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ABSTRACT
Experimental studies provide a basis for understanding the mechanisms of rill
erosion and can provide estimates for parameter values in physical models simulating
the erosion process. In this study, we investigated sediment delivery during rill
erosion in purple soil. We used the volume-replacement method to measure the
volume of eroded soil and hence estimate the mass of eroded soil. A 12 m artificial
rill was divided into the following sections: 0–0.5 m, 0.5–1 m, 1–2 m, 2–3 m, 3–4 m,
4–5 m, 5–6 m, 6–7 m, 7–8 m, 8–10 m, and 10–12 m. Erosion trials were conducted
with three flow rates (2 L/min, 4 L/min, and 8 L/min) and five slope gradients
(5◦, 10◦, 15◦, 20◦, and 25◦). The eroded rill sections were refilled with water to
measure the eroded volume in each section and subsequently calculate the eroded
sediment mass. The cumulative sediment mass was used to compute the sediment
concentration along the length of the rill. The results show that purple soil sediment
concentration increases with rill length before eventually reaching a maximal value;
that is, the rate of increase in sediment concentration is greatest at the rill inlet
and then gradually slows. Steeper slopes and higher flow rates result in sediment
concentration increasing more rapidly along the rill length and the maximum
sediment concentration being reached at an earlier location in the rill. Slope gradient
and flow rate both result in an increase in maximal sediment concentration and
accumulated eroded amount. However, slope gradient has a greater influence on
rill erosion than flow rate. The results and experimental method in this study may
provide a reference for future rill-erosion experiments.

Subjects Ecology, Environmental Sciences, Soil Science
Keywords Purple soil, Rill erosion, Sediment concentration, Flume experiment,
Volume-replacement method, Ecology

INTRODUCTION
Soil erosion is a serious problem in China. Researching the soil erosion process and con-

trolling soil and water loss important to improving human survival in the environment.

It is also important for the sustainable development of poor areas in China especially (Lei,
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Zhang & Yan, 2009; Lei et al., 2008). In soil erosion, rill erosion contributes significantly

to water and soil loss on sloping farmland (Li, Zhu & Li, 2008; Bhattarai & Dutta,

2007; Miao et al., 2014; Kröpfl et al., 2013). In regions with purple soil, rill erosion is

an important mechanism of erosion on hillslopes, and is the main source of sediment

particles in the watershed. Rill erosion therefore has a potentially important effect on

the development and evolution of drainage-area landforms (Cai, Zhu & Wang, 2004;

Nearing, Norton & Bulgakov, 1997; Miao, Ni & Borthwick, 2010; Miao et al., 2015). In

recent decades, many different research techniques have been used to study rill erosion,

as outlined below. However, research into rill erosion in regions with purple soil remains

limited.

In 1947, Ellison (1947) proposed a conceptual linear feedback model to describe

the influence of rill sediment concentration on soil erosion process. Foster (1982)

distinguished rill erosion from interrill erosion and found that rill erosion led to an

increase in eroded sediment particles compared with interrill erosion. Rill erosion is what

the water flow scours the ground to form, when the slope thin layer flow assembles the

linear small water flow (Zhao et al., 2015; Zhao et al., 2013). The rills are a product that the

slope erosion turns to incising erosion. Abrahams, Parsons & Hirsh (1992) subsequently

conducted a more detailed and comprehensive study on the mechanisms of rill erosion

and the contributing factors. Since then, an increasing number of researchers in China

and elsewhere have begun to research rill formation, the characteristics of rill flow

hydraulics, and the process of rill erosion.

Zhang et al. (2002) designed a series of laboratory experiments to simulate rill erosion

and conducted an energetic analysis of the effect of dynamic conditions and rill length

on the degree of erosion. Xiao, Zheng & Jia (2003) used double flumes (a sand flume

and an experimental flume) in runoff plots on an upper slope on the Loess Plateau

to study the impact of flow rate and slope gradient on erosion yields in the plateau

region. Yuan et al. (2010) studied rill runoff and sediment transport on loess slopes

with constant-flow artificial drainage combined with rainfall simulation. Zhao et al.

(2014a) also studied rill runoff and sediment transport on loess slopes but used laboratory

experiments that simulated runoff scouring to infer a computational formula for runoff

and sediment-transport rate.

Casaĺı et al. (2006) advanced a volumetric method that estimates rill volume, and hence

erosion, from a series of cross-sectional areas along the eroded rill, on the assumption

that the eroded rill volume is equal to the volume of eroded soil. They highlighted that

changes in rill size and morphology can introduce measurement errors with this method.

An alternative method for measuring rill volume is to refill the rill with soil, tiny foam

particles, rice grains, or other such materials (Zheng, 1989). However, in these previous

studies, the rills were not well defined; rills of various sizes could not be identified

easily, resulting in random and significant measurement errors. In recent years, some

researchers have applied the rare-earth-elements (REE) tracing method to investigate

the temporal and spatial distribution of rill erosion (Zhang, Lei & Zhao, 2009; Yan et

al., 2009; Miao et al., 2011). This method successfully quantifies rill erosion but it is
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time-consuming and requires specialized and expensive equipment. In addition, the results

of many researchers indicated that various land use types have significant impact on the

soil erosion. The change of land use type also caused the changing of soil erosion (Liu et al.,

2014). Under the different land use types, the erosion mechanism of rill erosion needs to be

researched.

In China, the study of rill erosion and sediment transport has concentrated predom-

inantly on the Loess Plateau. However, regions with purple soil have similar hydraulic

erosion. The purple-soil regions urgently require investigation, but related research is

inadequate and lacks systematic methodology. To date, researchers have adopted the use

of artificial rainfall simulations (Yan et al., 2010; Geng, Zheng & Liu, 2010; Gao et al., 2014a;

Gao et al., 2014b; Gao et al., 2012), but quantitative research on the process of rill erosion in

purple soil is still lacking.

In this study, we measured the amount of soil erosion along the rill length with

the volume-replacement method and calculated the sediment concentration along the

length of the rill. Our experimental flume was 12 m long so we could easily observe

the sediment transport from rill erosion even with a gentle slope and slow flow. We

fit the experimental results to a model describing the relationship between sediment

concentration and rill length.

THE VOLUME-REPLACEMENT METHOD FOR
DETERMINING RILL EROSION
Rill erosion is a critical factor underlying the high sediment concentration in water flows

on sloping land. In a model situation, sediment concentration increases rapidly at the inlet

of a rill and then the rate of increase subsequently slows. Once the sediment concentra-

tion reaches a certain threshold, it stops increasing and rill sediment concentration remains

stable. At this point, the process in the rill switches from erosion to sediment transport. If

sediment concentration continues to increase and exceeds the sediment transport capacity,

sediment deposition occurs and can sometimes be observed in rills at a particular distance

down the rill. Following sediment deposition, the sediment concentration decreases

and new erosion can occur downstream. Therefore, the rate of rill erosion and sediment

concentration estimated from the accumulated erosion amounts along the rill length may

be higher than the real values. Cycles of erosion and deposition appear randomly, with

erosion and deposition alternating both spatially and temporally.

Considering this, the basic assumptions of the volume-replacement method for

determining rill erosion are as follows:

(1) The morphology of the eroded rill and the slope of the gully bed remain constant

during the measurement; that is, the influence of changing rill morphology on erosion

is ignored.

(2) Rill water flow is also assumed to be stable over time, so erosion rates along the rill

length do not change with time.
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With the above assumptions, the dynamic process underlying rill erosion is as

follows: At the rill inlet, the initial part of the rill flow, sediment concentration is zero.

As erosion takes place, sediment concentration increases, leading to a reduction in erosion

along the rill length. While there is no deposition, sediment concentration shows a net

increase. When the sediment particles begin to deposit, erosion alternates randomly with

deposition. Sediment concentration at the rill outlet is the maximum potential sediment

concentration, as determined by the sediment transport capacity of the flow. It similarly

represents the average sediment concentration in time and space of this section of the

rill. Thus, the distribution of rill erosion is influenced mainly by the initial section in which

sediment content sharply increases (the major of net growth), and sediment content along

the rill is influenced mainly by the sediment export concentration.

Given the above, the process of rill erosion under different hydraulic conditions

was determined experimentally. Rill erosion was conducted under constant hydraulic

conditions to establish the changes in morphology along the rill. The total amount of

water used for the rill erosion was calculated from the flow rate and duration. The total

soil erosion at different sites along the rill was measured by the volume-replacement

method. The average sediment concentration (allowing for deposition as well as erosion)

was calculated from the sediment concentration in the collected runoff, and represents

the maximum sediment concentration due to rill erosion.

We measured the accumulated amount of erosion in each rill section to obtain the to-

tal amount of erosion, and then calculated the corresponding sediment concentration for

each section. We could thus obtain an integrated value for sediment concentration along

the rill length, despite variations in the rill morphology. Data values that were greater than

the export sediment concentration reflect the influence of sediment deposition and were

replaced with the outlet sediment concentration.

MATERIALS AND METHODS
Experimental materials and soil tank design
Typical purple soil from the Southwest University experimental base for soil and water

conservation (106◦ 25′ 45′′E, 29◦ 49 18′′N) was collected for use in this study. The soil

contained 38.65% clay content (<0.005 mm), 35.74% silt content (0.005–0.05 mm), and

25.61% sand content. The soil was air-dried before being crushed and passed through

an 8 mm square sieve. The experiment was conducted in the rainfall simulation hall at the

Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of

Water Resources, Yangling, Shanxi Province.

The laboratory flume measured 12 m × 3 m, and the central portion was divided

into six 12 m × 0.1 m sections by upright PVC boards (Fig. 1), to imitate well-defined

rills and/or to enable water flows to converge and form the required concentrated flow

rate. Identical soil materials were glued onto both sides of the PVC boards to imitate the

roughness of the soil surface to minimize boundary effects on rill erosion (Chen et al.,

2013). The bottom 5 cm of the flume was densely packed with clay soil to a bulk density of

approximately 1,500 kg m−3 to imitate the plow pan layer. Above this layer, 20 cm of flume
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Figure 1 Experimental flume.

was packed with purple soil in layers of about 5 cm to a bulk density of approximately

1,300 kg m−3 to simulate the cultivated layer. The soil near the flume walls was packed to be

slightly higher than the soil near the middle so that the water flow converged in the middle,

which further minimized boundary effects. Prior to the experimental runs, the prepared

rills were saturated by running a rainfall simulator for 24 h at an intensity of 60 mm/h to

ensure that the water content was close to the field capacity.

Experimental design
We simulated rill erosion at five different slopes (5◦, 10◦, 15◦, 20◦, 25◦) and three water flow

rates (2 L/min, 4 L/min, 8 L/min, but see also ‘Experimental design’ below). The choice

of flow rate was determined by the critical rainfall intensities that produce rill erosion

in sloping croplands on purple soil, converted from rainfall to flow rates by artificial

simulation of rainfall intensity (Yan et al., 2011; Olson, Beavers & Fan, 1989; Zhang, Lei &

Zhao, 2008; Lei & Nearing, 2000; Gao et al., 2014a; Gao et al., 2014b). Experimental water

flow was controlled with an adjustable peristaltic pump. An additional, specially designed,

device was used at the rill flow inlet to accelerate the water flow to the required velocity

level. Approximately 0.2 m of gauze cloth was placed on the soil surface at the rill inlet to

protect the rill surface from being directly scoured by the water flow.
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Experimental methods
All sediment samples were collected in a sampling bucket placed at the rill outlet. After

a period of water scouring and rill erosion, the soil flume was adjusted to the horizontal.

Plastic film was twined in multiple layers to form eleven thin, waterproof; baffle plates

the same width as the rill. The baffles were inserted at 0.5 m, 1 m, 2 m, 3 m, 4 m, 5 m,

6 m, 7 m, 8 m, 10 m, and 12 m from the rill entrance, thus dividing the eroded rill into the

following sections: 0–0.5 m, 0.5–1 m, 1–2 m, 2–3 m, 3–4 m, 4–5 m, 5–6 m, 6–7 m, 7–8 m,

8–10 m and 10–12 m. The baffles were deep enough to prevent water from flowing between

the rill sections.

Each section of rill was then filled with water and the soil erosion volume was calcu-

lated by recording the volume of water in each rill section; then the quantity of soil erosion

was calculated from the soil bulk. Unlike particulate matter such as soil, water fills the rill

with no gaps. However, the impact of soil pores on the results can be excluded because the

soil was pre-saturated. We obtained the values for rill erosion and sediment transport along

the entire rill length from the cumulative values for each section.

Rill erosion proved to be low with a slope gradient of 5◦ and a flow rate of 8 L/min, so

the lower flow rates of 2 L/min and 4 L/min were not tested at this gradient. Similarly, we

did not test the 2 L/min flow rate with a 10◦ slope because erosion was already very low at

the 4 L/min rate. All other combinations of gradients and flows rates were tested, resulting

in twelve different experimental conditions in total. Each condition was repeated three

times, resulting in a total of 108 separate trials.

Calculation of sediment transport along the rill length
Sediment concentration refers to the dry mass of sediment per unit volume of water:

Sci =
1,000 • Msi

q • Δt
(1)

Msi =

11
i=1

Viρb. (2)

In the formula, Sci is the total sediment content at the end of the ith rill section (kg/m3),

Msi is the cumulative mass of eroded sediment at the end of the ith rill section (kg), q is

the flow rate (L/min), Δt is the duration of each trial (min) (Zhao et al., 2014a; Zhao et

al., 2014b); Vi is the total volume of soil erosion in the ith rill section, as measured by the

volume replacement method (m3); ρb is the soil bulk density (kg/m3). From Eqs. (1) and

(2), the sediment concentration can be calculated along the length of the rill, revealing

the process of soil erosion along the rill length.

RESULTS AND DISCUSSION
After observing the overall trends in the experimental data, we used the following model to

fit the data and reveal how rill sediment concentration changes with rill length:

C = A(1 − e−Bx). (3)
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Table 1 Sediment concentration model parameters obtained under different experimental
conditions.

Slope
gradient/(◦)

Flow rate
/(L ·min−1)

Regression parameters Coefficient of
determination

A B R2

5 8 206.56 0.25 0.98

4 274.39 0.28 0.93
10

8 296.88 0.31 0.96

2 387.31 0.41 0.99

4 456.93 0.43 0.9915

8 532.97 0.64 0.99

2 395.84 0.64 0.98

4 476.80 0.70 0.9920

8 548.56 0.57 0.96

2 451.71 0.41 0.99

4 499.22 0.62 0.9625

8 595.11 0.51 0.99

C represents the sediment concentration (kg/m3); x represents the rill length

(m); A represents the maximum possible sediment concentration in the flow, (kg/m3);

B represents the decay rate for sediment concentration with speed of rill length increasing

(1/m).

Equation (3) represents a situation in which sediment concentration increases with

rill length, but the rate of increase decreases exponentially with distance along the rill,

eventually tending towards a stable sediment concentration, A. When B increases, the

curve of the exponential function becomes steeper for a particular value of A, meaning that

the maximum sediment concentration A is reached after a shorter distance along the rill.

The experimental data fits to the model in Eq. (3) are plotted in Fig. 2, and demonstrate

how purple-soil sediment concentration varies along the rill length, for the different slopes

and flow rates.

The model parameters obtained under the different experimental conditions are listed

in Table 1. The coefficient of determination (R2) was greater than 0.9 in each condi-

tion, indicating that all fits to the model were very good. It can be seen from Fig. 2 and

Table 1 that the tendency of purple-soil sediment concentration to increase with rill length

was similar across conditions. Under conditions of known slope gradient and flow rate, the

data followed the model closely: sediment concentration increased along the length of the

rill but at a decreasing rate until the sediment concentration tended towards a stable value,

and the rate of increase tended to zero.

For slopes of the same gradient, the rate at which sediment concentration increased

along the rill length accelerated with increasing flow rates. The maximal sediment

concentration increased at higher flow rates, and the distance required to reach the

maximal concentration decreased. Similarly, for identical flow rates, the rate at which

sediment concentration increased along the rill length generally accelerated with steeper
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Figure 2 Sediment concentration as function of rill length.

slopes. The maximal sediment concentration increased for greater slopes, and the distance

required to reach the maximal concentration decreased. Overall, the influence of slope

gradient was greater than the influence of flow rate, and the tendency of sediment

concentration to increase with rill length was more obvious for changes in slope gradient

than flow rate. The significant analysis of slope gradient and flow rate was done. The

results showed that the significant analysis values of slope gradient were between 0.01 and

0.05, and the significant analysis values of flow rate were greater than 0.05. Therefore, the

influence of slope gradient was more significant than the influence of flow rate. When

the underlying surface is the same, the energy in the rill flow is defined by the net flow

and current velocity, and the current velocity is determined by the runoff depth and slope

gradient. Runoff is the motive power behind soil erosion on slopes. It scours, disperses,

Huang et al. (2015), PeerJ, DOI 10.7717/peerj.1220 8/12

https://peerj.com
http://dx.doi.org/10.7717/peerj.1220


transports, and deposits the soil particles on the soil surface, destroying the soil structure

(Zhang, Lei & Zhao, 2008; Cerdà, 1999; Brevik et al., 2015; Cerdà, 2001). The frictional force

between rill flow and the soil surface influences the susceptibility to runoff scouring. In

the context of our experiment, slope gradient affects the soil stress distribution: when the

slope was steeper, the water flow dispersed and transported soil particles with greater speed

and energy.

Table 1 shows that, for identical slope gradients, parameter A increases with increasing

flow rates. A can be considered to be the maximal potential sediment concentration

for purple-soil rill flows. Our results therefore indicate that the maximal sediment

concentration for purple-soil rill flow increases with flow rate under conditions of constant

slope gradient. Parameter B represents the rate at which sediment concentration increases

decay along the rill length. It can be observed from Table 1 that B tended to increase

with both slope gradient and flow rate, indicating a faster rate of increase in purple-soil

sediment concentration with steeper slopes and greater flow rates. Similar results have been

obtained in previous studies (Chen et al., 2014).

CONCLUSIONS
In this study, we investigated the process of rill erosion along the rill length by using a 12

m soil flume and the volume-replacement method. We used water to backfill the eroded

rill because of its mobility and the ease of volume measurement. We ensured that there

were no water leakages and so were able to quantitatively measure the process of rill

erosion in purple soil. The relationship between sediment concentration and rill length

was obtained by fitting the experimental data to a model with two free parameters. The

results show that the sediment concentration increases along the length of the rill, and

tends towards a stable value. The rate at which sediment concentration increases is highest

at the rill entrance and then gradually decreases along the rill length. With steeper slopes

and faster flow rates, the increase in sediment concentration is more obvious. These results

may provide the basis for understanding the mechanisms of rill erosion and may provide

estimates for parameter values in future simulated models of the erosion process in the

purple soil.
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