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Background. Next generation sequencing (NGS)-based studies have vastly increased our understanding
of viral diversity. Viral sequence data obtained from NGS experiments are a rich source of information,
these data can be used to study their epidemiology, evolution, transmission patterns, and can also
inform drug and vaccine design. Viral genomes however represent a great challenge to bioinformatics
due to their high mutation rate and forming quasispecies in the same infected host. This has therefore
brought about the need to develop/implement advanced bioinformatics tools to assemble genomes well-
representative of the viral population circulating in individual patients.

Results. Here we present VGEA (Viral Genomes Easily Assembled), a snakemake workflow for advanced
assembly of RNA viral genomes from NGS data. VGEA enables users to split bam files into forward and
reverse reads, carry out de novo assembly of forward and reverse reads to generate contigs, pre-process
reads for quality and contamination, and map reads to a reference tailored to the sample using corrected
contigs supplemented by the user’s choice of reference sequences.

Conclusion. VGEA is freely available on GitHub at: https://github.com/pauloluniyi/VGEA under the GNU
General Public License and also on Zenodo (doi: 10.5281/zenodo.3702287).
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24 ABSTRACT

25

26 Background. Next generation sequencing (NGS)-based studies have vastly increased our 

27 understanding of viral diversity. Viral sequence data obtained from NGS experiments are a rich 

28 source of information, these data can be used to study their epidemiology, evolution, 

29 transmission patterns, and can also inform drug and vaccine design. Viral genomes however 

30 represent a great challenge to bioinformatics due to their high mutation rate and forming 

31 quasispecies in the same infected host. This has therefore brought about the need to 

32 develop/implement advanced bioinformatics tools to assemble genomes well-representative of 

33 the viral population circulating in individual patients. 

34 Results. Here we present VGEA (Viral Genomes Easily Assembled), a snakemake workflow for 

35 advanced assembly of RNA viral genomes from NGS data. VGEA enables users to split bam 

36 files into forward and reverse reads, carry out de novo assembly of forward and reverse reads to 

37 generate contigs, pre-process reads for quality and contamination, and map reads to a reference 

38 tailored to the sample using corrected contigs supplemented by the user’s choice of reference 

39 sequences.

40 Conclusion. VGEA is freely available on GitHub at: https://github.com/pauloluniyi/VGEA 

41 under the GNU General Public License  and also on Zenodo (doi: 10.5281/zenodo.3702287).

42

43 Keywords: VGEA, NGS, Genome, Assembly 

44

45

PeerJ reviewing PDF | (2020:09:53134:0:4:NEW 1 Oct 2020)

Manuscript to be reviewed



46

47 INTRODUCTION

48 The most abundant biological entities on Earth are viruses as they can be found among all 

49 cellular forms of life. So far, over four thousand five hundred viral species have been discovered, 

50 from which a huge amount of sequence information has been collected by researchers and 

51 scientists all over the world (Pickett et al., 2012; Sharma et al., 2015; Brister et al., 2015). In 

52 recent times (past two decades), a number of these viruses have emerged in the human 

53 population causing outbreaks sometimes pandemics., These viruses include mainly: Influenza 

54 virus, Severe Acute Respiratory Syndrome (SARS) coronavirus, Middle East Respiratory 

55 Syndrome (MERS) coronavirus, Ebola virus, Yellow fever virus, Lassa virus (LASV), Zika virus 

56 (Chan, 2002; Bean et al., 2013; Folarin et al., 2016; Grubaugh et al., 2017; Metsky et al., 2017; 

57 Siddle et al., 2018; Ajogbasile et al., 2020) and  SARS-CoV-2 (Chen et al., 2020; Holshue et al., 

58 2020; Sohrabi et al., 2020). During these outbreaks and pandemics, identification of the 

59 causative agents and carrying out sequencing to obtain the genomes of the viruses have proved to 

60 be critical in helping inform disease surveillance and epidemiology. 

61 NGS platforms have been widely accepted as high-throughput, unbiased technologies that have 

62 many attractive features compared to conventional diagnostic methods for virus detection and 

63 assembly (Tang & Chiu, 2010; Mokili et al., 2012). NGS-based studies have vastly increased our 

64 understanding of viral diversity (Reyes et al., 2010; Cantalupo et al., 2011). Pathogen sequence 

65 data obtained from NGS experiments are a rich source of information, these data can be used to 

66 study their epidemiology, evolution, transmission patterns, and can also inform drug and vaccine 

67 design. The field of genomics, especially pathogen genomics has been transformed by NGS, with 

68 costs constantly decreasing, equipment becoming more portable/field deployable during 
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69 outbreaks and remarkable increase in data availability.  The huge amount of data being generated 

70 has brought about the need to develop simple and user friendly bioinformatics tools to assemble 

71 pathogen genomes well-representative of the pathogen population circulating in individual 

72 patients. Here we present VGEA, a pipeline for assembly of RNA viral genomes from next 

73 generation sequencing data.

74 MATERIALS AND METHODS

75 The VGEA pipeline is built on the snakemake workflow management system (Köster & 

76 Rahmann, 2012), a workflow management system that allows the effortless deployment and 

77 execution of complex distributed computational workflows in any UNIX-based system, from 

78 local machines to high-performance computing clusters. In order to guarantee reproducibility of 

79 the results obtained, the VGEA pipeline integrates fixed versions of the tools implemented in the 

80 pipeline from conda (https://docs.conda.io/en/latest/). Several tools are used to perform different 

81 tasks within the pipeline: Samtools (Li et al., 2009) for splitting of bam files into forward and 

82 reverse reads; IVA (Hunt et al., 2015) for de novo assembly to generate contigs; Shiver 

83 (Wymant et al., 2018) to pre-process reads for quality and contamination, then map to a reference 

84 tailored to the sample using corrected contigs supplemented with the user’s choice of existing 

85 reference sequences. 

86

87 The VGEA pipeline requires the following dependencies:

88 ฀ Python 3 (www.python.org).

89 ฀ Samtools (Li et al., 2009).

90 ฀ IVA (Hunt et al., 2015).

91 ฀ Shiver (Wymant et al., 2018).
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92 ฀ Fastp (Chen et al., 2018).

93 ฀ Trimmommatic, optional but highly recommended (Bolger et al., 2014).

94 ฀ KMC (Kokot et al., 2017).

95 ฀ MUMmer (Marçais et al., 2018).

96 ฀ SMALT (https://www.sanger.ac.uk/science/tools/smalt-0) or BWA (Li & Durbin, 2009) 

97 or BOWTIE (Langmead, 2010).

98 ฀ Fastaq (https://github.com/sanger-pathogens/Fastaq).

99 ฀ Biopython (Cock et al., 2009).

100 ฀ MAFFT (Katoh et al., 2002).

101 ฀ BLAST version 2.2.28 (Altschul et al., 1990).

102 ฀ SPAdes (Bankevich et al., 2012).

103

104 We have also made available a singularity recipe file (Kurtzer et al., 2017) on the GitHub page: 

105 https://github.com/pauloluniyi/VGEA. With the provision of the singularity recipe file, users can 

106 easily build a local image of the VGEA container that includes all necessary tools, in their fixed 

107 versions, and their dependencies using the command below:

108                                   sudo singularity build vgea.simg Singularity

109 Users can then proceed to run the entire VGEA pipeline with all the dependencies installed from 

110 the singularity container. This approach ensures the reproducibility and the tracking of both 

111 software code and version, regardless of the operating system used. With the provision of the 

112 singularity container, users can easily deploy VGEA to run in the cloud or on high performance 

113 computing (HPC) clusters. 

114 The VGEA pipeline consists of three major steps:
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115

116 ฀ Splitting of BAM files

117 BAM (and SAM and CRAM) are file formats that contain sequencing reads: either aligned, 

118 unaligned, or a combination of the two. One initial step after carrying out next-generation 

119 sequencing is often to get rid of host contamination, e.g., by mapping the FASTQ reads obtained 

120 from the sequencing machine against the human genome. This will ultimately yield a BAM file. 

121 The BAM file obtained from host contaminant removal can then be used as input for the VGEA 

122 pipeline. The pipeline has been developed to facilitate splitting of bam files into fastq files of 

123 forward and reverse reads using Samtools (Li et al., 2009). Another reason for having BAM files 

124 as starting input for the VGEA pipeline is that scientists, especially in resource-limited settings, 

125 usually have BAM files handy. BAM files are usually smaller in size than their corresponding 

126 FASTQ files making them easily transferable or uploadable to the cloud.

127 During the splitting step, the pipeline checks in the current directory or within the container (if 

128 the user is making use of the singularity container provided) for any file with a ‘.bam’ extension, 

129 if it finds any, it splits into FASTQ files of forward and reverse reads. 

130

131 ฀ Assembly

132 Following splitting of the BAM files into FASTQ files of forward and reverse reads, the VGEA 

133 pipeline carries out de novo assembly to generate contigs using IVA (Hunt et al., 2015). IVA is 

134 used as our default assembler because it was designed specifically for read pairs sequenced at 

135 highly variable depth from RNA virus samples and has been demonstrated to outperform all 

136 other virus de novo assemblers (Hunt et al., 2015). 

137
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138 ฀  Mapping 

139 The VGEA pipeline then uses the Shiver software (Wymant et al., 2018) for mapping of reads to 

140 a reference. First, the contigs generated in the assembly step are compared with reference(s) 

141 supplied by the user using BLASTN (Altschul et al., 1990), this is to remove contaminants and 

142 low-quality contigs. Using MAFFT (Katoh et al., 2002), the processed contigs are added to the 

143 alignment of existing references initially supplied by the user from which Shiver identifies the 

144 closest existing reference by comparison with all of the contigs. Using contig sequences and the 

145 closest existing reference to fill in gaps between contigs, if any exists, Shiver creates a reference 

146 for mapping. User-supplied raw reads are then mapped to the shiver-created reference to 

147 generate a consensus sequence well-representative of the viral population in the patient sample. 

148 Before mapping however, the reads are trimmed using Trimmomatic (Bolger et al., 2014) and 

149 Fastaq (https://github.com/sanger-pathogens/Fastaq) in order to remove low-quality bases, 

150 adapters and primer sequences. Adapter and Primer sequences are provided by the user.

151

152 RESULTS 

153

154 We demonstrated the usage and performance of the VGEA pipeline by applying it to generate 

155 consensus whole genomes from Lassa virus and SARS-COV-2 datasets sequenced on the 

156 illumina MiSeq and illumina FGx sequencing machines in our lab at the African Centre of 

157 Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Nigeria. 

158 We also applied the pipeline to generate whole genomes from HIV-1 datasets sequenced on the 

159 illumina HiSeq 2500 obtained from NCBI Sequence Read Archive (SRA). We made use of 60 

160 test datasets (Lassa Virus (20), SARS-CoV-2 (20) and HIV-1 (20)) for the validation of the 
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161 VGEA pipeline. All our test datasets are available on figshare 

162 (https://doi.org/10.6084/m9.figshare.13009997). The performance of our pipeline was consistent 

163 irrespective of whether the samples were sequenced with the illumina MiSeq, FGx or HiSeq 

164 2500. We compared our genomes obtained with VGEA to genomes obtained with viral-ngs 

165 (https://github.com/broadinstitute/viral-ngs) (Park et al., 2015) which is a suite of genomic 

166 analysis pipelines for viral sequencing and is one of the most widely used resources for whole 

167 genome assembly of viruses (Tables 1,2,3&4). 

168 We compared the means of our genome lengths using VGEA and viral-ngs to determine the 

169 significance of the differences in genome lengths from the two pipelines; using the R 

170 programming language, we carried out a student’s t-test and found that genome length with 

171 VGEA are significantly longer than genome length with viral-ngs (p-value = 0.002962, C.I = 

172 95% for Lassa virus (S) dataset; p-value = 0.01748, C.I = 95% for Lassa virus (L) dataset; p-

173 value = 0.04283, C.I = 95% for SARS-CoV-2 dataset; p-value = 0.001286, C.I = 95% for HIV-1 

174 datasets). 

175 Using the VGEA pipeline, we also obtained Lassa virus partial genomes from three rodent 

176 samples, however running the same samples through viral-ngs we couldn’t obtain any genome 

177 despite making the pipeline as less stringent as possible.

178

179

180

181

182

183 DISCUSSION
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184 Using the workflow management system, Snakemake, we have developed a user-friendly 

185 pipeline for advanced assembly of viral genomes from NGS data. Its main features are: (i) 

186 splitting bam files into forward and reverse reads, (ii) de novo assembly to generate contigs, (iii) 

187 pre-processing of reads for quality and contamination, (iv) mapping reads to a sample-tailored 

188 reference. This significantly improves the quality of the genomes obtained from NGS data and 

189 generates genomes well-representative of the pathogen population circulating in individual 

190 patients and communities. VGEA is freely available on GitHub at: 

191 https://github.com/pauloluniyi/VGEA under the GNU General Public License and also on 

192 Zenodo (doi: 10.5281/zenodo.3702287). All test datasets used for the validation of the pipeline 

193 are available on NCBI and also on figshare (https://doi.org/10.6084/m9.figshare.13009997). 

194

195 CONCLUSION

196 VGEA was built primarily by biologists and in a manner that is easy to be employed by users 

197 without significant computational background. As new and innovative tools for viral genome 

198 analysis and assembly are increasingly being developed, these can easily be incorporated into the 

199 VGEA pipeline. We hope that other scientists can build upon and improve VGEA as a tool to 

200 extract more qualitative and quantitative information from viral genomes.

201

202

203

204
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Comparison between Lassa virus whole genomes (S segment) obtained with VGEA and
viral-ngs
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1 Table 1: Comparison between Lassa virus whole genomes (S segment) obtained with viral-ngs 

2 and VGEA

S/N Sample ID Lassa Virus 

Genome 

Segment

Genome 

length with 

viral-ngs

Genome 

length with 

VGEA

1. 758 S 3392 3413

2. 852 S 3391 3413

3. 934 S 3394 3413

4. 1004 S 3392 3413

5. 1078 S 3382 3414

6. 1126 S 3394 3413

7. A4 S 3360 3413

8. A7 S 3380 3413

9. J1 S 3374 3413

10. K7 S 3389 3412

11. 0202C S 3148 3413

12. 1177 S 3389 3413

13. 1801 S 3379 3412

14. 1880 S 3386 3413

15. 540 S 3294 3406

16. D2 S 3394 3413

17. F8 S 3391 3413

18. J4 S 3386 3413

19. O1 S 3393 3413
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20. O2 S 3381 3413

3

4

5

6

7

8
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Comparison between Lassa virus whole genomes (L segment) obtained with VGEA and
viral-ngs
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1 Table 2: Comparison between Lassa virus whole genomes (L segment) obtained with viral-ngs 

2 and VGEA

3

S/N Sample ID Lassa Virus 

Genome 

Segment

Genome 

length with 

viral-ngs

Genome 

length with 

VGEA

1. 758 L 7225 7271

2. 852 L 7239 7268

3. 934 L 7245 7272

4. 1004 L 7235 7269

5. 1078 L 7225 7272

6. 1126 L 7234 7270

7. A4 L 7150 7271

8. A7 L 7214 7273

9. J1 L 7154 7271

10. K7 L 7187 7272

11. 0202C L 6418 7272

12. 1177 L 7121 7271

13. 1801 L 7221 7269

14. 1880 L 7195 7272

15. 540 L 7020 7225

16. D2 L 7237 7271

17. F8 L 7230 7272

18. J4 L 7224 7273
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19. O1 L 7246 7273

20. O2 L 7224 7275

4
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Comparison between SARS-CoV-2 whole genomes obtained with VGEA and viral-ngs
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1 Table 3: Comparison between SARS-CoV-2 whole genomes obtained with viral-ngs and 

2 VGEA

3

S/N Sample ID Genome length with 

viral-ngs 

Genome length with 

VGEA

1. CV18 29858 29903

2. CV29 29865 29986

3. CV43 29875 29903

4. CV45 29897 30002

5. CV47 29900 29903

6. CV48 29859 30145

7. CV50 29897 29903

8. CV55 29898 30636

9. CV57 29895 30129

10. CV115 29859 30180

11. CV145 28898 30250

12. CV153 29848 29903

13. CV155 29870 29903

14. CV156 29856 29903

15. CV163 29864 30356

16. CV165 29872 29958

17. CV167 29894 29900

18. CV170 29897 29903

19. CV185 29870 29903

20. CV192 29897 29903

4
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Comparison between HIV-1 whole genomes obtained with VGEA and viral-ngs
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1 Table 4: Comparison between HIV-1 whole genomes obtained with viral-ngs and VGEA

2

S/N SRA Accession 

Number 

Genome length with 

viral-ngs 

Genome length with 

VGEA

1. ERR3953696 8927 9877

2. ERR3953853 9054 9872

3. ERR3953893 9083 9880

4. ERR3953891 7827 9818

5. ERR3953866 9088 9872

6. ERR3953846 9148 9917

7. ERR3953756 8963 9913

8. ERR3953877 9035 9802

9. ERR3953876 7317 9824

10. ERR3953750 5532 9860

11. ERR3953741 7376 9822

12. ERR3953697 6728 9798

13. ERR3953699 9054 9837

14. ERR3953706 7317 9826

15. ERR3953708 7393 9839

16. ERR3953710 6705 9808

17. ERR3953712 9108 9846

18. ERR3953716 9134 9835

19. ERR3953295 8676 9882

20. ERR3953693 8885 9857

3
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