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Abstract 12 
 13 
Plant isotopic baselines are critical for accurately reconstructing ancient diets and environments 14 
and for using stable isotopes to monitor ecosystem conservation. This study examines the stable 15 
carbon and nitrogen isotope compositions (δ13C, δ15N) of terrestrial C3 plants in Elk Island 16 
National Park (EINP), Alberta, Canada, with a focus on plants consumed by grazers. EINP is 17 
located in a boreal mixed woodland ecozone close to the transition area between historic wood 18 
and plains bison habitat, and is currently home to separate herds of wood and plains bison. For 19 
this study, 165 C3 plant samples (grasses, sedges, forbs, shrubs, and horsetail) were collected 20 
from three habitat types (open, closed, and wet) during two seasons (summer and fall). There 21 
were no statistically significant differences in the δ13C or δ15N values of grasses, sedges, shrubs, 22 
and forbs. On the other hand, plant δ13C and δ15N values varied among habitats and plant parts, 23 
and the values increased from summer to fall. These results have several implications for 24 
interpreting herbivore tissue isotopic compositions in this and other ecosystems: (1) consuming 25 
different proportions of grasses, sedges, shrubs, and forbs might not result in isotopic niche 26 
partitioning, (2) feeding in different microhabitats or selecting different parts of the same types 27 
of plants could result in isotopic niche partitioning, and (3) seasonal isotopic changes in 28 
herbivore tissues could reflect seasonal isotopic changes in dietary plants rather than (or in 29 
addition to) changes in animal diet or physiology. In addition, the positively skewed plant δ15N 30 
distributions highlight the need for researchers to carefully evaluate the characteristics of their 31 
distributions prior to reporting data (e.g., means, standard deviations) or applying statistical 32 
models (e.g., parametric tests that assume normality). Overall, this study reiterates the 33 
importance of accessing ecosystem-specific isotopic baselines for addressing research questions 34 
in archaeology, paleontology, and ecology.   35 
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Introduction 36 
 37 

The significant difference between the stable carbon isotope compositions (δ13C) of C3 38 
versus C4 plants is the foundation for many paleodiet, foodweb, and conservation studies. 39 
However, terrestrial plants that utilize C4 photosynthesis are rare in cool high-latitude 40 
environments, including most of Canada, Europe, and northern Asia (Lüttge 2004; Osborne et al. 41 
2014; Still et al. 2003). During cold intervals such as the Last Glacial Maximum, C3-dominated 42 
environments extended to even lower latitudes (Cotton et al. 2016). Despite the lack of C4 plants, 43 
animal isotopic niche partitioning can still occur within C3-dominated areas because of 44 
predictable variations in C3 plants in response to factors such as aridity, soil salinity, degree of 45 
canopy cover, carbon source (atmospheric or aquatic), nitrogen source, and mycorrhizal 46 
associations. For example, terrestrial herbivores across Pleistocene Eurasia and North America 47 
occupied different isotopic dietary niches which varied temporally and geographically (e.g., 48 
Bocherens 2015; Bocherens et al. 2015; Fox-Dobbs et al. 2008; Metcalfe et al. 2013; Metcalfe et 49 
al. 2016; Schwartz-Narbonne et al. 2019).  Isotopic niche partitioning has also been 50 
demonstrated among modern terrestrial herbivores inhabiting C3-dominated environments (e.g., 51 
Ben-David et al. 2001; Cerling et al. 2004; Feranec 2007; MacFadden & Higgins 2004; Stewart 52 
et al. 2003; Urton & Hobson 2005). Interpreting the underlying causes of animal niche 53 
partitioning requires an understanding of local baseline isotopic variations (Casey & Post 2011). 54 

Processes underlying variations in δ13C values of terrestrial plants utilizing the C3 55 
photosynthetic pathway have been reviewed elsewhere and are described only briefly here. 56 
Terrestrial C3 plants have δ13C values ranging from about –37 to –20 ‰ when standardized to a 57 
atmospheric CO2 δ13C of –8.0 ‰ (Kohn 2010). Environmental factors known to affect C3 plant 58 
δ13C values include the isotopic composition and concentration of utilized CO2, sources of CO2 59 
(atmospheric vs. aquatic, ancient vs. modern), water availability and plant water-use efficiency, 60 
soil salinity, degree of canopy cover, and plant type/taxa (e.g., Hare et al. 2018; Lajtha & 61 
Michener 1994; Tieszen 1991). Different parts of the same plant (e.g., photosynthetic vs non-62 
photosynthetic tissues) can have widely disparate δ13C values as a result of different formation 63 
times, biochemical compositions, fractionations during transportation of biomolecules within the 64 
plant, and height within the forest canopy (Cernusak et al. 2009; Chevillat et al. 2005; 65 
Ghashghaie & Badeck 2014). Seasonal changes in plant δ13C can occur due to differing 66 
environmental conditions during growth and/or changes during maturation (e.g., Lowdon & 67 
Dyck 1974; Vogado et al. 2020). Variable isotopic compositions at the base of the food chain can 68 
be passed on to herbivores with differential feeding strategies (Casey & Post 2011). For example, 69 
caribou/reindeer tend to have high δ13C values relative to co-existing herbivores because of their 70 
reliance on high-13C lichen, and animals that feed in closed-canopy areas have lower δ13C values 71 
than those that feed in open areas (e.g., Barnett 1994; Drucker et al. 2010). 72 

Nitrogen isotopic variability in plants results from utilization of different molecular forms 73 
of nitrogen, manner of nitrogen uptake (e.g., particular mycorrhizal associations) location of 74 
nitrogen assimilation, and mobilization of nitrogen within the plant (Craine et al. 2009; Hobbie 75 
& Hogberg 2012). Temperature, aridity, mycorrhizal type, and degree of nitrogen cycling within 76 
an ecosystem have been shown to affect plant δ15N (see Szpak 2014 for review). Aquatic versus 77 
terrestrial growth can also systematically affect δ15N values (Plint et al. 2019). Individual plant 78 
δ15N can change over time due to a range of factors, including growth stage, seasonal conditions, 79 
soil nitrogen conditions, and decomposition (Karlsson et al. 2000; Szpak et al. 2012; Tahmasebi 80 
et al. 2017). Variations in nitrogen isotopic compositions at the base of the food chain can be 81 
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passed on to consumers, leading to significant variability in δ15N even among animals feeding at 82 
the same trophic level (Casey & Post 2011). For example, differences in the δ15N of various 83 
members of the beaver family (Castoridae) likely reflect differing reliance on aquatic versus 84 
terrestrial woody plants (Plint et al. 2020; Plint et al. 2019), and the high δ15N values of 85 
mammoths (Mammuthus spp.) can be attributed to selection of high-15N grasses (Bocherens 86 
2003; Metcalfe et al. 2013; Schwartz-Narbonne et al. 2015).  87 

Plant isotopic baselines for archaeological and ecological studies are crucial for 88 
interpreting the isotopic compositions of ancient humans and animals. Failure to understand or 89 
account for variations at the base of the food chain can lead to incorrect interpretations of diet, 90 
trophic level, and environmental conditions, particularly when comparing among regions or time 91 
periods (Casey & Post 2011). However, obtaining appropriate plant isotopic baselines for a 92 
region or time period of interest can be difficult. Published surveys of modern plant natural 93 
isotopic variability are relatively rare, and the majority of those that do exist report only means, 94 
standard deviations, and data visualizations rather than a full list of the measured isotopic 95 
compositions of individual plants (Table 1). Furthermore, compilations of regional or global 96 
plant isotopic data could obscure systematic variations that occur on a local level (see discussion 97 
in Drucker et al. 2010), so ecosystem-specific baselines are ideal. Ancient plants are rarely 98 
preserved except in rare depositional environments (dry caves, permafrost) or as charred remains 99 
of cooking activities (e.g., Metcalfe & Mead 2019; Styring et al. 2013; Szpak & Chiou 2019; 100 
Wooller et al. 2007), which means that archaeological and paleontological studies must rely at 101 
least in part on insights from modern plants. This is certainly true in boreal environments, where 102 
highly acidic soils often cause complete degradation of organic remains (Gordon & Buikstra 103 
1981; Woywitka 2016).  104 

Boreal mixed woodlands are important regions for understanding animal ecology and 105 
human-animal interactions. In particular, the plains-parkland transition in northern Alberta 106 
(Canada) was a critical area for both human and animal migrations, beginning with the opening 107 
of the so-called Ice-Free Corridor and continuing throughout the Late Holocene (e.g., Heintzman 108 
et al. 2016; Ives 2003; Shapiro et al. 2004). Northern Alberta is home to a diverse mammalian 109 
fauna including ungulates such as moose, elk, and deer. Until the late 19th century, the region 110 
was also home to abundant bison, and was an area in which wood bison (Bison bison 111 
athabascae) territory in the north (i.e., boreal forests of northern Alberta and Saskatchewan, the 112 
Northwest Territories, Yukon, and Alaska) transitioned to plains bison (Bison bison bison) 113 
territory in the south (i.e., the prairies and plains) (van Zyll de Jong 1986). The current research 114 
was motivated by a desire to use stable isotope analysis to better understand modern and 115 
archaeological/paleontological bison dietary selectivity in C3-dominated boreal regions, where 116 
bison have access to a range of plants and habitats. As a first step, this study examines natural 117 
variations in the carbon and nitrogen isotope compositions of plants in Elk Island National Park 118 
(EINP), Alberta, with a focus on plants that may have been consumed by bison. 119 
 120 
Study Location: Elk Island National Park, Alberta 121 
 122 
 Elk Island National Park (EINP) is a ~200 km2 protected area located ~40 km east of 123 
Edmonton, within Canada’s southern boreal plains ecozone. The park is situated within the 124 
Beaver Hills region, an area of knob-and-kettle terrain with abundant lakes and wetlands. 125 
Vegetation within the park is a patchy mosaic of aspen parkland, boreal mixed woodland, 126 
grassy/shrub meadows, marshes, and lacustrine areas (Figure 1) (Best & Bork 2004; Holsworth 127 
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1960; Nicholson 1995). All identified plant taxa in the park utilize C3 photosynthesis (Hanna 128 
Schoenberg, personal communication, May 18, 2021). EINP’s mean annual temperature was 129 
1.7°C and mean annual precipitation was 460 mm between 1951 and 1980, but both temperature 130 
and precipitation have been increasing due to climate change (climatedata.ca). EINP typically 131 
experiences moderate summers and cold, dry, windy winters. Temperatures range from average 132 
lows of -18°C in January to average highs of 23°C in July (weather-atlas.com). Peak summer 133 
rains occur in July (mean of 112 mm precipitation) and snowfall reaches a high of 206 mm in 134 
March (weather-atlas.com). Spring blooms typically begin to appear in May and the growing 135 
season lasts from approximately mid-May to mid-September. 136 

EINP is home to several large ungulate species, including moose (Alces alces), elk/wapiti 137 
(Cervus canadensis), white-tailed deer (Odocoileus virginianus), mule deer (Odocoileus 138 
hemionus), plains bison (Bison bison bison), and wood bison (Bison bison athabascae) (Telfer & 139 
Cairns 1986). For many decades, EINP has been a source for genetically-pure disease-free bison 140 
that have been introduced to conservation herds across the continent (Markewicz 2017). The 141 
plains and wood bison areas are separate; plains bison range freely within the fully-fenced 142 
northern portion of the park and wood bison range freely within the separate, fully-fenced 143 
southern portion of the park (Figure 1). Bison in both areas have access to the same types of 144 
habitat and vegetation.  145 
 146 
Materials & Methods 147 
 148 
Sample Collection and Preparation 149 
 150 

Plant samples were collected with the permission of Parks Canada (Research and 151 
Collection Permit EI-2016-21863). Grass, sedge, forb, shrub, and horsetail (Equisetum spp.) 152 
samples were collected on June 27-29, 2016 (n = 133) and November 6, 2016 (n = 32) from dry 153 
open areas (e.g., meadows, hill slopes), dry closed-canopy environments, and wet areas 154 
(shorelines of ponds or lakes) (Figures 1, 2). Site categorizations were based on observations at 155 
the time of sampling rather than on generalized vegetation maps, because wetlands can be 156 
ephemeral. Sampling sites were selected based on recent sightings of bison and physical 157 
evidence of bison (e.g., dung, wallows, hoofprints) in the area. To mimic bison foraging patterns, 158 
only terrestrial above-ground plant parts were collected. For the same reason, grasses were 159 
prioritized for collection. Plants were identified to genus or species with reference to Johnson et 160 
al. (1995). 161 

All samples were air-dried and ground to a fine powder with a Wig-L-Bug device prior to 162 
isotopic analysis. Most of the samples (n=131) were homogenized into ‘whole plant’ samples, 163 
which included varying proportions of leaves, stems, seeds, and/or flowers (Table 2). For 164 
selected samples (n=34), leaves and seeds/flowers were analyzed separately. Grass leaves are 165 
wrapped around stems before diverging as a separate blade, making stems and leaves difficult if 166 
not impossible to separate in bulk samples. Grass flowers are complex structures that include a 167 
rachis and many tiny pedicels which are likewise difficult or impossible to separate from the 168 
floret. As a result, grass leaf and seed/flower samples include variable proportions of these other 169 
tissues as well. 170 
 171 
Carbon and Nitrogen Isotope Measurements 172 
 173 

Potts, Alastair (Dr) (Summerstrand Campus South)
Please explain why there is such a substantial difference in sample size at this point for the reader. 

Potts, Alastair (Dr) (Summerstrand Campus South)
Sedges are still common in grasslands where I work, thus I was surprised that only n=6 for sedges. However, the percentage cover is much lower for sedges. Can you make a statement along these line here? ​— i.e. the most abundant forage was sampled? (highest cover) (was it?) (i.e. why is it mimicking bison foraging…)

Also, in your discussion, do you address the difference in group/species dominance? (you may not need to, but species-taxonomic patterns are often over-ridden by species-abundance patterns)



Potts, Alastair (Dr) (Summerstrand Campus South)
But Table 2 has many family-level only designation ​— e.g. Poacaeae. Can you deal with why identification at a lower level was not possible ​— even morpho-species designation to lump values together ​— i.e. were all the Poaceae samples the same unidentified grass, or were they different grasses. The low-taxonomic resolution in Table 2 needs to be addressed. 
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Carbon and nitrogen isotope values (δ13C, δ15N) and carbon and nitrogen contents (%C, 174 
%N) were obtained using an Elementar VarioMicro Cube elemental analyzer coupled with an 175 
Isoprime isotope-ratio mass spectrometer in continuous-flow mode. Carbon and nitrogen isotope 176 
values were obtained during the same run by combusting approximately 1 mg of sample and 177 
using a high level of dilution to reduce the carbon dioxide gas peaks. Nitrogen isotope results 178 
from samples with nitrogen gas peaks <1 nA were excluded unless duplicate analyses exhibited 179 
similar reproducibility to samples with larger gas peaks. The carbon isotope values of the low-180 
nitrogen samples were retained since the carbon peaks were more than large enough to produce 181 
reliable results. The samples with low nitrogen-gas peaks are those lacking δ15N values in Table 182 
2. 183 

 δ13C values were calibrated to VPDB and δ15N values were calibrated to AIR using 184 
USGS-40 and USGS-41 or 41a (accepted δ13C values of –26.39, +37.63, and +36.55 ‰ and 185 
accepted δ15N values of –4.52, +47.57, and +47.55 ‰, respectively). Sample replicates 186 
(minimum 10% of samples in each run) and internal check standards of methionine, amaranth, 187 
and red lentil (long-term mean δ13C of –28.60, –13.59, –26.12 ‰; long-term mean δ15N of –5.04, 188 
+2.94, and –1.09 ‰, respectively) were used to monitor measurement uncertainty. Uncertainty 189 
measures were calculated following the method of Szpak et al. (2017). For δ13C, precision u(Rw) 190 
was 0.11‰, accuracy (u(bias)) was 0.09‰, and total analytical uncertainty (uc) was 0.14‰. For 191 
δ15N, precision was 0.23‰, accuracy was 0.23‰, and total analytical uncertainty was 0.33‰. 192 
 193 
Statistical Analyses 194 
 195 
 Statistical analyses were conducted using Excel for Office 365 and PAST 196 
(PAleontological STatistics) 4.03. Shapiro-Wilk W tests were used to assess the normality of 197 
distributions. Levene tests were used to evaluate the homogeneity of variance. Normally 198 
distributed datasets (carbon isotope values) were compared using Student’s t tests (2 independent 199 
samples), paired-sample t-tests (2 paired samples), or one-way ANOVA F tests with Tukey’s 200 
post-hoc comparisons (3 or more independent samples). Non-normally distributed datasets 201 
(nitrogen isotope values) were compared using Mann-Whitney U tests (2 independent samples), 202 
Wilcoxon sign-rank tests (2 paired samples) or Kruskal-Wallis H tests with Dunn-Bonferroni 203 
post-hoc comparisons (3 or more independent samples). Alpha was set to 0.05 for all statistical 204 
comparisons. In the text below, means are reported with standard deviations, unless noted 205 
otherwise. 206 
   207 
Results 208 
 209 
Whole Sample 210 

Plant δ13C values ranged from –32.6 to –24.9 ‰, with a mean and standard deviation of –211 
28.5 ± 1.5 ‰ (Tables 2, 3). Plant δ15N values ranged from –3.9 to +9.9 ‰, with a mean and 212 
standard deviation of +0.4 ± 2.7 ‰. The shape of the distribution was normal for δ13C (Shapiro-213 
Wilk W=0.99, n=165, p=0.7; skewness = –0.05) and positively skewed for δ15N (Shapiro-Wilk 214 
W=0.92, n=141, p<0.001; skewness = 1.14) (Figure 3). 215 
 216 
Plant Types 217 

The mean δ13C values of grasses, sedges, shrubs, forbs and horsetail were within 1.9‰ of 218 
one another (Table 3), and an ANOVA showed no statistically significant differences among the 219 

Potts, Alastair (Dr) (Summerstrand Campus South)
I think it would be useful to point out to the reader that the ANOVA can be affected by unequal sample sizes leading to a greater chance of Type 1 error. Thus, increasing the chance of finding a significant difference. As no sig diff is found, we can rule out the unequal sample size problem.
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groups (F(4,160)=1.3, p=0.28). With horsetail removed (because of its small sample size), there 220 
were still no significant differences in δ13C among grasses, sedges, shrubs, and forbs 221 
(F(3,158)=1.0, p=0.39). There was a significant difference among the δ15N values of plant types 222 
(H(4)=12.9, p=0.01), but the Dunn-Bonferroni test suggested that only the horsetail-forb 223 
comparison was significant (p=0.03). With horsetails removed there was no statistically 224 
significant difference among grasses, sedges, shrubs, and forbs (H(3)=7.0, p=0.07), and their 225 
medians were within 2.3 ‰ of one another. Although the median grass δ15N value did not 226 
significantly differ from that of any other group, grasses had the greatest variability of any plant 227 
type, and grass samples had both the highest (> +5.1‰) and lowest (< –2.3‰) individual plant 228 
δ15N values (Table 3, Figure 4). A Levene’s test from medians (i.e., Brown-Forsythe test) 229 
indicated that the difference in the variability of δ15N among plant types was statistically 230 
significant (p=0.01). 231 
 232 
Habitats 233 

Plant growth habitat had a significant effect on the carbon isotope compositions of plants 234 
(F(2,162)=48.8, p<0.001). The differences among all three groups were statistically significant, 235 
with the highest δ13C values in open areas (–27.9 ± 1.2 ‰, n=108), intermediate values in wet 236 
areas (–28.9 ± 1.4 ‰, n=12) and the lowest values in closed-canopy areas (–30.0 ± 1.1 ‰, n=45) 237 
(Table 3, Figure 5). Growth habitat also affected δ15N values (H(2) =7.7, p=0.02), with higher 238 
δ15N values in wet habitats (+2.6 ± 2.7 ‰, n=10) compared to those in either open areas (+0.1 ± 239 
2.4 ‰, n=94) or closed canopy areas (+0.5 ± 3.1 ‰, n=37). Although wet areas had higher mean 240 
(and median) δ15N values than the open or closed-canopy areas, the latter two habitat types 241 
hosted the plants with the highest individual δ15N measurements (Figure 5). As mentioned 242 
previously, these extreme δ15N values were all from grass samples. There was a positive skew in 243 
the δ15N values of plants from open environments (W=0.9, n=94, p<0.001) and closed 244 
environments (W=0.9, n=37, p<0.001). 245 
 246 
Plant Parts 247 

Carbon isotope compositions of leaves were on average 1.2 ‰ lower than those of 248 
seeds/flowers from the same plants (paired samples t= 7.8, df=33, p<0.001) (Table 3). 249 
Furthermore, the great majority of plant sample had lower leaf than seed/flower δ13C values, 250 
with seed/flower minus leaf differences (∆13Cseed-leaf) of individual plants ranging from –0.5 to 251 
+3.1 ‰ (Figure 6). The lowest mean and individual δ13C values were obtained from leaves in 252 
closed habitats, and the highest mean δ13C from seeds in open habitats (Figure 6).  253 

Nitrogen isotope compositions of leaves were 0.5 ‰ lower on average than  those of 254 
seeds/flowers from the same plants (Table 3), but the difference was not statistically significant 255 
(Wilcoxon W=250, df=27, p=0.06). Individual plants had highly variable seed-minus-leaf 256 
differences (∆15Nseed-leaf), ranging from –2.4 to +2.9 ‰ (Figure 7). 257 
 258 
Seasonal Changes 259 
 Seasonal shifts in plant δ13C and δ15N occurred between early summer (late June) and 260 
mid fall (early November) (Table 3, Figure 7). Plant δ13C increased slightly during fall, both for 261 
the whole dataset (t(163)=2.1, p=0.04, mean difference of 0.6‰) and when only locations 262 
sampled in both seasons were included (t(62)=2.2, p=0.03; mean difference of 1.0‰). Plant δ15N 263 
also increased during fall, both for the whole dataset (U=582.5, p=0.003; mean difference of 264 
2.5‰) and when only samples from matched locations were compared (U=145, p=0.02; mean 265 
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difference of 2.0‰). Plant nitrogen contents (%N) also significantly decreased from summer to 266 
fall (whole sample: U=265, p<0.001; mean difference of 0.8% matched locations: U=71, 267 
p<0.001; mean difference of 0.7%) (Figure 7). The true seasonal decrease in plant nitrogen 268 
content is likely greater than this value implies, since proportionally more fall plant samples 269 
were excluded due to their small gas peaks (see sample numbers in Table 3). 270 
 271 
Discussion 272 
 273 
Plant Isotopic Distributions 274 
 275 

The distribution of plant δ13C values was normal. The EINP whole-sample mean δ13C of 276 
–28.5‰ is slightly lower than the modern global mean C3 plant δ13C value of –27.0 ‰ 277 
determined by Kohn (2010). This can be attributed to two main factors: (1) the δ13C of 278 
atmospheric CO2 during our sample collection (in 2016) was significantly lower than Kohn’s 279 
(2010) normalized value of –8.0 ‰ because of the ongoing effects of fossil fuel burning (Long et 280 
al. 2005), and (2) Kohn’s (2010) study excluded understory plants with δ13C values below –281 
31.5‰, whereas this study did not. 282 

Distributions of plant nitrogen isotope compositions were positively skewed. Skewness 283 
of isotopic distributions is seldom explicitly evaluated and isotopic data presentations that 284 
facilitate visual examination of skewness (e.g., frequency histograms, box-and-whisker plots) are 285 
relatively rare, so it is difficult to determine how common skewed plant nitrogen isotope 286 
distributions may be. Metcalfe and Mead (2019) observed a negatively skewed δ15N distribution 287 
for Pleistocene plants. Funck et al. (2020: Supplementary Material) provide box-plots that appear 288 
to illustrate positively skewed modern grass δ15N and negatively skewed modern herb δ15N 289 
distributions, but they did not explicitly evaluate skewness. The other plant isotopic studies 290 
reviewed here neither evaluated skewness nor presented data in forms that make it easy for a 291 
reader to evaluate themself. Evaluating the shape of a distribution is often overlooked but testing 292 
for normality is a critical first step before utilizing parametric statistical methods, at least when 293 
sample sizes are small (which is typical in most archaeological and paleontological studies) 294 
(Ghasemi & Zahediasl 2012). Failing to recognize skewed isotopic distributions can result in the 295 
use of inappropriate data reporting (e.g, use of means and standard deviations rather than 296 
medians and interquartile ranges) and use of statistical tests whose assumptions are not met (i.e., 297 
parametric tests), potentially producing invalid results and leading to erroneous interpretations. 298 
Assessing the skewness of dietary components (and other characteristics of data distribution) is 299 
also critical for studies using stable isotope mixing models, which typically assume normal 300 
distributions and require dietary inputs of means and standard deviations (Cheung & Szpak 301 
2020).  302 
 It is also possible that skewed plant δ15N distributions could help explain the strong 303 
isotopic niche partitioning that has been observed among herbivores in some ecosystems. In 304 
particular, mammoths tend to have significantly higher δ15N values than co-existing herbivores, 305 
which is related to a dietary (rather than physiological) difference (Schwartz-Narbonne et al. 306 
2015). In the present study, grasses had the greatest variability in δ15N of any plant taxon and all 307 
of the most positive δ15N values in the skewed tail of the distribution (i.e., values >5.1 ‰) were 308 
from grasses (Table 3, Figure 4). Grasses are the predominant food of mammoths, but also of 309 
bison, who do not have enriched δ15N values. If variables could be identified that predict which 310 
grass specimens within a given ecosystem have high δ15N values (i.e., taxa, parts, growth-stages, 311 
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growth habitats), then it might be possible to determine if mammoths were likely to have been 312 
selecting such grasses (for example, by employing different feeding strategies or preferring 313 
different microhabitats). In general, a herbivore preferentially selecting plants from the skewed 314 
‘tail’ of an isotopic distribution would be predicted to occupy a distinct isotopic niche relative to 315 
herbivores that are randomly selecting plants from throughout the distribution. This would also 316 
be true of herbivores selecting plants whose δ-values fall within the tails of a normal distribution, 317 
but a skewed distribution would be predicted to result in greater isotopic niche differentiation 318 
due to the more extreme values of outliers in the skewed tail of the distribution.  319 
 320 
Plant Types 321 
 322 

The highly-overlapping δ13C and δ15N values of grasses, sedges, forbs, and shrubs in 323 
EINP highlights the importance of understanding local plant variability when interpreting 324 
herbivore isotopic compositions. Previous research has established some generalities about 325 
isotopic differences among primary producers. For example, lichens often have higher δ13C 326 
values than terrestrial plants (e.g., Brooks et al. 1997; Teeri 1981), woody gymnosperms 327 
generally have higher δ13C values than woody angiosperms (Hare & Lavergne 2021), and 328 
aquatic plants tend to have higher δ15N values than terrestrial plants (e.g., Kielland 2001; Plint et 329 
al. 2019). However, comparisons of differences among plant types at local levels can produce 330 
disparate results (e.g., Drucker et al. 2010:Figure 4), which is perhaps not surprising when one 331 
considers the complex range of environmental factors that affect δ13C and δ15N, as well as the 332 
fact that researchers select different plant groups for study and even categorize them differently 333 
(Table 1). Compilations of isotopic data from plants growing in various habitats (i.e., global or 334 
regional datasets) can obscure the effects of microhabitats (e.g., degree of canopy cover, altitude, 335 
aridity, etc.), which may be more important variables for interpreting herbivore isotopic 336 
compositions than plant type. Studies that compare herbivore isotopic compositions in ancient C3 337 
ecosystems to a plant baseline organized by plant type (e.g., Schwartz-Narbonne et al. 2019; 338 
Schwartz-Narbonne et al. 2021) presuppose that type is the most important predictor of a plant’s 339 
isotopic compositions. An alternative approach is to put equal or greater emphasis on major 340 
environmental factors that influence plant isotopic compositions, such as the canopy effect (e.g., 341 
Drucker et al. 2008; Hofman-Kamińska et al. 2018) and ecosystem changes (e.g., Drucker et al. 342 
2011; Metcalfe & Longstaffe 2014). 343 

The plant type data in the present study highlight the importance of ecosystem-specific 344 
contexts. In particular, it is not appropriate to assume that grasses, sedges, shrubs and forbs have 345 
consistent relative isotopic differences in disparate environments and temporal intervals. 346 
Consequently, overlapping herbivore isotopic niches do not necessarily indicate “functional 347 
redundancy… whereby one species could fulfill another’s ecological role” (Schwartz-Narbonne 348 
et al. 2019:1). Rather, isotopic niche overlap could simply indicate that there are minimal 349 
isotopic differences among the disparate plants consumed by herbivores in that environment. 350 
Furthermore, minimal isotopic variations in serially-sampled animals does not necessarily 351 
“equate to less available dietary choices or participation in specialist feeding behavior” 352 
(Schwartz-Narbonne et al. 2021:546). On the contrary, minimal seasonal isotopic variations in 353 
herbivore tissues could occur even when animals undertake significant seasonal changes in diet. 354 
Given these complexities, the key to being able to make meaningful interpretations of herbivore 355 
isotopic compositions is to have a good understanding of which isotopic baselines and variables 356 
are most important for any particular study, and to seriously consider alternative interpretations 357 
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based on the various factors that can influence isotopic systems. Isotopic niches are far from 358 
equivalent to dietary niches or dietary specializations. 359 
 360 
Plant Parts and Habitats: Carbon Isotopes 361 
  362 

Lower plant δ13C values in EINP closed habitats compared to open habitats (~2‰ on 363 
average) is consistent with the well-known canopy effect, in which understory plants have 364 
significantly lower δ13C values than plants that make up the canopy or emergent layers, or plants 365 
that grow in open areas (e.g., Bonafini et al. 2013; Chevillat et al. 2005; Drucker et al. 2008; Van 366 
Der Merwe & Medina 1991). The lower δ13C values in EINP leaves relative to seeds/flowers 367 
(~1‰ on average) is likewise in agreement with the 1-3 ‰ difference that has been reported in 368 
many other studies (e.g., Badeck et al. 2005; Ghashghaie & Badeck 2014; Metcalfe & Mead 369 
2019).  370 

The EINP plant isotopic data suggest that among herbivores, a combined effect of plant-371 
part and habitat-selection could result in significant carbon isotope niche partitioning within C3 372 
environments, with the largest differences between animals consuming seedy/flowery plants in 373 
open environments (higher δ13C) and those selecting seedless/flowerless plants in closed 374 
environments (lower δ13C). This offers an alternative to assuming that animal niche partitioning 375 
in C3 environments is due to differing proportions of grass vs browse or consumption of different 376 
plant taxa. Many previous studies have used herbivore δ13C to infer the ‘openness’ of utilized 377 
habitats (e.g., Bocherens et al. 2015; Doppler et al. 2017; Drucker et al. 2003; Drucker et al. 378 
2011), but few have considered the additional isotopic effects of plant-part differences, such as 379 
the decrease in leaf δ13C than occurs as the leaf expands (Vogado et al. 2020) or differences 380 
among seedier versus seedless plant parts (but see Guiry et al. 2020 for an exception). The 381 
effects of ‘seedy’ vegetation on herbivore isotopic compositions deserves further study, since 382 
there may also be differential digestibility among seeds and leaves that influences their 383 
incorporation into herbivore tissues. 384 

 Herbivore feeding specializations go beyond selection of particular plant forms, species 385 
and habitats to include specialization on particular plant parts and growth stages. These 386 
differential feeding strategies might have particularly pronounced isotopic effects in an 387 
environment like the mammoth steppe, where co-existing grazers likely consumed different parts 388 
of the same plants. For example, elephantids rip out tall (potentially seedy) bunches of grasses by 389 
grabbing them with their trunks, whereas bison break off short (probably less seedy) grasses and 390 
tall/mid-level new growth with their tongues and teeth (Guthrie 1982). On the mammoth steppe, 391 
bison tended to have higher δ13C values than mammoths in a range of locations and temporal 392 
intervals (e.g., Bocherens 2015). Higher δ13C values in a taxon that consumes shorter grasses is 393 
the opposite of what would be expected if ‘seediness’ was a factor in isotopic niche 394 
differentiation. However, the higher δ13C values of bison could result from bison consuming a 395 
larger proportion of short, newly-grown leaves, which tend to have higher δ13C values than older 396 
mature leaves (Vogado et al. 2020). Regardless of what drives isotopic niche differentiation on 397 
the mammoth steppe, the results of the present study suggest that in some environments, habitat 398 
and plant-part selection could have greater isotopic effects on herbivore isotopic compositions 399 
than selection of different plant taxa. 400 
 401 
Plant Habitat: Nitrogen Isotopes 402 
 403 



10 
 

EINP plants from the wet habitat tended to have higher δ15N values than plants from the 404 
dry (open or closed-canopy) environments. Although this contrasts with the general trend 405 
towards higher δ15N values in drier locations that is often observed on regional and global scales 406 
(Craine et al. 2009; Handley et al. 1999; Wang et al. 2014), it is consistent with the higher plant 407 
δ15N values often observed in aquatic systems relative to terrestrial systems (e.g., Cloern et al. 408 
2002; Kielland 2001; Plint et al. 2019). It is possible (and perhaps likely) that EINP terrestrial 409 
plants growing in seasonally wet areas obtained some nitrogen from aquatic sources, leading to 410 
higher δ15N values. It is also possible that herbivore dung is frequently deposited in wetland 411 
areas when animals come to drink, contributing 15N-enriched nitrogen to the wetland system and 412 
mimicking the established effects of manuring on plant δ15N (e.g., Bogaard et al. 2007; Szpak et 413 
al. 2014). It is important to note that the sample size available for EINP wetland habitats was 414 
small, so the reliability of this habitat difference should be re-examined in future studies. 415 
Nevertheless, in combination with previous studies that clearly show higher δ15N values among 416 
aquatic plants, these results suggest caution for archaeologists and paleoecologists who interpret 417 
higher herbivore δ15N as indicators of increased aridity. An alternative explanation (among 418 
others) for high herbivore δ15N values could be the consumption of plants growing in or near 419 
nutrient-rich wetlands. 420 

 421 
Seasonal Changes in Plant Isotopic Compositions 422 

 423 
A summer-to-fall (late June to early November) increase in both δ13C and δ15N (by ~1 424 

and 2 ‰, respectively) was observed in EINP plants. This could be due to a combination of 425 
factors, including changes in the biochemical compositions of tissues, changes in source C and N 426 
isotopic compositions, remobilization of nutrients into roots for winter, and early decomposition. 427 
The direction and magnitude of seasonal isotopic changes in plants may vary among 428 
environments and locations. For example, Karlsson et al. (2000) found that the δ15N values of 429 
most Subarctic plants in northern Sweden increased between the snowmelt (May) and mid-June, 430 
but decreased in August and September, with a range in seasonal variation of 2.1 to 5.3 ‰. On 431 
the other hand, the timing of key seasonal changes (e.g., temperature increases and decreases) 432 
varies considerably among locations and makes seasonal generalizations challenging. 433 

Reconstructing ecosystem-specific seasonal changes in plant δ13C and δ15N could help 434 
researchers interpret serial-sampling studies of herbivore isotopic compositions, which may vary 435 
due to seasonal changes in diet, physiology, and/or isotopic variations in plants. Seasonal 436 
changes in the diets of a range of herbivores have been studied within C3-dominated ecosystems, 437 
and these changes are often relatively small in magnitude (~2 to 3‰ or less). For example, 438 
Funck et al. (2020) observed temporal changes in sectioned wood bison (Bison bison 439 
athabascae) hair δ13C and δ15N that they attributed to nutritional stress. Julien et al. (2012) 440 
serially-sampled steppe bison (Bison priscus) teeth and interpreted small winter increases in δ13C 441 
as an indication of lichen consumption. Metcalfe and Longstaffe (2014) identified different 442 
seasonal patterns in the tooth enamel of mastodons (Mammut americanum) that lived in the same 443 
geographical area during different time periods. Kielland (2001) serially-sampled Alaskan moose 444 
(Alces alces) hooves and interpreted variations of about 2-3‰ as evidence for seasonal changes 445 
in diet. Plant isotopic values and variability underlie the interpretations in all of these studies.  446 

Bison generally consume graminoids year-round but may seasonally switch between 447 
grasses and sedges, and/or consume forbs and woody plants when graminoids are not available 448 
(Gogan et al. 2010). The minimal isotopic differences among plant taxa in EINP suggests that 449 
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these seasonal shifts in bison foraging strategies might not be recorded in the isotopic 450 
compositions of incrementally growing bison tissues such as teeth or hair. However, based on the 451 
EINP seasonal plant data, one might predict that seasonal isotopic shifts in the plants themselves 452 
might be recorded in serially-sampled bison tissues. Generalizing to other environments, 453 
researchers should be aware that seasonal changes in herbivore isotopic compositions do not 454 
necessarily indicate changes in foraging strategies, but can result from isotopic changes within 455 
the plants themselves.   456 
 457 
 458 
Conclusions 459 
 460 
 This study has provided a plant carbon and nitrogen isotope baseline for future 461 
conservation studies of animals within Elk Island National Park, and for archaeological and 462 
paleontological studies of animals in C3-dominated environments. A strong positive skew to the 463 
plant nitrogen isotope distributions highlights the need for isotopic researchers to explicitly 464 
evaluate the characteristics of their distributions (e.g., normal versus skewed) so that they can 465 
select appropriate measures of central tendency and variability, conduct appropriate statistical 466 
tests, and/or utilize isotopic mixing models. 467 

In this study no statistically significant differences were observed in the δ13C or δ15N of 468 
the majority of C3 plant types (grasses, sedges, forbs, and shrubs), but there were differences 469 
among plant parts, habitats, and seasons. These results carry three important implications. First, 470 
animals consuming different plant taxa can have identical isotopic compositions. Second, 471 
animals consuming the same C3 plant taxa can have different isotopic compositions if they select 472 
plants growing in different habitats (e.g., open, closed, wet) and/or different plant parts (e.g., 473 
leaves, seeds). Third, seasonal changes in herbivore isotopic compositions need not indicate a 474 
shift in foraging strategy, but rather may result from seasonal isotopic changes within dietary 475 
plants. Based on first principles of isotope systematics, these conclusions are not new. However, 476 
too often isotopic niche partitioning is equated with dietary niche partitioning, and a lack of 477 
isotopic niche partitioning is taken to reflect similar or identical diets. It is critical that 478 
researchers bear in mind the complexities of isotopic systems when making paleodietary 479 
inferences, and support their interpretations with explicit independent lines of evidence on plants 480 
and animals (i.e., isotopic baselines) in relevant ecosystems and at appropriate scales of analysis. 481 
 482 
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 496 
Figure 1. Location of Elk Island National Park and plant sampling locations relative to 497 
vegetation zones defined in a previous Parks Canada survey. During our sample collection, P1 498 
and P3 were open and dry (not wet), whereas P7 was a small wetland (not shrubland). Other 499 
vegetation zones for sampling locations agreed with field observations during sampling. 500 
 501 
Figure 2. Selected plant sampling locations in the plains bison (P) and wood bison (W) sections 502 
of Elk Island National Park, including open (P8, W1), wet (P7, W2) and closed (P5, W8) areas. 503 
 504 
Figure 3. EINP plant carbon and nitrogen isotope distributions. 505 
 506 
Figure 4. Carbon and nitrogen isotope compositions of EINP plants grouped by life-form.  507 
 508 
Figure 5. Plant carbon and nitrogen isotope distributions by growth habitat. The box encloses the 509 
interquartile range and median (horizontal line). The whiskers represent the full range of 510 
measured values. 511 
 512 
Figure 6.  Differences between the carbon and nitrogen isotopic compositions of seeds and 513 
leaves.  514 
 515 
Figure 7. Comparison of carbon and nitrogen isotope compositions and nitrogen contents of 516 
EINP plants collected from matched locations in summer (late June) and fall (early November). 517 
 518 
  519 

Potts, Alastair (Dr) (Summerstrand Campus South)
This seems like a bit out the blue, and maybe a bit of a throw-away line. How does this baseline aid in conservation studies? Either explain or remove. 

(I find conservation and climate change are thrown into the conclusions far too often without justification). 
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