Submitted 18 March 2021
Accepted 26 August 2021
Published 9 December 2021

Corresponding author
Nan Song, songnan@henau.edu.cn

Academic editor
Jasmine Janes

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peer;j.12169

© Copyright
2021 Xinghao et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Comparative and phylogenomic
analyses of mitochondrial genomes in

Coccinellidae (Coleoptera: Coccinelloidea)
Xinghao Li, Nan Songand Heng Zhang

College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China

ABSTRACT

The Coccinellidae are one of the most familiar beetle families, the ladybirds. Despite
the great ecological and economic significance, the phylogenetic relationships of
Coccinellidae remain poorly understood. One of the reasons is that the sequenced
mitogenomes available for this family are very limited. We sequenced complete or
nearly complete mitogenomes from seven species of the tribe Coccinellini with next-
generation sequencing. All species have the same gene content and gene order as
the putatively ancestral insect mitogenome. A large intergenic spacer region (> 890
bp) was found located between trnl and trnQ. The potential for using secondary
structures of the large and small ribosomal subunits for phylogenetic reconstruction
was predicted. The phylogenetic relationships were explored through comparative
analyses across more than 30 coccinellid species. We performed phylogenetic analyses
with both concatenation methods (Maximum Likelihood and Bayesian Inference) and
multispecies coalescent method (ASTRAL). Phylogenetic results strongly supported the
monophyly of Coccinellidae. Within Coccinellidae, the Epilachnini and the Coccinellini
including Halyziini were monophyletic, while the Scymnini and Coccidulini were non-
monophyletic.

Subjects Entomology, Molecular Biology, Taxonomy, Zoology
Keywords Phylogenetic, Coccinellidae, Mitochondrial genome

INTRODUCTION

The family Coccinellidae comprises a group of insects often called ladybirds or ladybugs,
a familiar family of beetles, for example, the seven-spot ladybird beetle Coccinella
septempunctata Linnaeus. Currently, the family is subdivided into about 360 genera, with
approximately 6,000 species worldwide (Vandenberg, 2002). Many of coccinellid species
are beneficial due to their predaceous nature, and are well known for roles in biological
control. The predatory group is often referred to as aphidophagous, despite sometimes also
feeding on other hemipteran species, for example, scales and whiteflies (Hodek ¢ Honek,
2009; Obrycki et al., 2009). Additionally, other ladybirds are phytophagous, including the
genus Bulaea Mulsant and the whole subfamily Epilachninae (Giorgi et al., 2009). Some
phytophagous ladybird beetles are serious pests and cause damage to important crops,
such as Epilachna varivestris Mulsant and Henosepilachna vigintioctopunctata (Fabricius)
(Szawaryn et al., 2015).
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Despite the monophyly of the whole Coccinellidae is well supported (Giorgi et al.,
2009; Magro et al., 2010; Robertson et al., 2015; Seago et al., 2011; Slipinski, 2007), the
phylogenetic relationships within the family are uncertain. Redtenbacher (1844) classified
the Coccinellidae into two groups: the phytophagous group and the aphidophagous
group. The two groups were further classified into six or seven subfamilies. Sasaji
(1968; 1971a; 1971b), based on larval and adult morphological characters, proposed a six
subfamilies’ classification system (Sticholotidinae, Coccidulinae, Scymninae, Chilocorinae,
Coccinellinae, and Epilachninae). This scheme received widespread acceptance (Giorgi et
al., 2009). Kovdr (1996) added the Ortaliinae into the scheme of six subfamilies to construct
the seven subfamilies scheme. The phytophagous group corresponding to the subfamily
Epilachninae is often considered to monophyletic (Giorgi et al., 2009; Seago et al., 2011;
Song et al., 2020). The aphidophagous group spans the remaining subfamilies (Giorgi et
al., 2009). Within the aphidophagous group, the Coccinellinae is monophyletic, while the
other subfamilies are non-monophyletic (Giorgi et al., 2009; Magro et al., 2010).

Previous authors have attempted to reconstruct the phylogenetic relationships among the
subfamilies based on morphological (Yu, 1994) and/or molecular (Giorgi et al., 2009; Magro
et al., 2010; Robertson et al., 2015; Seago et al., 2011) data. However, most of the subfamilies
proposed by Sasaji (1968; 1971a; 1971b) were not supported by recent molecular studies
(Giorgi et al., 2009; Magro et al., 2010; Seago et al., 2011; Che et al., 2021). Seago et al. (2011)
conducted the simultaneous analysis of morphological and multi-locus molecular data
to investigate the phylogenetic relationships among major clades of Coccinellidae. Their
results found no statistical support for the classification of several subfamilies, except
for Coccinellinae and Microweisinae. Che et al. (2021) recognized three subfamilies in
Coccinellidae, namely Microweiseinae, Monocoryninae stat. nov., and Coccinellinae, based
on multiple nuclear protein-coding gene sequences. In this study, our taxon sampling was
focused on the tribe Coccinellini (24 exemplars out of 40 analyzed coccinellid species). The
increased taxon sampling allowed us to investigate the relationships below the subfamily
level.

Rapid radiations pose one of the most difficult challenges for the phylogenetic estimation
of subfamily relationships (Robertson et al., 2015). For other beetle groups (e.g., Galerucinae
and Chrysomelidae) with similar divergence time, some authors have successfully used
mitogenomes to resolve the subfamily (Nie ef al., 2018), family (Nie et al., 2020) and above
the family level relationships (Timmermans et al., 2016). Song et al. (2020) and Yuan et
al. (2020) provided the first mitogenome phylogenetic analyses of Coccinellidae. The
results confirmed the monophyly of Coccinellinae and Epilachninae. But both studies
only considered DNA sequence variation in their phylogenetic reconstructions (Song et al.,
2020; Yuan et al., 2020).

The previous research work often used the super matrix to construct the phylogenetic
tree of Coccinellidae (e.g., Robertson et al., 2015; Song et al., 2020). Mitochondrial DNA as
a phylogenetic marker may suffer from phylogenomic biases as associated with incomplete
lineage sorting and gene tree heterogeneity. Multispecies coalescent methods have been
developed to tackle these problems. A recent study has applied multispecies coalescent
analysis to phylogenetic reconstruction within Lepidoptera based on mitogenome sequence
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data (Kim, Kim & Cameron, 2020). Their results demonstrated that multispecies coalescent
analysis can be a reliable inference method for mitogenomic data in resolving insect
phylogenetic relationships. The Coccinellidae have experienced rapid radiation (Robertson
et al., 2015; Seago et al., 2011; Tomaszewska et al., 2021). Here, we attempted to use the
super tree generated by ASTRAL analysis of mitogenome data to investigate the phylogenetic
relationships in Coccinellidae.

Besides applying the alignments of mitochondrial DNA sequences to phylogenetic
reconstruction, the mitogenome organization (Shao, Campbell ¢~ Barker, 2001), and the
secondary structures of mitochondrial large subunit (rrnL) and small subunit (rrnS)
may provide potential information for phylogenetic studies (Buckley et al., 2000; Page,
20005 Page, Cruickshank ¢ Johnson, 2002; Yoshizawa ¢ Johnson, 2003). The use of both
rrnL and rrnS gene sequences in phylogenetic reconstructions is undercut by alignment
difficulties. Both rRNA genes contain a number of possibly uninformative conserved
regions interspersed with highly compositionally heterogeneous variable regions that are
difficult to align. Particularly, it is difficult to align these highly variable regions accurately
using the current algorithmic alignment methods (Song et al., 2020). The rRNA molecule
forms distinct secondary structures that play an important role in the functioning of
ribosomes (Noller, 1984). Secondary structure information can thus be used to identify
homologous positions, with higher phylogenetic informativeness.

In this study, we sequenced seven complete or nearly complete mitogenomes of the
subfamily Coccinellinae, with three main aims: (1) to compare mitogenome organization
and gene content across coccinellid lineages; (2) to identify conserved sequence motifs and
the associated secondary structure elements in rrnL and rruS genes to provide the potential
phylogenetic information; (3) to add more mitogenome data to uncover the evolutionary
relationships of ladybirds.

MATERIALS AND METHODS

Taxon sampling

A total of 46 mitogenomes were analyzed in this study: 40 species of ladybird beetles and
other six species of Cucujifamia outgroups (Table 1). Of which, seven mitogenomes of
the tribe Coccinellini were newly sequenced in this study. We extracted genomic DNA
from seven specimens, Coccinella lama Kapur, Hippodamia variegata (Goeze), Coccinella
transversoguttata Faldermann, Adalia bipunctata (Linnaeus), and Oenopia dracoguttata Jing
were collected from Lhasa, Tibet, China in June 28, 2019; Harmonia axyridis (Pallas) and
Harmonia eucharis (Mulsant) were collected from Linzhi, Tibet, China in August 3, 2019.
Thoracic muscle was used for DNA extraction, using the TTANamp Genomic DNA Kit
(TTANGEN BIOTECH CO., LTD), according to the manufacturer’s protocol. Extracted
DNA was stored at —20 °C.

Library construction and next-generation sequencing

About 500 ng genomic DNA of the individual species were used for library preparation
using the Illumina TruSeq TM DNA Sample Prep Kit (Illumina, San Diego, CA, USA),
according to manufacturer’s instructions. DNA were sheared into 350-bp fragments in a
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Table 1 Taxa included in this study.

Item Family Subfamily Tribe Species Accession Reference
number

Bothrideridae Bothriderinae Bothriderini  Dastarcus helophoroides NC_024271 Zhang et al., 2015
Corylophidae Corylophinae Rypobiini Gloeosoma sp. JX412843 Unpublished

Outgroup Discolomatidae ~ Discolomatinae  — Discolomatinae sp. JX412748 Unpublished
Endomychidae =~ Endomychinae  — Endomychus coccineus JX313667 Unpublished
Erotylidae Xenoscelinae Loberonotha olivascens JX412784 Unpublished
Latridiidae Latridiinae - Enicmus brevicornis JX313681 Unpublished
Coccinellidae Scymninae Scymnini Nephaspis sp. DPP-2018 MG253275 Unpublished
Coccinellidae Scymninae Scymnini Scymninae sp. 2 ACP-2013 MH940166  Crampton-Platt et al., 2015
Coccinellidae Scymninae Scymnini Nephus includens MN164642  Magro et al., 2020
Coccinellidae Scymninae Scymnini Nephus reunioni MN164643  Magro et al., 2020
Coccinellidae Scymninae Scymnini Nephus sp. 1 EL-2020 MN164644  Magro et al., 2020
Coccinellidae Scymninae Scymnini Nephus voeltzkowi MN164645 Magro et al., 2020
Coccinellidae Scymninae - Coccinellidae sp. 1 EF-2015 KT780638 Unpublished
Coccinellidae Coccidulinae Coccidulini Cryptolaemus montrouzieri KT878320 Unpublished
Coccinellidae Coccidulinae Coccidulini Coccidula rufa JX412767 Unpublished
Coccinellidae Ortaliinae Noviini Rodolia quadrimaculata MNO053055  Songetal., 2019
Coccinellidae Epilachninae Epilachnini Afissula sp. XL-2019 MNO053057 Song et al., 2019
Coccinellidae Epilachninae Epilachnini Henosepilachna pusillanima KJ131489 Behere et al., 2014
Coccinellidae Epilachninae Epilachnini Henosepilachna MG584727 Unpublished

vigintioctopunctata
Coccinellidae Epilachninae Epilachnini Subcoccinella KT780695 Unpublished
vigintiquattuorpunctata

Coccinellidae Epilachninae Epilachnini Epilachna admirabilis MNO053053  Song et al., 2019
Coccinellidae Chilocorinae Chilocorini Chilocorus bipustulatus MNO053054  Songetal., 2019
Coccinellidae Coccinellinae Halyziini Halyzia sedecimguttata KT780652 Unpublished
Coccinellidae Coccinellinae Halyziini Halyziini sp. HA MG584728 Zhang et al., 2017
Coccinellidae Coccinellinae Coccinellini  Adalia bipunctata MWO029465  This study
Coccinellidae Coccinellinae Coccinellini  Aiolocaria hexaspilota MK583344 Seo et al., 2019
Coccinellidae Coccinellinae Coccinellini  Anatis ocellata KX035143 Unpublished
Coccinellidae Coccinellinae Coccinellini  Anisosticta novemdecimpunctata ~ KT876880 Linard et al., 2016
Coccinellidae Coccinellinae Coccinellini  Calvia championorum KX132085 Unpublished
Coccinellidae Coccinellinae Coccinellini  Calvia decemguttata KX087252 Unpublished
Coccinellidae Coccinellinae Coccinellini  Cheilomenes sexmaculata KM244706  Tangetal, 2014
Coccinellidae Coccinellinae Coccinellini Coccinella septempunctata JQ321839 Kim et al., 2011
Coccinellidae Coccinellinae Coccinellini  Coccinella lama MW029464  This study
Coccinellidae Coccinellinae Coccinellini  Coccinella transversoguttata MWO029466  This study
Coccinellidae Coccinellinae Coccinellini  Coelophora saucia MNO053056  Song et al., 2019
Coccinellidae Coccinellinae Coccinellini  Cycloneda sanguinea KU877170 Unpublished
Coccinellidae Coccinellinae Coccinellini  Eriopis connexa MG253268 Unpublished
Coccinellidae Coccinellinae Coccinellini ~ Harmonia quadripunctata KX087296 Unpublished
Coccinellidae Coccinellinae Coccinellini ~ Harmonia axyridis MW029463  This study

(continued on next page)
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Table 1 (continued)

Item Family Subfamily Tribe Species Accession Reference
number
Coccinellidae Coccinellinae Coccinellini Harmonia eucharis MW029462 This study
Coccinellidae Coccinellinae Coccinellini Hippodamia convergens KX755332 Unpublished
Coccinellidae Coccinellinae Coccinellini Hippodamia undecimnotata KX087298 Unpublished
Coccinellidae Coccinellinae Coccinellini Hippodamia variegata MW029468 This study
Coccinellidae Coccinellinae Coccinellini Oenopia dracoguttata MW029467 This study
Coccinellidae Coccinellinae Coccinellini Propylea japonica KM244660 Tang et al., 2014
Coccinellidae Coccinellinae Coccinellini Propylea sp. HSL-2016 KX132084 Unpublished
Notes.

Bold denotes the newly sequenced species.

Table 2 Statistics of next-generation sequencing.

Species name Total number of Raw Q30 Total number of Clean Q30
sequenced raw clean paired reads
paired reads
Coccinella lama 18.52 Mbp 84.02% 15.57 Mbp 90.41%
Hippodamia variegata 20.07 Mbp 85.28% 17.14 Mbp 91.12%
Coccinella transversoguttata 21.61 Mbp 85.15% 18.45 Mbp 91.00%
Adalia bipunctata 19.47 Mbp 84.58% 16.53 Mbp 90.72%
Oenopia dracoguttata 22.48 Mbp 87.47% 19.24 Mbp 91.98%
Harmonia axyridis 17.24 Mbp 83.73% 14.47 Mbp 90.28%
Harmonia eucharis 21.28 Mbp 86.22% 18.57 Mbp 91.52%

Covaris M220 instrument (Covaris Inc.). Libraries were sequenced on the Illumina HiSeq
2500 platform with 150-bp paired-end reads, at Shanghai OE Biotech. Co., Ltd, China.

Mitogenome assembly and annotation

Statistics for next-generation sequencing are presented in Table 2. Adapters and low-quality
reads were trimmed from raw data by using NGS Toolkit (Patel ¢ Jain, 2012). High-quality
reads (Q20 > 97.71%, and Q30 > 93.43%) were used in subsequent genome assemblies
in Geneious R11, with the following parameters: iterate up to 100 times (slow), maximum
gaps per read 5%, maximum gap size 20 bp, minimum overlap 50 bp, and minimum
overlap identity 95%. The mtDNA sequence of Cycloneda sanguinea (Linnaeus) (accession
number: KU877170) was used as reference for assembly.

Preliminary mitogenome annotations were conducted in MITOS web (Bernt et al.,
2013), under the default settings and the invertebrate genetic code for mitochondria. The
gene boundaries of protein-coding and ribosomal RNA were refined by alignment against
published Coccinellini mitogenome sequences. Transfer RNAs (tRNA) were annotated in
MITOS web (Bernt et al., 2013), with secondary structures inferred. Secondary structures
for rrunL and rrnS genes were predicted by reference to the darkling beetle Gonocephalum
outreyi Chatanay (Song et al., 2018), and figured manually in Adobe Illustrator CS6.
Annotated mitogenome sequences have been submitted to GenBank with the accession
numbers of MW029462-MW029468.
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Phylogenetic analyses

Before sequence alignment, we added the mitochondrial genes of the seven newly sequenced
coccinellid species into the dataset constructed from the mitognome sequences downloaded
from GenBank. For the phylogenetic analyses, we concatenated nucleotide alignments from
all 37 mitochondrial genes. Protein-coding genes were individually aligned using MAFFT
(Katoh & Standley, 2013) in the TranslatorX (Abascal, Zardoya & Telford, 2010) server.
Each tRNA, and rRNA was aligned in the MAFFT (E-INS-I algorithm) alignment server
and adjusted following reference to secondary structural models. Ambiguously aligned
sites in each alignment were removed with Gblocks (Talavera & Castresana, 2007), using
the less stringent selection option. Alignments were concatenated using FASconCAT_v1.0
(Kueck & Meusemann, 2010). The sequence alignment used in the phylogenetic analyses is
provided in the Supplementary File 1.

Phylogenetic relationships were inferred using Maximum Likelihood (ML) and Bayesian
Inference (BI). PartitionFinder 2 (Lanfear et al., 2017) was used to select best-fitting
partition schemes and corresponding substitution models for the concatenated alignment
(Table S1). Data blocks were defined by codon position and by gene for protein-coding
genes. All 22 tRNA genes were included in a single partition, while each of rRNA genes was
defined as a separate partition. PartitionFinder analysis was conducted with the CIPRES
web portal (Miller, Pfeiffer ¢ Schwartz, 2010), using the corrected Akaike information
criterion (AICc). ML analysis was performed using IQ-TREE (Lam-Tung et al., 2015;
Nguyen et al., 2015; Trifinopoulos et al., 2016) at the CIPRES web portal (Miller, Pfeiffer ¢
Schwartz, 2010). Nodal supports were estimated with 10,000 ultrafast bootstrap replicates
(Hoang et al., 2018). The SH-aLRT branch test (Guindon et al., 2010) was conducted with
1,000 replicates. The command -spp was employed to consider the FreeRate heterogeneity
model.

BI analysis was performed with PhyloBayes MPI (Lartillot et al., 2013) implemented on
the CIPRES web portal. The site-heterogeneous CAT-GTR model (Lartillot & Philippe,
2004) was employed, with constant sites removed. Two independent Markov chain Monte
Carlo (MCMC) chains starting from a random tree were run for 20,000 generations. The
initial 20% cycles in each MCMC chain were discarded as burn-in. A consensus tree was
computed from the remaining trees. Convergence of the two chains was indicated by a
“maxdiff” value of 0.1.

We used ASTRAL v 5.7.1 (Mirarab et al., 2014; Zhang et al., 2018) to estimate a species
tree. ML tree searches were conducted for individual gene alignments (13 protein-coding
genes, two rRNA genes as single genes plus the 22 tRNA genes combined as a single
alignment), with IQ-TREE. Gene trees were then used as input for ASTRAL, using
bootstrap replicates from the IQ-TREE estimated gene trees for branch support values
estimation.

RESULTS

Genome sequencing and mitogenome assembling
For the newly sequenced species, the total number of raw reads varied between 17.24 Mbp
(H. axyridis) and 22.48 Mbp (O. dracoguttata) (Table 2). The proportion of raw reads with
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Table 3 Assembling results, statistics of mapping, and the proportion of the total sequencing reads
mapped to the mitogenomes.

Specis Mitogenome Mapped Minimum Average Mitochondrial
(bp) reads sequencing  sequencing  reads (%)
depth depth
Coccinella lama 19,337 170,237 169 1,251 2.19
Hippodamia variegata 18,347 127,665 136 993 1.49
Coccinella transversoguttata 17,963 79,131 121 642 0.86
Adalia bipunctata 18,750 117,955 167 941 1.43
Oenopia dracoguttata 19,359 72,567 55 550 0.75
Harmonia axyridis 18,737 93,440 549 729 1.29
Harmonia eucharis 21,391 71,886 68 501 0.77

phred scores equal to or greater than Q30 ranged between 83.73-87.47%. After filtering
low-quality data, the total number of clean reads ranged from 14.47 Mbp to 19.24 Mbp.
The proportion of cleaned reads with phred scores equal to or greater than Q30 ranged
between 90.28-91.98%.

Of the clean reads, 0.75% (O. dracoguttata) to 2.19% (C. magnifica) corresponded to
mitochondrial reads. Length of assembled mitogenomes varied between 17,963 bp (C.
transversoguttata) and 21,391 bp (H. eucharis) (Table 3). The average values for sequencing
depth of mitogenomes ranged from 501-fold (H. eucharis) to 1,251-fold (C. magnifica).
Sequencing depth was not closely correlated with the mitogenome length. The current
sequencing depth was sufficient to cover the entire mitogenome.

General characteristics of mitogenome

All seven newly-sequenced mitogenomes contained the typical 37 mitochondrial genes
and a complete control region (Fig. S1). All seven coccinelid mitogenomes had the same
arrangement of protein-coding genes, tRNA genes, and rRNA genes as the putatively
ancestral insect mitogenome (Carmeron, 2014a; Cameron, 2014Db).

Nucleotide composition was strongly biased toward A and T. The average A+T content
for the whole mitogenomes was 77.9%, made up of 76.5% in the protein-coding genes,
78.9% in the tRNA genes, 78.1% in the rRNA genes and 82.5% in the control region.
Twelve of the 13 protein-coding genes started with the typical codon ATN (ATT, ATG,
and ATA). However, for coxI, the putative initiation codon was TCG(Ser) in all newly
sequenced mitogenomes. Canonical stop codons (TAG and TAA) were present for 11/12
protein-coding genes depending on species. Incomplete stop codons (T or TA) were
inferred for cox2 (H. variegata and H. eucharis), cox3 (C. lama and C. transversoguttata),
nadl (O. dracoguttata and H. eucharis), and nad2 (H. axyridis).

All seven newly-sequenced mitogenomes had a full set of 22 mitochondrial tRNA
genes, which ranged from 50 bp (trnH, A. bipunctata) to 71 bp (trnK, A. bipunctata, H.
axyridis and H. eucharis) in size. All of mitochondrial tRNA genes had secondary structures
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Figure 1 The secondary structures of tRNA genes inferred for Coccinella lama.
Full-size Gal DOTI: 10.7717/peer;j.12169/fig-1

commonly seen in other insects, with the exception for #nS1, which lacked a complete
dihydrouridine (DHU) arm (e.g., C. lama in Fig. 1).

The rrnL and rrnS genes were 1,200-1,299 bp and 746-762 bp, respectively. The
secondary structures inferred for the rrnL and rrnS genes were similar to the secondary
structure models proposed for other beetles (e.g., G. outreyi, Song et al., 2018) (Figs. 2—3 and
Fig. S2). In the rrnL genes, there were differences in the number of helices. H. variegate, A.
bipunctata, O. dracoguttata and H. axyridis had 44 helices. C. lama and C. transversoguttata
had 45 helices, while H. eucharis had 43 helices. Base mismatches and sequence length
variation resulted in observed differences. Each rrnL gene contained five domains (I-11,
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IV-VI), and lacked domain III. rrnS genes had three domains (I, II, IIT) composed of 26
helices.

The complete control region between rrnS and trnl was identified within assembled
mitogenomes, demonstrating circulation of the molecule. Besides the control region, a
large non-coding region (or intergenic spacer region) was present between trnl and trnQ.
The sequence lengths of this region varied between 895 bp (C. transversoguttata) and 2,745
bp (C. lama).

Mining phylogenetic information from mitochondrial ribosomal RNA
secondary structures

Through comparison of 34 mitochondrial rrnL and 31 rrnS secondary structures of
coccinellid species, we found that species in the same genus shared conserved motifs. For
rrnL domain V, the loop located in the tip of helix 35 had largely identical nucleotide
composition within a single genus (Fig. 4 middle and Fig. 53), but it was distinguisable
between genera. Within Coccinellinae, two species from the tribe Halyziini shared the
secondary structure character of rrnS helix 7 (Fig. 3). Additionally, they did not have
the rrnS helix 8, that was distinct from all other Coccinellidae. Although the structures
of rrnS helix 8 of Coccinellini are basically similar to Epilachnini/Scymnini, there is a
discrepancy of two nucleotides (AGUU vs AGCA) between them (Fig. 4). In addition to the
secondary structures illustrated in Fig. 4, we found that ruS helix 4 also contained potential
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Figure 3 The secondary structure of rrnS inferred for Harmonia axyridis. Red numbers denote the he-
lices and blue Roman numerals denote the domains.

Full-size Gl DOI: 10.7717/peerj.12169/fig-3

phylogenetic information (Fig. 54). The Coccinellini shared an identical nucleotide

composition of helix 4, while it was distinguishable from other lineages.

Phylogenetic inference

Monophyly of the Coccinellidae was strongly supported in both ML and BI analyses (BS
= 100, PP = 1, Fig. 5). Within Coccinellidae, the Chilocorini was recovered as the sister

group to a clade comprising Halyziini and Coccinellini. This large clade was sister to
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Figure 4 Phylogenetic relationships within Coccinellidae inferred using ASTRAL analysis (left),
and comparisons of the secondary structures of rrnL (middle) and rraS (right). In the phylogenetic
tree, numbers around nodes indicate the local posterior probabilities. Bold denotes the newly sequenced
species.
Full-size & DOI: 10.7717/peerj.12169/fig-4

Epilachnini. However, the sister-group relationship received no statistical support (BS =
30, PP = 0.71). The Epilachnini was consistently supported as monophyletic (BS = 100,
PP = 1). In the ML analysis, the Cryptolaemus was sister to Epilachnini (BS = 38). A clade
comprising a part of Scymnini (Nephaspis) and the species representing Noviini (Rodolia
quadrimaculata) emerged as sister to the rest of the family. But these relationships received
no statistical supports (BS = 47). Similarly, in the BI analysis, the basal relationships within
Coccinellidae were ambiguous. In particular, relationships among Scymnini, Noviini and
Coccidulini were unresolved. The Scymnini and Coccidulini were non-monophyletic.

The Coccinellini including Halyziini formed a large clade. In both ML and BI analyses,
the Halyziini was sister to a clade comprising Anatis, Calvia, Coelophora and Propylea (BS =
100, PP = 0.99). All genera with more than two species included in this study (i.e., Halyzia,
Calvia, Propylea, Harmonia, Hippodamia and Coccinella) were supported as monophyletic
(BS = 100, PP =1).

ASTRAL analysis showed better performance in resolving deeper nodes in the
Coccinellidae (Fig. 4) with respect to nodal support. Although the Scymnini was still
non-monophyletic, the majority of this tribe formed a paraphyletic grade relative to the
remaining coccinellid lineages. The two exemplars of Coccidulini formed a paraphyletic
grade to Epilachnini. In comparison, members of the Scymnini and Coccidulini were
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scattered on the trees from both ML and BI analyses. Other difference between multispecies
coalescent analysis and the concatenated analyses under ML and BI criteria was the nodal
support. The tree from multispecies coalescent analysis typically had higher nodal support
values for the internal nodes.

DISCUSSION

Large intergenic spacer region in mitogenome

Large intergenic spacer regions have been frequently found in insect mitogenomes (Du
et al., 2017; Song et al., 2020; Wang et al., 2019; Wei et al., 2010). In the present study, all
newly sequenced coccinellid species had a large intergenic spacer located between trnl and
trnQ. The position of the intergenic spacers accorded with our prior study (Song et al.,
2020). Longer sequence lengths in this region contribute to the larger size of the whole
mitogenomes of the species in this study. A 54 bp spacer region between trnQ and nad2
was found in the mitogenome of Manduca sexta (Linnaeus) (Lepidoptera: Sphingidae) in a
previous study (Cameron ¢» Whiting, 2008). The position of this spacer region is adjacent to
the large intergenic spacer region found in coccinellid species sequenced in this study. The
phylogenetic utility of this arrangement can be evaluated by sequencing and comparing
more mitogenomes from related insect groups in future studies.
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Phylogenetic inference

In this study, traditional concatenation methods of analyzing mitogenomes failed to
resolve the relationships between the Scymnini and Coccidulini in the BI tree. This result is
consistent with other work that found no support for the delimitation of most subfamilies in
Coccinellidae (Giorgi et al., 2009; Magro et al., 2010; Seago et al., 2011). Due to mitogenome
data availability, the taxon sampling of Scymnini and Coccidulini is still limited. In future
studies, we need to sequence more species from both groups to confirm the result. Here
we expanded sampling within the Coccinellini, which continued to robustly support the
monophyly of the subfamily Coccinellinae and of Coccinellinae genera. This demonstrates
that mitogenomic data can be effective in resolving relationships below the subfamily level
within the Coccinellidae.

Recent studies recovered members of the former tribe Halyziini within Coccinellini
(Nattier et al., 2021; Tomaszewska et al., 2021). Some authors have proposed that
Coccinellini, including Halyziini, constitutes a monophyletic group (Che et al., 2021,
Nattier et al., 2021; Seago et al., 2011; Tomaszewska et al., 2021). The present study
recovered a similar branching pattern based on the mitogenome data, with Halyziini
and Coccinellini being placed in a clade. This result is congruent with the results of
phylogenetic reconstruction based on combining analyses of nuclear and mitochondrial
gene fragments (Nattier et al., 2021; Tomaszewska et al., 2021).

Giorgi et al. (2009) recovered the monophyly of Coccinellinae, based on the 18S and
28S rRNA sequences. Magro et al. (2010), based on multiple gene sequence data (nuclear
18S, 28S rRNA, and mitochondrial rruS, rruL and coxI), also supported the Coccinellinae
as a monophyletic group. Our result is consistent with the previous studies. The current
mitogenome data supported Epilachnini as monophyletic. This was congruent with Che et
al. (2021), but contrasted with Magro ef al. (2010). The Epilachnini was paraphyletic in the
analyses of Magro et al. (2010). The Scymnini was non-monophyletic across our analyses.
This arrangement was also retrieved in the previous studies based on nuclear gene (Che
et al., 2021; Giorgi et al., 2009; Robertson, Whiting ¢ McHugh, 2008) and combined data of
nuclear and mitochondrial gene sequences (Magro et al., 2010). A sister group relationship
between the Chilocorus (Chilocorini) and the clade Coccinellini + Halyziini was supported
by the present mitogenome analyses. This arrangement is congruent with Escalona et al.
(2017), Magro et al. (2010) and Seago et al. (2011), but contrasted with the morphological
analyses of Sasaji (1968; 1971a; 1971b).

Multispecies coalescent analysis with ASTRAL showed improved performance in
recovering relationships within Coccinellidae, especially for the basal relationships among
the lineages of Scymnini and Coccidulini. In addition, the sister group relationship between
Chilocorini and Coccinellini was robustly supported. Within Coccinellini, the sister-group
relationships between Coelophora and Propylea, between Hippodamia and Harmonia were
supported, consistent with the prior studies by Escalona et al. (2017), Nattier et al. (2021)
and Tomaszewska et al. (2021).
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Implications of mitochondrial rRNA secondary structures for
phylogenetic relationships

Exploration of meaningful characters for phylogenetic analysis can be essential to better
understand insect evolution. As illustrated for this the secondary structures inferred for
this study, two classes of regions are observed in rRNA molecules: the double-stranded
stems and single-stranded loops. It has been long debated whether stem characters or loop
characters contain useful information for phylogenetic inference (Dixon ¢ Hillis, 1993;
Smith, 1989; Wheeler ¢~ Honeycutt, 1988). Our analyses showed that loop characters of
mitochondrial rRNA genes are phylogenetically informative for the Coccinellidae.

CONCLUSIONS

In the present study, we utilized NGS data to reconstruct complete or nearly complete
mitogenome of the Coccinellidae. The mitogenomes are very large, ranging from 17,963
bp (C. transversoguttata) to 21,391 bp (H. eucharis), due to a large intergenic spacer (>890
bp) located between trnl and trnQ. The mitochondrial rRNA secondary structures were
compared to provide a better phylogenetic alignment. Besides the control region between
rrnS and trnl often found in insect mitogenomes, the presence of a large intergenic
region in other position is interesting and further studies are needed to investigate the
underlying mechanisms creating and preserving such mitochondrial arrangements. The
newly sequenced mitogenomes also contribute to a better understanding of the phylogenetic
relationships and evolutionary history of ladybirds. The monophyly of Coccinellidae and
of several genera within it are recovered, the bootstrap support value has reached 100.
Despite this, increased taxon sampling from other species of the coccinellid group other
than Coccinellini is needed to comprehensively evaluate the phylogenetic relationships in
Coccinellidae.
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