a different ranking of
normalizers. Direct evaluation can avoid those arbitrary choices, hence mitigating potential
confounding factors and biases. Informally, direct evaluation schemes may be classified
into data-driven and ground-truth based. Data-driven schemes rely on intrinsic properties
computable solely on one expression matrix, such as coefficient of variation (CV) or
Spearman correlation coefficient (SCC). Some comparative investigations considered
the reduction of intra-condition variation, on its own, or relative to the inter-condition
variation as the criterion for good normalization (Dillies et al., 2013; Abrams et al., 2019).
Along the same line, the number of genes with low CV (Glusman et al., 2013; Wu et
al., 2019) was used as a quantitative manifestation of such expectations. Some authors
suggested the reduction in pairwise correlation among the gene profiles as an indicator
normalization success (Glusman et al., 2013;Wu et al., 2019). Although such decorrelation
of normalized gene expression profiles was indeed observed, complete decorrelation of all
gene pairs does not necessarily coincide with optimal normalization (Shmulevich & Zhang,
2002).

In ground-truth based evaluation, one obtains a correctly normalized expression matrix
and defines a means to quantify how close they can get to this ideal solution (Fig. 1). The
most common source of ground truth is simulation which was used in many comparative
studies (Dillies et al., 2013; Maza et al., 2013; Lin et al., 2016b; Evans, Hardin & Stoebel,
2017). A simulated data set allows one to perform multiple assessments on normalizers,
including their impact on downstream DE detection (Dillies et al., 2013; Maza et al., 2013;
Lin et al., 2016b; Evans, Hardin & Stoebel, 2017), via traditional measures such as false
positive rate, false negative rate, false discovery rate, area under the ROC curve, etc.,
and their ability to recover true expression levels, via the mean squared error (MSE) of
log-ratios, either for all genes (Maza et al., 2013) or for non-differential (i.e., reference)
genes (Evans, Hardin & Stoebel, 2017). Experimentally, ground truth of normalization
may come from quantitative real-time polymerase chain reaction (qRT-PCR). As the
only experimental technique to determine absolute expression level, qRT-PCR is often
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Figure 1 Ground-truth based evaluationmethods for RNA-seq normalization, in the context of RNA-
seq normalization workflows. A normalization method may produce normalized counts in one step, or
first identify the set of references which is then used for scaling the read count matrix. The assessment may
happen upstream, downstream, or right on the output of normalization. The sources of ground truth are
drawn as yellow boxes.

Full-size DOI: 10.7717/peerj.12233/fig-1

resorted to as a gold standard to judge the accuracy of gene expression estimates by
RNA-seq. However, considering that qRT-PCR can only quantify one gene at a time,
scaling it to thousands of genes poses significant challenges, especially in calibration across
thousands of asssays (Bustin & Nolan, 2004). Indeed, the correlation of measurements
between two qRT-PCR platforms is even lower than that between two RNA-seq platforms
(SEQC/MAQC-III Consortium et al., 2014), making it questionable whether scaled-up
qRT-PCR experiment remains as reliable. A more rigorous way to establish ground truths
is the mixing of samples at pre-defined ratios to create new samples with known titrations,
as done in the SEQC project (SEQC/MAQC-III Consortium et al., 2014). Specifically,
two commercially available samples, Universal Human Reference (UHR) and Human
Brain Reference (HBR), are mixed at 1:3 and 3:1 ratios to create two additional samples.
These four samples together define expected titration orders and ratios which can be
used to validate normalized expression levels (Abrams et al., 2019; Tong et al., 2020). Such
ground truth is different from practical settings in many ways. On one hand, the RNA
compositions are too different between the two samples UHR andHBR such that it is trivial
for downstream applications such as DE detection, clustering, or classification. On the other
hand, the variability among replicates of the same group are too small, much lesser than
that usually encountered among biological replicates. Together, it is difficult to extrapolate
the performance on those artificial samples into real-life setting. Yet another source of
experimental ground truth are RNA-seq assays with artificial RNA spike-ins (Jiang et al.,
2011) which must be added to biological samples at a known, constant concentration.
Although there have been different opinions, both advocating for (Lovén et al., 2012;
Chen et al., 2016) and cautioning against (Qing et al., 2013; Risso et al., 2014b) the use of
ERCC spike-ins in normalizing RNA-seq counts, they are nevertheless the only source of
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experimental ground truth by far. Spike-ins may be used very differently in processing
RNA-seq data (Risso et al., 2014b; Chen et al., 2016; Tran et al., 2020). In regression-based
normalization, a linear model is fitted on the set of spike-ins, and then used to compute
the expression levels of internal genes (Lovén et al., 2012). In factor analysis, spike-ins
are helpful as an indicator of unwanted variation which is detected and removed from
the internal genes (Risso et al., 2014a), Lastly, spike-ins may serve as external reference
genes whose counts are used to compute per-sample calibration factors (Chen et al., 2016;
Athanasiadou et al., 2019; Tran et al., 2020) which globally scale all genes in the same
sample. All three approaches would equalize the levels of spike-ins, yet the transformation
is more pervasive in the first two. In the scope of this paper, we only refer to the third type
of transformation, i.e., global scaling, as ‘‘normalization’’.

The complicated landscape of performance metrics for RNA-seq normalization, as
briefly surveyed above, exhibits several issues. First, comparative studies heavily depended
on DE detection, an analysis downstream of normalization. In the early days of RNA-seq
assays, normalization and DE detection are almost always coupled. As RNA-seq data are
used in a wider range of applications, it becomes insufficient to evaluate a normalizer only in
terms of DE analysis performance. Moreover, it is not practical to assess the performance of
a normalizer on all possible downstream applications. Second, most performance measures
in the field are data-driven. A major caveat with these metrics is the ability to optimize
them directly, resulting in algorithms which will easily top the rank if judged by their
own objective functions. For example, an algorithm could be devised to optimize the
de-correlation of gene expression profiles (Shmulevich & Zhang, 2002), or to maximize
the number of uniform (low CV) genes (Glusman et al., 2013). Apparently in such cases,
these metrics are no longer an unbiased measure of normalization performance. Thirdly,
almost all reputable benchmarking studies used simulation as an authoritative source of
ground truth. Despite being a powerful technique, simulation depends on variousmodeling
assumptions. Naturally, the assessment will be biased in favor of those normalizers sharing
the same assumptions with the simulator.

In addressing these issues, we propose a ground-truth based measure called condition-
number based deviation, or cdev, which measures the differences between two expression
matrices. The cdev between a normalized expression matrix and the ground truth is then a
succinct indicator of normalization performance. cdev was first utilized byTran et al. (2020)
to validate a new normalization method on real data sets. In this paper, we elaborated on its
mathematical properties, showing that it can be computed for any two expression matrices
of the same shape, and is symmetric as long as the normalizing operation only involves
scaling the samples. We demonstrated that cdev is indeed concordant with normalization
quality when measured by both upstream and downstream criteria. In companion with
cdev, we compiled a collection of spiked RNA-seq assays which can serve as experimental
ground truth for normalization. This toolset will assist in the validation and comparison of
RNA-seq normalizers, independent from downstream analyses and unbiased toward any
particular generative model of RNA-seq read counts.
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Table 1 Summary of simulations used in the study.

Inspection
intent

Number of
samples in
condition 1

Number of
samples in
condition 2

Number of
genes

Fraction of
DE genes

Fold-change
between two
conditions

Simulation
type

cdev as a function of
normalization quality

20 20 {2000, 10000,
20000, 50000}

0.5 4 Homogeneous
fold-change

20 20 20000 0.5 {1.5, 2, 3,
4, 5, 6, 7, 8}

Homogeneous
fold-change

20 20 10000 {0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9}

4 Homogeneous
fold-change

20 20 {2000, 10000,
20000, 50000}

0.5 Continuous Heterogeneous
fold-change

20 20 10000 {0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7,
0.8, 0.9}

Continuous Heterogeneous
fold-change

Concordance of cdev
and fold-change MSE

15 15 4000 {0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7,
0.8, 0.9}

Continuous Heterogeneous
fold-change

Use of cdev to compare
normalization methods

20 20 10000 {0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9}

Continuous Heterogeneous
fold-change

MATERIALS & METHODS
Simulations
Simulation of RNA-seq counts was performed in the same manner as done by Law
et al. (2014) and later by Evans, Hardin & Stoebel (2017). Specifically, baseline relative
abundance was generated for n genes in m samples of two conditions, according to
an empirical distribution obtained from real data (Law et al., 2014). In m/2 samples of
condition 2, a k percentage of these values were then multiplied by the fold-change f ,
creating k×n DE genes. From these baselines, counts were generated by sampling from
the corresponding negative binomial distribution. There are two types of simulations
used in this study. In the homogeneous fold-change scenario, a single fold-change was
applied for all DE genes. For a more realistic scenario, i.e., heterogeneous fold-change,
random values of fold-change were sampled from the uniform distribution Unif (1,10) for
up-regulated genes, or Unif (−10,−1) for down-regulated genes, such that 50% of the DE
genes are up-regulated, and 50% are down-regulated. This choice is arbitrary, since the
distribution of fold-change in real data sets comes in all shapes and sizes, and even shifted
by normalization.

A summary of different simulation scenarios were given in Table 1.

Compilation of RNA-seq data
RNA-seq data were collected from the Gene Expression Omnibus (GEO) database based
on the following criteria: having ERCC spike-ins added at a constant concentration across
a sufficiently large number of samples. The list of studies where these assays were originally
performed is available in Table 2.
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Table 2 Original studies where RNA-seq assays were performed with ERCC spike-ins.

Name Species Source GEO
accession

Genome
assembly

R data
package

Data
sets

Rat Bodymap
(Yu et al., 2014a; Yu et al., 2014b)

Rattus norvegicus Tissues GSE53960 Ensembl Rnor 6.0 data.rnaseq.
RnorBodymap

rat1, rat2

SEQC Toxicogenomics
(Wang et al., 2014;
Bushel, Paules & Auerbach, 2018;
Gong et al., 2014)

Rattus norvegicus Livers GSE55347 Ensembl Rnor 6.0 data.rnaseq.
Rnor

rnor1,
rnor2

Sarcoma (Lesluyes et al., 2016;
Lesluyes et al., 2019)

Homo sapiens Sarcoma samples GSE71119 GRCh38.p10 data.rnaseq.
sarcoma

sarcoma

Yellow-fever-virus infected cells Homo sapiens Hepatocytes and
Kupffer cells

GSE99081 GRCh38.p10 data.rnaseq.
YFV

yfv

Lymphoma (Zhao et al., 2019) Homo sapiens B-cell lymphomas GSE116129 GRCh38.p10 data.rnaseq.
lymphoma

lymphoma

Frog development
(Owens et al., 2016)

Xenopus tropicalis Embryos GSE65785 Ensembl Xtro 9.1 data.rnaseq.
XtroDev

xtro1m,
xtro2

Fly (Lin et al., 2016a;
Lin et al., 2016b)

Drosophila melanogaster Whole animals GSE60314 Ensembl BDGP6.28 data.rnaseq.
Dmel

dmelAC,
dmelAV

Mouse brain during
pregnancy and
postpartum (Ray et al., 2015)

Mus musculus Mouse brain regions GSE70732 GRCm38.p6 data.rnaseq.
MmusPreg

mpreg1a,
mpreg1b,
mpreg2a,
mpreg2b

All RNA-seq assays from said studies were downloaded from the Sequence Read Archive
(SRA) in FASTQ format and re-processed by a single workflow. In this workflow, the
raw reads were aligned to the corresponding transcriptome using STAR v2.7 (Dobin et
al., 2013), and quantified using RSEM v1.3 (Li & Dewey, 2011). Prior to alignment and
quantification, each species-specific transcriptome was extended by a set of 92 ERCC
spike-in sequences (Jiang et al., 2011) to create the software-specific indices. Metadata
were extracted and compiled manually from all available information in GEO, SRA, the
sequence identifiers in the FASTQ files, and original publication when necessary. The
biological samples were then separated into individual data sets, such that every sample
in the same set was added with the same amount of ERCC spike-ins being processed in
the same experimental procedure (Table 3). The data sets from each project were then
wrapped in R data packages (Table 2) to facilitate further analysis. All data packages are
publicly available on GitHub.

Ground-truth normalization
An expression profiling experiment of n genes on m samples typically results in an n×m
matrix Y, the element yij of which captures the measurement of gene i in sample j. In
RNA-seq, Y is the read count matrix output by the quantification process. To enable
between-sample comparison, the read counts in Y requires proper normalization. The
normalized expression matrix X is obtained by scaling Y against a set of m factors
ν = {ν1,ν2,...,νm} such that every gene in sample j is scaled by the same factor νj . Let
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Table 3 Compilation of re-processed RNA-seq data sets for use as ground-truths in normalization.

Data set label Experimental
design

Number of
genes

Number of
samples

Number of
good references

Spike-ins

dmelAC 2 environments× 16 strains× 2 sexes 17860 367 7 ERCC 78A, centrifuge
dmelAV 2 environments× 16 strains× 2 sexes 17860 165 15 ERCC 78A, vacuum
mpreg1a 3 brain regions× 3 post-partum stages 55493 27 14 ERCC, 1:10 dilution
mpreg1b 1 brain region× 3 post-partum stages 55493 9 15 ERCC, 1:100 dilution
mpreg2a 3 brain regions× 3 stages 55493 27 16 ERCC, 1:10 dilution
mpreg2b 1 brain region× 3 stages 55493 9 17 ERCC, 1:100 dilution
rbm1 5 organs× 4 stages× 2 sexes 32975 159 28 ERCC Mix 1
rbm2 6 organs× 4 stages× 2 sexes 32975 159 27 ERCC Mix 2
rnor1 26 chemicals 32975 64 37 ERCC Mix 1
rnor2 16 chemicals 32975 52 37 ERCC Mix 2
sarcoma 9 diseases× 2 metastatic states 58380 125 36 ERCC Mix, Life Technologies
lymphoma 4 cell lines× 3 treatments 58380 34 11 ERCC Mix 1, 1 µL to 5000 ng RNA
yfv 2 cell models× 3 infections 58380 24 21 ERCC Mix 1
xtro1m Time series, replicated in 2 clutches 21550 145 16 ERCC Mix 1, polyA enrichment
xtro2 Time series 21550 48 28 ERCC Mix 1, RiboZero enrichment

R be the set of reference genes whose expression levels are stable across all samples. If this
set is identified, the scaling factor νj can be computed for each sample as follows

νj =

∑
i∈Ryij(∏m

k=1
∑

i∈Ryik
)1/m .

Note that any multiplication of ν by a scalar results in a valid normalization. To obtain
expression levels at a comparable magnitude with the raw counts, we chose to scale these
factors by their geometric mean. This step facilitates the visual comparison of expression
matrices but does not critically affect the outcome of differential expression analysis
(Fig. S8).

In simulations, the reference set R is composed of all non-DE genes, i.e., those with fold-
change set to one. In real data sets, R contains the ERCC spike-ins detected at sufficiently
high number of read counts, that is, at least t reads in every sample. The threshold t ranges
from 10 to 100 depending on the data sets, in order to eliminate unreliable measurements
while retaining enough references to compute normalization factors. Manual examination
of each data set was documented in the R notebook published as part of the source code.

Condition-number based deviation (cdev)
Definition. Assuming that a ground-truth expression matrix, denoted A, is known, the
quality of the normalized expression matrix X can then be measured by the condition-
number based deviation (cdev) between X and A, denoted cdev(X,A). To compute
cdev(X,A), we first define the transformation from X to A. Let B be the matrix that
transformsX to A, i.e.,XB=A. As we are interested in recovering the pattern of differential
expression rather than the absolute concentration of each RNA species, any multiplication
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of the ground truth A by a scalar is considered a valid normalization. Equivalently, X is
considered valid if B=αI, where α is any scalar. Hence the quality ofX can be measured by
how much B deviates from the identity form. Such deviation is quantified by the condition
number of B, defined as κ(B)=‖B‖·‖B−1‖. Choosing ‖•‖ to be `2 norm, the condition
number can be calculated using the ratio between the largest and smallest singular values,
that is, κ(B)= σmax (B)

σmin(B)
. To compute B, one may recognize that B= (XTX)−1XTA, in which

(XTX)−1XT is theMoore–Penrose pseudoinverse ofX, denoted asX†. Hence the definition
of cdev can be written as follows

cdev(X,A)≡ κ(X†A)=
σmax(X†A)
σmin(X†A)

.

The pseudoinverseX† can be computed using the singular value decompositionX=U6VT ,
that is, X†

=V6−1U (Alter & Golub, 2004; Alter et al., 2004).
Existence and uniqueness. The existence of cdev(X,A) depends on that of the

pseudoinverse X† and the singular value decomposition of X†A, both of which are
guaranteed to exist. Hence cdev(X,A) always exists for any expression matrices X and
A. As the singular values of X†A are unique, so is cdev(X,A).

Symmetry. One should note that, cdev is not symmetric, i.e., cdev(X,A) 6= cdev(A,X)
for generally given matrices X and A. However, when the transformation from X to A
involves only column-scaling, we have cdev(X,A)= cdev(A,X). To see why, we first notice
that the transformation matrix B, by which XB=A, is now diagonal,

B=


b11 0 ... 0
0 b22 ... 0
...

...
. . .

...

0 0 ... bmm

.
The transformation from A to X is then C=B−1. By definition of cdev,

cdev(A,X)= κ(C)= κ(B−1)=
1/σmin(B)
1/σmax(B)

= κ(B)= cdev(X,A).

Consequently, when used to measure the changes in expression matrices made by global
scaling, cdev(X,A) is a symmetric measure.

Interpretation. cdev ranges from 1 to infinity, with a smaller cdev indicating more
similar expression patterns. The definition of cdev is closely related to that of a valid
normalization. Specifically, any multiplication X′ of the matrix X by a scalar results in
cdev(X,X′)= 1.

Because any non-empty subset of references result in a valid normalization, the result of
scaling Y by the full set of references R, denoted XR, should be similar to that of scaling by
the subset S⊂R, denoted XS. Hence, cdev(XS,XR) should be close to 1. This implication is
helpful in validating the behavior of cdev on real data sets (See the Results section).
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Implementation. Although cdev(X,A) can be computed for any X and A of the same
shape using the definition above, it ismuchmore trivial and efficient to compute in practice,
when X is transformed to (or from) A by global scaling. In particular, the singular values of
diagonal matrixB are now its elements. These elements also define the normalization vector
v which can be re-constructed by dividing an arbitrary row X[i,] of X by the corresponding
row A[i,] of A, as long as the feature i is not zero in any sample.

Normalization methods
As an illustration for the use of cdev , we compared six common normalization methods,
including Total Count (TC), Upper Quartile (UQ) (Bullard et al., 2010), trimmed mean
of M-values (TMM) (Anders & Huber, 2010), DESeq (Love, Huber & Anders, 2014),
DEGES/TMM (Differentially Expressed Gene Elimination Strategy) (Kadota, Nishiyama
& Shimizu, 2012), and PoissonSeq (Li et al., 2012). These methods were chosen due to the
simplicity of computation and/or availability of R implementation which allows quick
integration to the current analysis.

Each of these methods produce an m-vector v, the element vj of which is used to scale
sample j. While some methods produce close-to-1 scaling factors, some others require
further normalization of these factors, for example, by the geometric mean of the elements
vj , to keep the magnitude comparable. As the magnitude of v does not affect the validity
of its resulting normalization, a simplified description of v resulted by each method is
provided below to highlight the differences between them.

In TC, the scaling factor vj is proportional to the total count of all genes measured in
sample j, i.e.,

vTCj ∝
n∑

i=1

yij .

In UQ, the factor is computed by the upper quartile instead of the summation over gene
counts,

vUQj ∝Upper-Quartilei∈G∗yij,

in which G∗ is the set of genes with reads in at least one sample.
In TMM, the scaling factor is computed from the ratio of a gene count in sample j and

the reference sample, arbitrarily selected as the first one,

νTMM
j ∝

1
|GTMM|

∑
i∈GTMM

yij
yi1
,

in which GTMM denotes the set of genes retained by TMM criteria.
In DESeq, scaling factors are computed from the medians of the ratio between a count

in sample j and that in the pseudo-reference sample, which is computed by taking the
geometric mean of each gene over the samples,

ν
DESeq
j ∝mediani

[
yij(∏m

k=1yik
)1/m

]
.
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DEGES is an iterative strategy in which the count matrix is scaled by a normalization
method (such as TMM, DESeq, etc.), DE genes are identified by a DE caller (such as
edgeR, DESeq, etc.), and the normalization is repeated with DE genes now removed
(Kadota, Nishiyama & Shimizu, 2012; Sun et al., 2013). There are multiple choices for the
normalizer and the DE caller, as well as the number of iterations. In this work, we chose
TMM as the first-step normalizer, and edgeR as the second-step DE caller. With one
iteration, the workflow is TMM-edgeR-TMM, which we denoted as DEGES/TMM. The
scaling factor at iteration t is computed using the same method as that of TMM, while
restricting the set of genes to that of Gt ,

νDEGES/TMM
j (t )∝

1
|Gt|

∑
i∈Gt

yij
yi1
,

in which Gt is the set of genes identified as non-DE at iteration t .
PoissonSeq is also an iterative protocol which starts with fitting a Poisson log linear

model under the null hypothesis that no gene is DE, then removes those with low ranking
for goodness-of-fit, and fits again under the new hypothesis until convergence. The scaling
factor is computed in the similar manner to that of TC,

ν
PoissonSeq
j ∝

∑
i∈Gt yij∑m

k=1
∑

i∈Gt yik
,

in which Gt is the set of genes remained at iteration t .

Differential expression analysis
Differential expression (DE) analysis was used as a downstream indicator of normalization
quality. Among a great number of methods developed for calling DE genes, we chose limma
in consideration of its speed and robust performance relative to other methods (Soneson &
Delorenzi, 2013). The method was implemented in the R package limma (Law et al., 2014;
Ritchie et al., 2015).

Prior to DE calling, all the raw counts were increased by a small count (averaging
1), log-transformed, and normalized, using the function edgeR::cpm() from the edgeR
package (Robinson, McCarthy & Smyth, 2010). The resulted log-cpm matrix was then
passed to limma functions, following the limma-trend protocol (Law et al., 2014).

To verify that the magnitude of scaling factors does not affect the outcome of DE analysis
regardless of the specific choice of DE caller, we performed DE gene detection using
three methods limma-trend, DESeq (Love, Huber & Anders, 2014) and edgeR (Robinson,
McCarthy & Smyth, 2010), as implemented in the R packages limma, DESeq2, and edgeR,
respectively.

All the analyses were done in R computing environment (R Core Team, 2021).

RESULTS
Real data sets as experimental ground-truth
We presented here a diverse compilation of RNA-seq data sets with ERCC spike-ins,
covering five different species: Homo sapiens, Rattus norvegicus, Mus musculus, Xenopus
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tropicalis, and Drosophila melanogaster. This collection is by far the most diverse set of
publicly available RNA-seq assays with ERCC spike-ins.

Some earlier observations were reproduced on these data sets. First, the read counts
of ERCC spike-ins are highly correlated with one another, especially those at high and
moderate levels. This phenomenon was consistently observed in all data sets (Fig. S2),
corroborating what was predicted theoretically and observed empirically on a mouse data
set (Tran et al., 2020). Second, differences in library preparation protocol led to uneven
efficiency among the spike-in sequences. Such protocol-dependent biases were observed
earlier by Qing et al. (2013) (on data sets not available publicly) and by Owens et al. (2016)
(on frog development time series re-processed into xtro1m and xtro2 in this work). Earlier
studies such as Qing et al. (2013) and Risso et al. (2014a) also noted the fluctuation of reads
mapped to ERCC spike-ins across all samples. Although we did find the same behavior,
it should be noted that such fluctuation is an expected behavior of un-normalized read
counts, and does not invalidate the use of these sequences as experimental references
(Fig. S1).

Within each data set, the samples were spiked with the same concentration of ERCC
spike-in RNAs and prepared with the same experimental protocol. Consequently, spike-ins
are the true references in each data set. After normalizing by these references (see Methods
section for the exact formula), the levels of ERCC spike-ins become well equalized (last
columns in Fig. S3).

cdev is indicative of both upstream and downstream performance
In order for cdev to be a useful metric, it must be indicative of normalization quality
which may be controlled by the quality of the reference set. It was shown that including
differential genes in this set results in an invalid normalization (Tran et al., 2020). Using
simulated data, it was clear that cdev is linearly correlated with the reference set quality,
that is, inversely proportional to the fraction of differential genes included in the scaling
set (Fig. 2, left column). This is true in both simulation scenarios, whether the fold-change
is fixed for all DE genes (homogeneous fold-change), or varied over a continuous range
(heterogeneous fold-change).

In line with conventional assessment, we expect cdev to be predictive of DE detection
performance, for the improvement of normalization quality should lead to that of DE
detection.

On the same simulated data as mentioned above, cdev is highly indicative of DE calling
success which is summarized by the area under the receiver-operating characteristic (ROC)
curve (AUC) (Fig. 2). When fold change is fixed for all DE genes, AUC as a function of
cdev has a reverse sigmoid shape. The performance of DE calling drops significantly when
cdev reaches a high enough threshold (Figs. 2A–2F). When fold change of DE genes spans
a continuous range, this relation gets closer to a linear form (Figs. 2G–2J).

cdev is agnostic to the magnitude of scaling factors, as are DE gene calling procedures.
This behavior is demonstrated empirically on simulated data sets. DE performance is
almost identical on expression matrices scaled by the same-direction vectors spanning
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Figure 2 cdev as a function of normalization quality on simulation data. A, C, E, G, I: cdev as the func-
tion of reference set quality, measured in the fraction of true differential genes. B, D, F, H, J: cdev as a pre-
dictor of DE detection performance. (A-F) The relationship on homogeneous fold-change simulation; (G-
J) the relationship on heterogeneous fold-change simulation.

Full-size DOI: 10.7717/peerj.12233/fig-2
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several orders of magnitude. Not only limma, but also count-based methods such asDESeq
and edgeR, were not affected by the magnitude of scaling factors (Fig. S8).

Simplistic simulation enables us to tear apart the effects of different data characteristics
on cdev. By varying one parameter at a time, we found that the range of cdev is not affected
by the number of genes, nor the fraction of DE genes, but determined by the level of
difference among the samples, represented by the fold change between two simulated
conditions (Figs. 2A, 2C, 2E). Fold-change also dictates how tolerant DE detection can
be toward bad normalization. Specifically, when fold change is as high as 8, a normalized
expression matrix with cdev of 3 can still result in an AUC larger than 0.5. At smaller fold
change such as 2, this level of deviation from the ground truth is sufficient to drop the
AUC of DE detection to zero. This behavior makes sense, for it is easier to call DE when
the fold change is large.

Since the behavior of cdev on real data sets could not be validated with the same metrics
as that on simulation data, we examined if it behaves as theoretically predicted. Specifically,
cdev(A′,A) should be close to 1 with A being normalized by the true reference set R, and
A′ by any non-empty subset S of R. Meanwhile, cdev(Arand,A) where Arand is resulted
from a random set of genes should be larger. These expectations were observed in all
the real data sets (Fig. 3). In highly similar samples, such as those from brain regions of
mice with identical genetic background (data sets mpreg1a, mpreg1b, mpreg2a, mpreg2b),
cdev(Arand,A) is larger than cdev(A′,A), but never exceeds 10. In highly different samples,
such as those from 16 fly strains (dmelAC, dmelAV ), random normalization results in very
large deviation from the ground truth, with cdev(Arand,A) mostly around 100. Data sets
with average heterogeneity, such as those of rat tissues (rbm1, rbm2) or sarcoma samples
(sarcoma), exhibit cdev(Arand,A) in the middle range.

These observations illustrate the value range of cdev in practice, at the same time implies
the importance of normalization with respect to the heterogeneity of transcriptomic data.
Specifically, when the expression profiles are highly similar, wrong normalization is not
as detrimental as it would be on heterogeneous ones. Based on the behavior of cdev on
real data sets (Fig. 3), we may recommend acceptable values of cdev below which DE
performance is better than random. Specifically, on extremely diverse expression profiles
(dmelAC, dmelAV ), cdev up to 10may be acceptable for DE analysis. Onmoderately diverse
expression profiles (rbm1, rbm2, rnor1, rnor2, sarcoma), cdev below 5 may be necessary to
obtain good enough DE calling. On closely related expression profiles (mpreg1b, mpreg2b,
yfv), cdev should be as low as 2 in order to provide a good enough DE results. As cdev
is a continuous measure of normalization quality, these values should not be treated as
hard threshold, but rather a guideline to understand the normalization outcome. The
intent of cdev is not to predict downstream analysis performance, but rather to enable the
measurement of normalization quality independent from downstream analyses, as would
be argued in the Discussion section.

cdev as a robust alternative to fold-change MSE
Among a few ground-truth based measures of normalization quality, fold-change MSE
is an intuitive metric. As the name implies, a fold-change MSE closer to zero indicates a
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Figure 3 The behavior of cdev on various real data sets. In the labels, A denotes the ground truth which
is obtained by normalizing against R, the full set of reliably detected ERCC spike-ins in each data set, A′

the one resulted from normalizing against S ⊂ R, and Arand from normalizing against a random set of
genes.

Full-size DOI: 10.7717/peerj.12233/fig-3

better normalization. In Maza et al. (2013), fold-change MSE was defined for all genes,
while in Evans, Hardin & Stoebel (2017), it was narrowed down to the true reference (i.e.,
non-DE) genes. The latter version requires less information from the ground truth and
works equally well as the former, hence chosen to compare with cdev. When defined for
true references, the expected fold-changes are all one.

In order to compare the two metrics on simulation data, we normalized an expression
matrix by random sets of genes, computed both cdev and fold-change MSE with respect to
the corresponding ground truth. To ensure these randomly normalized matrices cover a
wide enough range of quality, we varied the fraction of differential genes allowed in the set
of scaling genes. On this simulated data, the two metrics are highly correlated (Fig. 4).

On real data, the relationship becomes more noisy (Fig. 5). On a closer look, the ‘‘noise’’
is actually caused by multiple slopes of the linear relation between cdev and fold-change
MSE. This complicated behavior happens due to the ambiguity of fold-change MSE by
which many improper normalizations are able to score zero fold-change error (Fig. 6E).
The problem is exaggerated on multi-factorial experiments, such as that of the lymphoma
data set. In this experiment, different cell lines originating from the parental cells were
treated with THZ1 (Zhao et al., 2019), resulting in samples of varied cell lines and THZ1
concentrations. When the data set is composed of samples from a single cell line, such as
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Figure 4 Relationship between cdev and fold-changeMSE in simulation, at varying fraction of DE
genes.

Full-size DOI: 10.7717/peerj.12233/fig-4

I10 or L20, the relationship between cdev and fold-change MSE is cleanly linear. When
the samples include those from the two cell lines, the two linear functions with different
slopes aggregate and make the correlation seem noisy (Fig. 5). Discordance between the
two metrics is caused by large cdev and small MSE. One such example was visualized in
Fig. 6. In this case, the random set of genes could not equalize the true references, nor
themselves, resulting in a poorly normalized expression matrix. This faulty result was able
to score a low fold-change MSE, but not a low cdev. Projections on the first two principal
components of the ERCC spike-ins showed that random references could not remove the
variation between two organs (heart and kidney), while the true ones properly removed
such variation. Although there may seem to be a few instances with ‘‘high’’ fold-change
MSE and ‘‘low’’ cdev, they are in fact part of a cdev-MSE function with a lower slope, thus
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Figure 5 Relationship between cdev and fold-changeMSE in practice. Upper panel: cdev as a function
of fold-change MSE in representative pairs of organs in Rat Bodymap data set, Mix 2. Lower panels: cdev
as a function of fold-change MSE in pairs of experimental conditions in the lymphoma data set, on sam-
ples of I10 cell line, L20 cell line, and the mix of two cell lines. The mixing of samples from two cell lines
(I10 + L20) emulates the increase in heterogeneity of transcriptomic profiles.

Full-size DOI: 10.7717/peerj.12233/fig-5

do not contribute to the discordance between the two metrics. Inspection of such cases
confirm that these random normalizations are clearly worse than the true one (Fig. S7).

Application of cdev to compare common normalization methods
cdev is specifically devised to measure performance by global scaling normalization.
To illustrate its use, we compare six common normalizers. Four of these are one-step
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Figure 6 A close-up examination of discordance between cdev and fold-changeMSE on real data sets.
In labels of the plots, A denotes the ground truth obtained by normalizing against the true references R,
Arand the result of normalizing against a random set of genes Rrand which has the same number of genes as
R, and X the un-normalized read count. In all cases, the column index j implies the selection of samples
from heart and kidney. (A) The relation between cdev and fold-change MSE on a subset of the rbm2 (Rat
Bodymap, ERCC Mix 2) data set, with an outlier scoring a small fold-change MSE and a very large cdev .
(B) This outlier was the result of normalization by a random set of genes which could not equalize the true
references nor themselves. (C) Projection of Arand [i ∈ R,j] on the first two principal components (PC)
reveals that organ difference is still the dominant variation on the spike-ins after this random scaling, as
opposed to (D) the correct normalization in which the spike-ins are no longer the source of variation be-
tween the two organs. (E) A hypothetical normalization explaining why fold-change MSE can be ambigu-
ous. In this example, three reference genes are all normalized incorrectly, yet resulting in no fold change
between two conditions, leading to zero fold-change MSE.

Full-size DOI: 10.7717/peerj.12233/fig-6

methods in which the scaling factors are computed using a closed form formula. The
other two (DEGES/TMM and PoissonSeq) are iterative procedures in which the set
of non-differentially expressed features are refined until convergence. In all the following
evaluation, the ground truth is computed by scaling against the set of known references. For
simulated data, this set includes the genes with fold-change set to 1 by the simulator, such
that the number of DE (and non-DE) genes satisfies the required percentage of differential
expression. For real data, it includes selected ERCC spike-ins which have sufficiently high
number of reads. In both simulation and real data, the true references were able to equalize
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themselves across all samples (Figs. 7 and 8). All normalizers performworse when the input
data becomes more challenging, i.e., contains a larger fraction of DE genes. At the highest
DE fraction simulated, none of the normalizers could stabilize the expression levels of
non-DE (i.e., reference) genes (Fig. 7D). As the quality of normalization decreases, so is the
performance of DE detection. The false positive rate (FPR) and AUC of DE calling similarly
decreases with increasing DE percentage, demonstrating a linear relationship with cdev
(Fig. 7E). Although false negative rate (FNR), i.e., miss rate, was used in previous studies
(Maza et al., 2013), we found it not informative for DE detection performance (Fig. S5).
Apparently, onemay achieve zero FNRby calling all genes differential.Meanwhile, incorrect
normalization is more likely to increase than reduce the variation, hence increasing the
chance of false discovery, but not that of missing the true differential genes. Based on the
high concordance between cdev and fold-change MSE on simulation data (Fig. 4), one may
expect that similar results would be observed with fold-change MSE. Our analysis indeed
confirmed that (Fig. S6).

Real data sets are more challenging, for none of the normalizers could stabilize the true
references properly (Fig. S3). Figure 8 shows such results on the Rat Bodymap data sets as
an example. In this case, the cdev between the raw count matrices and their corresponding
ground truths are even smaller than those produced by the normalizers, suggesting that
normalizationmay induce more variation, driving the expression profiles to deviate further
from the true patterns. These results imply that on such data sets, no normalization may
be better than doing with the wrong assumption.

DISCUSSION
Although we advocate for ground-truth based measures, we are aware that such preference
over data-driven metrics might be debated (Sun & Zhu, 2012). Most researchers may
choose to combine both ground-truth based and data-driven metrics for a comprehensive
assessment. However, we should be cautious thatmany data-driven criteria commonly used
in the field are not justified. Many of these criteria may have arisen from the requirements
of statistical analyses and are then mistaken to be the characteristics of the true signals.
For one example, matching distribution of read counts is sometimes required by statistical
tests. Although quantile normalization could satisfy this requirement perfectly, it would
destroy meaningful co-variance structures in the data (Qiu, Wu & Hu, 2013; Qin et al.,
2013). For another example, the reduction of intra- relative to inter-condition variation
will improve the statistical significance of variance-based hypothesis testing. A series of
transformations were proposed to help equalize the intra-condition variation (Willems,
Leyns & Vandesompele, 2008), but notably, they weremeant to be done after, not in place of,
a successful normalization. These examples also illustrate how important it is to separate the
assessment of a normalizer from that of any downstream analytic method. These methods
sometimes require data transformation, such as logarithm, mean centering, autoscaling,
etc. to perform better. Although such operationsmay improve the outcome, their effects are
specific for the analytic workflow. Meanwhile, normalization should bring an expression
pattern closer to what actually happens in biological systems, expectedly improving the
insights from all downstream analyses.

Tran and Might (2021), PeerJ, DOI 10.7717/peerj.12233 18/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.12233#supp-1
http://dx.doi.org/10.7717/peerj.12233#supp-1
http://dx.doi.org/10.7717/peerj.12233#supp-1
http://dx.doi.org/10.7717/peerj.12233


Figure 7 Application of cdev to evaluate common normalization methods on realistic simulations, at
varying fraction of DE genes. (A) Performance of various normalizers. (B, C) DE detection performance
as measured by false positive rate (FPR) and area under the ROC curve (AUC). (D) Heatmaps showing
expression levels of true references as normalized by different methods, in a simulation with 90% of the
genes being differential. (E) AUC of DE detection as a function of cdev , on the simulation with 90% of the
genes being differential.

Full-size DOI: 10.7717/peerj.12233/fig-7

Finding a reliable source of ground truth is a significant challenge impeding the use
of ground-truth based measures in RNA-seq normalization. Other expression profiling
platforms, such as qRT-PCR and microarray, are sometimes resorted to as the means to
validate RNA-seq measurements. It goes against common sense to use old technologies
to validate newer ones. More formally, Sun & Zhu (2012) argued that these platforms
are also subjected to measurement errors, thus should not be treated as gold standards.
Another way to establish the ground truth is to spike RNA-seq samples with a constant
amount of synthetic RNAs such as those devised by the External RNAControls Consortium
(ERCC) (Jiang et al., 2011; SEQC/MAQC-III Consortium et al., 2014). The usage of ERCC
spike-ins for normalization ground truth may also be debated. As observed in previous
studies, quantification of ERCC spike-ins was affected by the experimental protocol to
extract RNA and prepare sequencing libraries (Qing et al., 2013; Owens et al., 2016). These
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Figure 8 Application of cdev to evaluate common normalization methods on Rat Bodymap data sets.
The heatmaps show expression levels of ERCC spike-ins before and after normalization by various meth-
ods, denoted along with their condition-number based deviation from the ground truth.

Full-size DOI: 10.7717/peerj.12233/fig-8

biases probably happened because the poly-A tails on these synthetic sequences were
not optimized for poly-A selection (Lee et al., 2016). In general, the depletion of rRNA is
recommended over the selection of mRNA as an enrichment protocol, especially in the
presence of ERCC spike-ins. However, we made use of RNA-seq assays from libraries
prepared by both protocols by separating the samples into individual sets such that those
in the same set are prepared by the same protocol. Beside the effects from RNA extraction
protocol, ERCC spike-ins sometimes caused concern regarding the wide fluctuation in their
fraction of mapped reads across samples (Qing et al., 2013; Risso et al., 2014a). However,
this quantity is equivalent to the proportional abundance, thus are meant to vary with
the composition of RNA species. Such compositional variation can be illustrated by a
hypothetical experiment in which the samples of conditions # 1 and # 2 are composed
of only two genes A and B. Suppose gene A is stably expressed at level 1 and gene B is
differentially expressed at levels 1 and 3, the proportional abundance of gene A is then
0.5 and 0.25 in condition # 1 and condition # 2, respectively. In fact, it is the same reason
why normalization is needed for between-sample comparison of gene profiles. A quick
simulation revealed that these fractions may differ by two times or more (Fig. S1), similar to
what was noted on real data sets byQing et al. (2013). In light of this, we want to emphasize
that the ‘‘fluctuation’’ in fraction of reads mapped to ERCC spike-ins is an expected rather
than a concerning behavior.

Once a ground truth is defined, performance can be measured, conveniently and
objectively, by a similarity (or dissimilarity) measure. Although MSE is an intuitive and
easy-to-compute metric, the definition of fold-change MSE on more than two conditions
becomes overly cumbersome. An experiment with n conditions may have n(n− 1)/2
pairwise comparisons to make, hence the number of fold-change MSE to compute. In
contrast, cdev is grouping-agnostic and capable of comparing expression matrices as a
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whole. As demonstrated in the Results section, cdev is also more robust than fold-change
MSE, especially on heterogeneous conditions.

Although cdev could in principal be computed for any pair of expression matrices
X and Y , it is not as meaningful outside the context of global scaling normalization.
Since cdev(X ,Y ) is only symmetric when the transformation from X to Y (and Y to X)
involves only per-sample scaling factors, operations other than that will require additional
convention about the direction. However, we would advise against such convention and
recommend to keep cdev limited to the evaluation of global-scaling normalization. It is
a necessary restriction, for these operations are not necessarily mutually exclusive with
other non global-scaling ones, such as the removal of batch effects (Risso et al., 2014a;
Leek, 2014), or per-gene normalization (Li et al., 2017). For example, global scaling prior
to batch effect removal improves biological insight, compared to no scaling (Tran et al.,
2020). Due to such complementary nature, these operations are not meant to be compared
against one another, hence should be assessed by different means.

CONCLUSIONS
Performance measure has long been in the shadow of RNA-seq normalization, despite
a vibrant scene of normalizing method development. Most of the de facto measures
are either qualitative or potentially subjected to biases. Some were introduced without
much justification. We elaborated on the definition of cdev, its properties and applications,
showing that thismetric is highly indicative for normalization performance, proportional to
both upstream processing and downstream analyses in simulations. Along with this metric,
we re-processed and curated a collection of RNA-seq data sets with ERCC spike-ins. We
envision this toolset will be highly valuable in developing and evaluating normalization
methods.
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