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ABSTRACT
The COVID-19 pandemic and its virus variants continue to pose a serious and
long-lasting threat worldwide. To combat the pandemic, the world’s largest
COVID-19 vaccination campaign is currently ongoing. As of July 19th 2021, 26.2% of
the world population has received at least one dose of a COVID-19 vaccine
(1.04 billion), and one billion has been fully vaccinated, with very high vaccination
rates in countries like Israel, Malta, and the UEA. Conversely, only 1% of people in
low-income countries have received at least one dose with examples of vaccination
frequency as low as 0.07% in the Democratic Republic of Congo. It is thus of
paramount importance that more research on alternate methods to counter cell
infection and propagation is undertaken that could be implemented in low-income
countries. Moreover, an adjunctive therapeutic intervention would help to avoid
disease exacerbation in high-rate vaccinated countries too. Based on experimental
biochemical evidence on viral cell fusion and propagation, herein we identify
(i) extracellular pH (epH), (ii) temperature, and (iii) humidity and osmolarity as
critical factors. These factors are here in discussed along with their implications on
mucus thick layer, proteases, abundance of sialic acid, vascular permeability and
exudate/edema. Heated, humidified air containing sodium bicarbonate has long been
used in the treatment of certain diseases, and here we argue that warm inhalation
of sodium bicarbonate might successfully target these endpoints. Although we
highlight the molecular/cellular basis and the signalling pathways to support this
intervention, we underscore the need for clinical investigations to encourage further
research and clinical trials. In addition, we think that such an approach is also
important in light of the high mutation rate of this virus originating from a rapid
increase.
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INTRODUCTION
The COVID-19 pandemic caused by the SARS-CoV-2 virus is currently afflicting the
world population. The scenario epidemiologists are constructing is unfortunately
forecasting a long stay (Scudellari, 2020). COVID-19 infection often leads to severe acute
respiratory syndromes. However, extra pulmonary manifestations have also been
described e.g., hematologic, gastroenterological, renal, dermatologic, neurologic, and
psychiatric complications (AlSamman et al., 2020). Indeed, it is now clear that this disease
may turn into a dangerous systemic one involving several organs, which might become
symptomatic even after the virus becomes inactive. To contain and combat the pandemic,
the world’s largest COVID-19 vaccination campaign is underway (World Health
Organization, 2020), although the organizational machinery for vaccine supply, access and
administration is not without issue, and several setbacks have occurred in several
countries.

Global outlook
As of July 19th there were 562,547 new daily cases and 10,779 new deaths worldwide.
Furthermore 26.2% of the world population has received at least one dose of a COVID-19
vaccine (1.04 billion), whereas one billion have been fully vaccinated, with very high
rates in countries like Israel, Malta, and the UEA. Conversely, only 1% of people in
low-income countries have received at least one dose with examples of vaccination
frequency as low as 0.07% in the Democratic Republic of Congo (Worldometer, 2021)
Graphical representation of vaccination progress is accessible e.g., at Our World In Data
(Ritchie et al., 2020). It is thus of paramount importance that more research on alternate
methods to counter the COVID-19 disease is undertaken and that can be implemented in
low income countries. Furthermore, as breakthrough infections and infections from virus
variants are occurring even in countries with good vaccination rates, the study of
adjunctive therapeutic interventions is of paramount importance. It is also too early to
know the duration of protection of COVID-19 vaccines, and more research need to be
done on the vaccination efficacy on variants (Harvey et al., 2021). Due to the high rate of
mutations and emerging new variants, vaccines may need to be adapted to ensure
protection. Some data raise concerns on the level of protection provided by COVID-19
vaccines against some variants (Focosi & Maggi, 2021; Krishnan & Krishnan, 2021;
Chen et al., 2021; Baj et al., 2021). Amino acid substitutions in the spike protein (S-protein)
are an important virus strategy to evade the host immune response. Indeed, if the mutation
is in the antigenicity region of the S protein, this may allow viruses to escape host
antibodies and the genetic drift may represent a way for the virus to maintain its diffusion
in the human population. Whether genetic variations affect the related antigenic
phenotype will need to be confirmed by antigen analyses, using S genes with such mutants
(Ren et al., 2015). Thus, SARS-CoV-2 entry inhibitors have an important role against
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COVID-19 and research on therapeutic approached to that work alongside the vaccines
are still needed.

In this scenario, the discovery of cheap and easily available medical devices that could
help to prevent or ameliorate COVID-19 symptoms, thus avoiding advanced cases
clogging the sanitary structures and intensive-care-units, would be a great resource.
In addition, oxygen therapy intubation and mechanical ventilation is required when
respiratory failure occurs, especially in compromised patients, and this may yield
considerable health risks and higher frequency of death (Sanchez et al., 2008; Khan
et al., 2020). The need for an accessible, economical and easy to handle approach is
important as the pandemic is increasingly overwhelming the planet. Understanding virus
behavior in relation to pH levels, temperature and other micro environmental factors is of
paramount importance for virus inactivation and attenuation, vaccine formulation and
quality control, and drug targeting (Scheller et al., 2020). Thus, SARS-CoV-2 entry
inhibitors have an important role and COVID-19 and the research on therapeutics
approach are still needed, to work alongside the vaccines and other drugs approaches
(Dong et al., 2021).

Background and scientific rationale
We have focused our review on the biochemical, physiological and physical cellular
mechanism via which pH, osmolarity, humidity and temperature changes modulate the
micro-environmental airway tract in limiting virus infection and proliferation, with the
ultimate goal to discourage virus infection and modulate the cellular response against virus
infection. One of the possible approaches to modulate airway environment is warm
inhalation with sodium bicarbonate (SB). SB at 8.4% concentration is an alkaline solution
of approximately 8.5 pH, and is an alkalinizing agent widely used in the treatment of
metabolic acidosis (Drugs.com, 2021; Integrated Biomedical Technology, 2003) (see below).
Although no consensus currently exists on the utility of alkaline therapy for respiratory
acidosis, very little attention remains dedicated to this approach. Undoubtedly, controlled
studies are necessary to test the efficacy and efficiency of alkaline therapy to establish
the optimal mode of administration (dose, rate, and tonicity). However, most of the
controversies on alkaline therapy are based on intravenous administration of SB (Chand,
Swenson & Goldfarb, 2021).

Based on experimental data, we have outlined the cellular/molecular mechanisms that
work against the virus in the presence of SB warm vapour. This intervention could be a
highly valuable, safe, well-tolerated and cost-effective treatment as reported below,
although clinical information is scarce regarding the potential application of such an
approach, thus researchers may be unaware of its potential as an adjunct preventive
treatment in the fight against COVID-19. Therefore, herein we provide appropriate
information from the literature to provide a theoretical basis to propose SB warm
inhalation therapy as a worthwhile tool for further investigation in the fight against
COVID-19. To the best of our knowledge, few clinical trial has been performed
(US National Library of Medicine, 2020; Mody, 2020), although trials exist for other
pathologies. Results of SB clinical trials (although not via inhalation) for
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acidosis-associated diseases, such as diabetes, severe dehydration and renal insufficiency,
have been reported (Melamed et al., 2020; Quade, Parker & Occhipinti, 2021). At present,
SB inhalation can be used as a therapeutic agent in the treatment of acidosis caused
by cystic fibrosis (CF) (Gomez et al., 2020). The study reports that inhalation of aerosolized
SB on 12 CF volunteers is secure (no side effects were evidenced) and well tolerated even
at the highest dose (five mL saturated solution, pH 8.4%, twice a day). The benefits of
inhaled NaHCO3 are due to the increase of pH of the airway surface liquid (sputum
rheology improvement, sputum viscosity and viscoelasticity reduction). These changes
may be responsible of enhancing the respiratory immune defense favoring mucociliary
clearance to maintain airway hygiene. Other studies have demonstrated that the use of
hypertonic saline solution is an inexpensive, safe, and effective additional therapy in
CF patients (Taylor & Kuhn, 2007). Recently, an in vitro study provided molecular
evidence that SB may have a direct therapeutic effect on the bronchial epithelium (Gróf
et al., 2020) while confirming the safe therapeutic use of inhaled sodium bicarbonate.
A clinical study on COVID-19 (Wardeh, Conklin & Ko, 2020) reported a significant
improvement of COVID-19 patients after SB inhalation. Improved clinical parameters
were observed also in another clinical study (Mody, 2020).

As with other viral infections, SARS-CoV-2 and their variants thrive in specific
environmental conditions that optimize virus fusion. A mechanistic explanation of why
the therapeutic approach of SB warm inhalation may provide a hostile and detrimental
environment for the virus is discussed herein. SB-modulated environmental factors which
affect viral fusion include (i) external pH (epH), (ii) temperature, (iii) humidity and
osmolarity. These factors are discussed along with their implications on mucus thick layer,
proteases, abundance of sialic acid, vascular permeability and exudate/edema.

SURVEY METHODOLOGY
Papers found in Pubmed describing cellular/molecular mechanisms to support the use of
warm SB inhalation were considered. In particular, whenever available, data focused on
chemical/physical features such as pH, osmolarity, and humidity involved in SARS-CoV2
docking, replication and propagation steps were included, together with the activated
cell signaling. In case no published data on SARS-Cov2 were available, results regarding
other coronaviruses or similar viruses were discussed. Additionally, due to the
overwhelming publication rate, we also consulted the new COVID-19 platform resource,
CoronaCentral Dashboard (https://coronacentral.ai/) (Lever & Altman, 2021).

Papers with controversial, conflicting and opposing opinions/data were also considered
to provide a comprehensive and balanced overview.

Increased external pH may disadvantage virus infection
Extracellular pH (epH) affects many cellular/molecular structures including lipid
bilayers (Yamaguchi et al., 1982; Angelova et al., 2018), protein expression (Olson, 1993)
and even intracellular pH (Fellenz & Gerweck, 1988). pH is a critical factor whose change
gives rise to significant alterations in the protein structure. Conformational change of
viral proteins involved in docking and replication in the host cell could yield virus
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inactivation. Indeed, epH is one of the most important environmental conditions
influencing a virus’s infection (Grinstein, Swallow & Rotstein, 1991; Slonczewski et al.,
2009; Abou Alaiwa et al., 2014; El Badrawy et al., 2018; Stancioiu et al., 2020). Cell
membranes fusion of to the influenza virus is promoted by an appropriate acidic epH
depending on the virus (Helenius, 2013).

SARS-CoV-2 shares many of the characteristics of coronavirus and the general
mechanism for SARS-CoV-two infection has been identified on the basis of knowledge of
the other SARS-CoV and MERS-CoV. In particular, coronaviruses are stable at pH 6.0
and 37 �C (half-life 24 h), but are quickly and permanently inactivated by short-term
treatment at pH 8.0 and 37 �C (half-life 30 min) (Sturman, Ricard & Holmes, 1990).

Low pH is necessary for conformational changes (activation) of viral-glycoproteins
(Dollery, Delboy & Nicola, 2010; Yuan et al., 2018). The S glycoprotein protein is the
“viral armed wing” of a glycoprotein. Proteolytic activation of viral glycoproteins by
endosomal proteases also needs low pH (Yuan et al., 2018). It is well known that the
first stage of infection for Coronaviridae is S-protein-mediated attachment to the cell
surface receptor. However, SARS and other human coronaviruses may use redundant
mechanisms for cell docking e.g., ACE2, N-acetyl-9-O-acetyl neuraminic acid (sialic acid:
SA) moieties and heparan sulphate, thus many recent studies focused on molecular
modelling of SARS-CoV2-host docking. Many of these docking mechanisms are pH
dependent. So far, studies show that SARS-CoV-2 uses the ACE2 receptor as a main
docking protein (Yang et al., 2020; Teodori et al., 2020). ACE2 is essential for SARS-CoV-2
fusion, but it is uncertain whether ACE2 interactions are enough for SARS-CoV-2
binding. ACE2 is probably necessary for the entry of the virus but might not be the unique
or primary cell surface binding site. Heparan sulfate proteoglycans act as adhesion
molecules, perhaps making the interaction between SARS-CoV-2 and ACE2 easier. Thus,
infection modalities are more complicated than so far reported and a more appropriate
knowledge of the infection process is necessary for new drug discoveries (Gallagher et al.,
2013; Zamorano Cuervo & Grandvaux, 2020).

Sialic acids (SAs) are an important class of receptors for several human viruses infection,
including SARS-CoV binding to respiratory tract epithelium cells (Bouvier & Palese,
2008). SA-receptors are also important for CoVs docking, and the binding of the virus to
the host cell are pH-mediated (pH 5–6). Recently, it has been demonstrated that the
S-protein from SARS-COV-2 binds SAs (Baker et al., 2020; Milanetti et al., 2020).
Adequate virus-membrane fusion (i.e., fusion pore efficient forming and delivery/
transport of the viral RNPs into the nucleus) is necessary for new viral RNA replication,
transcription and translation of the viral proteins and formation of new viruses.

For several viruses, acidification of the capsid is critical for viral entry. In these cases,
viral capsids show protease active sites sensitive to pH. In addition, acidic pH similar to
endosomes’ pH induces a structural change in the capsid that induces autolytic protease
activity and this pH-dependent protease activity may be important for viral infection
(Salganik et al., 2012). The pH-activated proton-selective channel M2 also has an
important role in virus replication (Takeda et al., 2002). The M2 proton channel responds
to epH; specifically, low epH activates the channel and high epH closes the channel. M2
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mediates membrane scission during the budding of influenza viruses (Holsinger et al.,
1994). During infection, increased glycolytic activity of infected cells produces an
increased release of H+ from the infected cells endosomes through the viral M2 H+

channel, leading to a lowered epH at the cell-surface (Liu et al., 2016). These
mechanisms support viral reproduction. To our knowledge, no investigations exist on
ion-transmembrane-exchange-proteins modulation in SARS-CoV-2, although this is an
interesting topic to explore. Indeed, diseases of ion channel function, such as cystic fibrosis,
lead to dysregulated fluid levels in various lung compartments, and these diseases are
often associated with pulmonary infection (Rowe, Miller & Sorscher, 2005). Protease
machinery is also highly epH-dependent, as in the case of TMPRSS2 (transmembrane-
protease-serine-2) for S-protein priming. The TMPRSS2 is a proteolytic enzyme that forms
part of the ACE2 receptor and has been identified as fundamental. TMPRSS2 acts on
protein S at the S1/S2 cleavage site, detaching the S1 subunit and thus ensuring fusion with
the cell membrane. The proteolytic cut causes a conformational change that causes the
protein to open, resulting in the fusion peptide approaching the cell membrane.
Subsequently, the S2 subunit of the S protein, closes on itself, causing the formation of a
pore which leads to the completion of fusion (Nieto-Torres et al., 2014).

TMPRSS2 virus entry can be blocked by inhibitors of cellular TMPRSS2 (Yamaya et al.,
2016). TMPRSS2 might also promote viral diffusion and pathogenesis by diminishing viral
neutralizing antibodies recognition and activating CoV S-protein for virus-cell fusion
(Glowacka et al., 2011). TMPRSS2 is present in airway epithelial cells; it triggers the
fusion of the viral and endosomal membranes and has an optimal activity at acidic pH.
Priming of S-proteins by target cell proteases is fundamental for viral entry and cleavage at
the S1/S2 and the S2’ sites. The S1/S2 cleavage site of S-protein fosters many arginine
residues, indicating a high cleavability. Noteworthy, the cleavage site sequence can
determine the coronaviruses zoonotic potential. Indeed, host TMPRSS2 involvement in
viral diffusion has been described for COVID-19 (Mollica, Rizzo & Massari, 2020; Zipeto
et al., 2020).

In addition to the influence of epH on SAs-receptor docking, it can modify SA activity.
Virus neuraminidase (NA), a sialidase that is one of the major surface glycoproteins of
influenza viruses, needs an acidic environment to degrade SAs. The importance of SAs
on SARS-CoV-2 has been shown (Kim, 2020). Due to the ubiquitous distribution and
location of SAs, they modulate many cellular functions and pathological processes. SAs are
also the binding targets of a great number of pathogenic organisms and their toxins. NA
and hemagglutinin are two relevant virus antigens. The main functions of NA are the
cleavage of SAs from the host cells surface, aiding in the release of the new virus
produced by the infected cells and aiding virus transport through the sialated mucus,
present in the airway tract. Although there is scant information on the binding affinity of
SAs and NA, SA-binding and NA-cleavage are important factors for infection progression.
Both acidic epH and physiological temperature are necessary for good NA enzymatic
activity (Garcia et al., 2014).

Other studies suggest a host-variable protective role of SAs in secreted mucus (Zanin
et al., 2016). Respiratory mucus traps and neutralizes viruses (Eccles, 2020). Pathogen
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binding can be blocked by soluble mucins, secreted into airways which contain large
quantities of SAs. This complexity needs to be considered to understand the CoV
pathogenesis processes.

Little attention has been paid to the influence of epH on the immune response (Kellum,
Song & Li, 2004). Environmental pH influences multiple immunological functions,
unravelling an interplay between epH and immune cells (Díaz, Dantas & Geffner, 2018).
Extracellular acidosis is a hallmark of the inflammation processes. Accumulation of
protons in the extracellular environment is associated with the inflammatory course.
High concentrations of protons are recognized by innate immune cells as a “danger-
associated molecular pattern” (Casimir et al., 2018). Recent evidence suggests links
between acid-base balance and cytokine concentrations, with a certain level of acidosis
triggering the inflammatory condition. When acute infection is activated, the
phagocyte-based innate immune system plays a fundamental role since, the proton
concentration may provoke inflammation (Casimir et al., 2018). Proton-sensing G
protein-coupled receptors (e.g., GPR4) are important for pH homeostasis and
inflammation control (Kellum, 2002). Higher expression of GPR4 is observed in patients
with inflammatory disease (e.g., bowel inflammation; de Vallière et al., 2015). GPR4 is
upregulated by an acid epH and downregulated at pH 7.4, with very little activity observed
at a more alkaline pH (e.g., >7.4) (Chen et al., 2011;Dong et al., 2013). Increased expression
of many inflammatory genes (e.g., chemokines, cytokines, adhesion molecules, nuclear
factor kappa B pathway genes, prostaglandin-endoperoxide synthase 2, and stress
response genes) is observed when GPR4 is over activated. Acidosis, together with other
environmental factors, may act as a regulator of the immune response able to induce a
pro-inflammatory or a pro-resolving immune response depending on the context (Díaz,
Dantas & Geffner, 2018).

Many stages in the viral replication life cycle are dependent on a low epH, and the
SARS-CoV-2 virus appears no different. Thus, to combat viral progression, inhalation of
aerosolized SB could be an interesting preventive tool since it will increase the epH creating
an inhospitable environment for virus docking and replication. There are several
experimental studies on the influence of epH and modification of cell signalling and
cell physiology that are connected with virus infection, thus supporting our hypothesis.
Studies on SARS-COV-2 infection and epH are currently ongoing and slowly being
published. A recent paper with the same hypothesis has now been published (Wang, 2021),
further strengthening our proposal. Indeed, the authors hypotize that enriching the
environment of several negatively charged ions, including e.g., O2−, O−, O3−, CO3−,
HCO3−, NO3−, NO2−, and OH−, thus increasing epH, would discourage virus fusion.
Nonetheless, we believe the benefits of warm SB inhalation is not exclusively on epH
changes, but also other physicochemical characteristics such as humidity and temperature,
as reported below.

Increased extracellular temperature may disadvantage virus infection
Together with pH, temperature is another innate physiological barrier against
infections. Many microorganisms do not survive beyond certain temperatures. In addition,
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temperature exerts substantial mechanical and biochemical effects on the airway
epithelium.

The lung tissue represents the largest surface area of the human body exposed to
the external environment (Karamaoun et al., 2018). A large area of the bronchial
epithelium is sheltered by a mucus layer to protect against foreign particles and pathogens.
This mucus layer and periciliary layer are thick gel-like substances made of water and
mucins. The cilia present in the epithelium, by beating metachronously in the pericilia
layer, can transfer the mucus to the top of the trachea to be cleared. This mucociliary
transport and clearance is a fundamental defense mechanism of the lungs against invading
pathogens and is a major first line of defense against respiratory pathogens. Many
pulmonary diseases are associated with an impairment of the mucociliary clearance and
accumulation of mucus in airway lumen. Although several aspects of the bronchial mucus
dynamics still remain unclear, it has been shown that the temperature and relative
humidity (discussed below) of the inspired air can influence the efficiency of mucus
clearance (Saketkhoo, Januszkiewicz & Sackner, 1978; Boucher et al., 1981; Williams et al.,
1996; Karamaoun et al., 2018). Temperature in the respiratory tract is an important
environmental factor influencing virus infection and host reaction. For example, some
common cold viruses (e.g., rhinovirus) replicate more efficiently at 33–35 �C than at 37 �C
temperatures of the nasal cavity environment. A less robust interferon (IFN) and IFN-
stimulated-gene response is observed in respiratory epithelial cells at cool temperatures
(Foxman et al., 2015). Indeed, higher temperature induces higher expression of type I
and type III IFN genes and IFN-stimulated-genes in host cells of the respiratory tract
resulting in a generalized antiviral resistance. CoV induces a higher IFN-dependent
innate immune response at 37 �C than at 33 �C. Experimental data demonstrate that
SARS-CoV-2 also induces type I IFN expression following infection of macrophages.
Other investigations have shown that induction of temperature-dependent IFN following
rhinovirus infection depend on the mitochondrial antiviral-signaling (MAVS) protein, a
key signalling adaptor of the RIG-I–like receptors. RIG-I is a sensing molecule able to
distinguish viral dsRNA from host dsRNA. Once the sensor is activated, it interacts
with MAVS (mitochondrial antiviral) which, once activated, continues the signalling
cascade through the kinases TBK1 and IKKε. In addition, IKKε signalling also induces
many IFN-inducible proteins via the STAT1 pathway. The genes induced in response to
IFN-β, trigger the cell to block virus replication and induce antiviral protein secretion
in response to secreted IFN (Frieman & Baric, 2008). Some studies have also demonstrated
that SARS-coronavirus suppresses innate immunity by mitochondria and targets MAVS/
TRAF3/TRAF6 signalling. This severely limits host cell IFN responses (Shi et al., 2014).
IFN exerts its antiviral effects by inducing more than 300 IFN-stimulated genes with
diverse antiviral functions. SARS-CoV-2 infected cells have an impaired interferon
response suggesting that the virus disrupts the normal host cell interferon response
(Schneider, Chevillotte & Rice, 2014).

Advanced-stage COVID-19 patients with respiratory symptoms undergo oxygen
ventilation (Grasselli et al., 2020). This exposes patients to the inhalation of cold air which
produce pro-inflammatory substances (D’Amato et al., 2018). Exposure to cold air
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increases macrophage and granulocyte numbers in the lower airway tract (Larsson et al.,
1998). Moreover, cold-related dysregulation of respiratory mucociliary function inhibits
microorganisms and pollutants clearance (Clary-Meinesz et al., 1992). Thus, in addition to
its effects on epH, warm SB inhalation might provide a sub-optimal environmental
temperature for virus replication and serve to improve some of the respiratory mucociliary
function impairment associated with cold air inhalation. Intubation/ventilation may be
overused for COVID-19 patients and simpler and more widely available devices are
desirable which can similarly treat early-stage patients to avoid disease progression and
mitigate symptoms.

Throughout the preparation of this review paper, trials using steam inhalation for
thermal inactivation of SARS COVID-2 virus are being conducted and providing
encouraging results (la Marca et al., 2021).

Increased external humidity and osmolarity may disadvantage virus
infection
Virus survival and transmission also depend on humidity. Indeed, humidity and water
exchange between mucus and inhaled/exhaled air (evaporation/condensation) also
influence mucociliary clearance alone or in conjunction with temperature (Bustamante-
Marin & Ostrowski, 2017). It is well-known that as the air became drier, mucociliary
clearance slows. The influence of humidity levels on the mucous membrane environment
in animal models has been investigated in vitro at several temperatures, showing that
the mucociliary wave frequency was decreased in reduced environment humidity from
90% to 20% (Mercke, 1975).

Pathologic processes of the upper-respiratory-tract (mucosal congestion and edema)
could be influenced by mucosal microcirculation modulation controlling hypertonicity.
Reasonable evidence shows that the airway epithelium fluid layer is exposed to changes in
tonicity. Abnormalities in the homeostasis of the airway surface liquid layer lead to
consequent failure in maintaining an adequate lung defense. Abnormal airway surface
fluid respiratory tract epithelia fail to kill bacteria. Hypertonic saline affects mucociliary
clearance and clinical outcomes in chronic bronchitis (Wark & Mcdonald, 2018;
Bennett et al., 2020). Together with the biochemical effects described above, SB warm
inhalation may also provide a physical effect as an osmotic pump. SB warm inhalation
may create favorable osmotic conditions to repair damages from oxygen demand.
The inhalation of steam may alleviate the constriction of lung and air sacs, allowing mucus
and organisms to move out of the lungs more readily, and allow oxygen to diffuse into the
lungs more efficiently. In a review of 19 trials, that hypertonic saline solution (HS)
(nebulised as a fine mist through a mask or mouthpiece) appeared to be an effective
adjunct therapy during acute exacerbations of lung disease in adults (Wark & Mcdonald,
2018). In another study, inhaled HS was delivered to people with CF to promote mucus
clearance via an increased ionic strength (Alaiwa et al., 2016). Ongoing research using
steam inhalation therapy with the addition of natural products against COVID-19 are also
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being published (Chakraborty & Daniel, 2020; la Marca et al., 2021; Shanmugaraj et al.,
2021).

Warm SB steam inhalation therapy may be considered a safe medical device against
COVID-19 progression provided that some conditions are followed to avoid irritation
or scalding injuries, although these are very unlikely (Eschenbacher et al., 1991).
Approximately one L of water should be brought to the boil before adding 20 g of SB.
After turning off the heat, the head of the patient should be placed 30–40 cm above the
solution and covered with a cloth. The individual should then breath normally for 15 min
(Fig. 1). This therapy may be used as pre-exposure/exposure prophylaxis, as adjunctive
therapy (either during SARS-COV2 infection and COVID-19 disease progression) or
added in oxygen ventilator devices for severe COVID-19 patients. This protocol should be
implemented twice daily (Fig. 2).

Figure 1 Warm sodium bicarbonate (SB) inhalation modifies airway microenvironment fighting
COVID-19 progression. The treatment contemplates, twice daily, one L of water with 20 g of SB that
should be brought to the boil. When heat has been turned off, the head should be placed at 30–40 cm
covered with a cloth to breath normally for 15 min. Full-size DOI: 10.7717/peerj.12227/fig-1

Figure 2 Warm sodium bicarbonate (SB) inhalation therapy steps that may help to contrast
SARS-COV-2 infection and COVID-19 progression. The therapy may be used as pre-exposure/
exposure prophylaxis, as adjunctive therapy (either during SARS-COV2 infection and COVID-19 disease
progression) or added in oxygen ventilator devices for severe COVID-19 patients.

Full-size DOI: 10.7717/peerj.12227/fig-2
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CONCLUSION
Herein we have illustrated a rationale for combatting COVID-19 by modulating the
physicochemical microenvironment of the airway tissue which represents the first route of
virus infection. One method of achieving such a micro-environmental modulation is
through the administration of nebulized warm SB inhalation.

This proposal is in line with the “COVID Action Platform” of the World Economic
Forum to perform new evidence-based approaches: “to potentially mitigate the risk”
(World Economic Forum, 2020). Indeed, this approach might represent a pleiotropic
adjunctive strategy to limit SARS-CoV-2 infection/replication and disease progression
within host airways. Based on the molecular/cellular evidence herein above, warm SB
inhalation could be provided as a valuable preventive prophylaxis alongside other
preventive approaches. Such an approach could also be administered in the early stages of
the malady, to avoid the escalation of symptoms and the development of the most severe,
life-threatening stages. Furthermore, warm SB inhalation could also be provided alongside
oxygen therapy, appropriately modifying the ventilation devices

Most importantly, we highlight the possibility that SB warm inhalation could discourage
virus host cell adhesion and proliferation and avoid that the harshest outcome of the
disease occurs. Indeed, SB warm inhalation creates a hostile physicochemical environment
to undermine virus stability.

Warm SB inhalation currently remains a poorly explored, yet potentially underrated
and underappreciated option that warrants further study, but and it could yet play an
important role in the fight against COVID-19 disease progression. Indeed, further
studies are needed to prove thatmodulating these cellular biochemical/physical features
could be efficacious and safe against COVID-19 in vivo. Studies with CF suggest this
therapy to be safe, although too few studies are available to quantify the effectiveness
of this intervention, but the few reported above are encouraging. Early and timely
treatment with therapeutic regimens controlling virus replication and inflammation might
help to modify the course of disease progress, improve patients’ recovery rate and
time, ultimately avoiding the risk of hospital collapse sadly experienced even by most
western countries. SB inhalation can easily be performed in a domiciliary care setting and
could reasonably fulfil the extraordinarily urgent need for early, simple and cost-friendly
interventions. Simple SB inhalation may be effective to prevent or mitigate COVID-19
symptoms. This virtually cost-free modality would appreciably benefit the general
population, not only for pre-exposure prophylaxis, but also in protecting against
SARS-CoV-2 antigenic drift and future virus pandemics.
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