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ABSTRACT
Next generation sequencing (NGS)-based studies have vastly increased our under-
standing of viral diversity. Viral sequence data obtained from NGS experiments are
a rich source of information, these data can be used to study their epidemiology,
evolution, transmission patterns, and can also inform drug and vaccine design. Viral
genomes, however, represent a great challenge to bioinformatics due to their high
mutation rate and forming quasispecies in the same infected host, bringing about the
need to implement advanced bioinformatics tools to assemble consensus genomes
well-representative of the viral population circulating in individual patients. Many
tools have been developed to preprocess sequencing reads, carry-out de novo or
reference-assisted assembly of viral genomes and assess the quality of the genomes
obtained.Most of these tools however exist as standalone workflows and usually require
huge computational resources. Here we present (Viral Genomes Easily Analyzed),
a Snakemake workflow for analyzing RNA viral genomes. VGEA enables users to
map sequencing reads to the human genome to remove human contaminants, split
bam files into forward and reverse reads, carry out de novo assembly of forward and
reverse reads to generate contigs, pre-process reads for quality and contamination,
map reads to a reference tailored to the sample using corrected contigs supplemented
by the user’s choice of reference sequences and evaluate/compare genome assemblies.
We designed a project with the aim of creating a flexible, easy-to-use and all-in-one
pipeline from existing/stand-alone bioinformatics tools for viral genome analysis that
can be deployed on a personal computer. VGEA was built on the Snakemake workflow
management system andutilizes existing tools for each step: fastp (Chen et al., 2018) for
read trimming and read-level quality control, BWA (Li & Durbin, 2009) for mapping
sequencing reads to the human reference genome, SAMtools (Li et al., 2009) for
extracting unmapped reads and also for splitting bam files into fastq files, IVA (Hunt
et al., 2015) for de novo assembly to generate contigs, shiver (Wymant et al., 2018) to
pre-process reads for quality and contamination, thenmap to a reference tailored to the
sample using corrected contigs supplementedwith the user’s choice of existing reference
sequences, SeqKit (Shen et al., 2016) for cleaning shiver assembly for QUAST,QUAST
(Gurevich et al., 2013) to evaluate/assess the quality of genome assemblies andMultiQC
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(Ewels et al., 2016) for aggregation of the results from fastp, BWA and QUAST. Our
pipeline was successfully tested and validated with SARS-CoV-2 (n = 20), HIV-1
(n = 20) and Lassa Virus (n = 20) datasets all of which have been made publicly
available. VGEA is freely available onGitHub at: https://github.com/pauloluniyi/VGEA
under the GNU General Public License.

Subjects Bioinformatics, Computational Biology, Genomics, Molecular Biology, Virology
Keywords VGEA, NGS, Genome, Assembly

INTRODUCTION
The most abundant biological entities on Earth are viruses as they can be found among
all cellular forms of life. So far, over four thousand five hundred viral species have been
discovered, from which a huge amount of sequence information has been collected by
researchers and scientists all over the world (Pickett et al., 2012; Sharma, Priyadarshini &
Vrati, 2015; Brister et al., 2015). In recent times (past two decades), a number of these
viruses have emerged in the human population causing disease outbreaks and sometimes
pandemics. These viruses include mainly: Influenza virus, Severe Acute Respiratory
Syndrome (SARS) coronavirus, Middle East Respiratory Syndrome (MERS) coronavirus,
Ebola virus, Yellow fever virus, Lassa virus (LASV), Zika virus (Chan, 2002; Bean et
al., 2013; Folarin et al., 2016; Grubaugh et al., 2017; Metsky et al., 2017; Siddle et al., 2018;
Ajogbasile et al., 2020) and SARS-CoV-2 (Chen et al., 2020; Holshue et al., 2020; Sohrabi et
al., 2020). During these outbreaks and pandemics, genomic sequencing for identification
and characterization of the transmission and evolution of the causative agents have proved
to be critical in helping inform disease surveillance and epidemiology.

Next Generation Sequencing (NGS) platforms have been widely accepted as high-
throughput, open view technologies that have many attractive features for virus detection
and assembly (Tang & Chiu, 2010; Mokili, Rohwer & Dutilh, 2012). NGS-based studies
have vastly increased our understanding of viral diversity (Reyes et al., 2010; Cantalupo et
al., 2011). Pathogen sequence data obtained from NGS experiments are a rich source of
information, these data can be used to study their epidemiology, evolution, transmission
patterns, and can also inform drug and vaccine design. The field of genomics, especially
pathogen genomics has been transformed by NGS, with costs constantly decreasing,
equipment becoming more portable/field deployable during outbreaks and remarkable
increase in data availability.

The huge amount of data being generated requires various processing steps such as
removal of primers and adapters, quality filtering and control which is usually crucial for
various downstream analysis. Several tools have been developed for these purposes, such
as fastp (Chen et al., 2018) and Trimmomatic (Bolger, Lohse & Usadel, 2014).

Reconstructing viral genomes from NGS data is usually achieved through de novo
assembly (which is the process of assembling genomes using overlapping sequencing
reads), or through a reference-guided approach (which involves mapping sequence reads
to a reference genome). Numerous tools have been developed for these purposes; SPAdes
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(Bankevich et al., 2012), Burrows-Wheeler Alignment tool (BWA), V-GAP (Nakamura
et al., 2016), VirusTAP (Yamashita, Sekizuka & Kuroda, 2016), V-Pipe (Posada-Céspedes
et al., 2021) and viral-ngs (https://github.com/broadinstitute/viral-ngs), amongst others.
Contigs generated by de novo assembly however do not provide a complete summary of
reads, misassembly can result in the contigs having an incorrect structure, and for parts of
the genome where contigs could not be assembled, no information is available. In addition,
reference-guided assembly of viral genomes can lead to biased loss of information which
can then skew epidemiological and evolutionary conclusions (Wymant et al., 2018).

Variant analysis and genome quality assessment to detect variants and changes occurring
across the genome of a virus is also a key step in viral genome analysis as viruses (especially
RNA viruses) are known to have high mutation rates (Duffy, 2018). Variant analysis is
important for detecting outbreak origins and for phylogenetic/phylogeographic studies
and best practices for variant identification in microbial genomes have been proposed in
literature and adopted to a large extent (Van der Auwera et al., 2013).

A number of pipelines that have been developed for downstream analysis of viral
genomes require high performance computing (HPC) clusters and/or cloud-based
systems e.g., the V-pipe authors recommend running V-pipe on clusters because
for most applications, running V-pipe on a local machine may not be efficient
(https://github.com/cbg-ethz/V-pipe/wiki/advanced) and some of these pipelines are
only web-based such as VirAmp (Wan et al., 2015) and VirusTAP (Yamashita, Sekizuka &
Kuroda, 2016. Also, some pipelines have many dependencies to be installed especially if
the analysis requires multiple tasks to be performed. In low-and-middle income countries
(LMICs) where most scientists do not have access to HPC clusters or cloud-based systems
and where internet connection is too unstable to regularly make use of web-based platforms
for analysis, this can be a daunting task.

The challenges listed above motivated the development of VGEA (Viral Genomes Easily
Analyzed, available online at https://github.com/pauloluniyi/VGEA). VGEA makes use of
existing bioinformatics pipeline/tools to carry out various viral genome analysis tasks and
is built on an advanced workflow management system, Snakemake (Köster & Rahmann,
2012).

MATERIALS AND METHODS
Datasets
We successfully tested and validated VGEA with SARS-CoV-2 (n= 20) and Lassa Virus
(n= 20) datasets sequenced on the illumina MiSeq and illumina FGx sequencing machines
in our laboratory at the African Centre of Excellence for Genomics of Infectious Diseases
(ACEGID), Redeemer’s University, Ede, Nigeria. Briefly, samples were inactivated in
buffer AVL and viral RNA was extracted according to the QiAmp viral RNA mini kit
(Qiagen) manufacturer’s instructions. Extracted RNA was treated with Turbo DNase
to remove contaminating DNA, followed by cDNA synthesis with random hexamers.
Sequencing libraries were prepared using the Nextera XT kit (Illumina) as previously
described (Matranga et al., 2016) and sequenced on the Illumina Miseq platform with
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101 base pair paired-end reads. We also tested and validated VGEA with HIV-1 datasets
sequenced on the illumina HiSeq 2500 obtained fromNCBI Sequence Read Archive (SRA).
We made use of 60 test datasets (Lassa Virus (20), SARS-CoV-2 (20) and HIV-1 (20))
for the validation of the VGEA pipeline. All our test datasets are available on figshare
(https://doi.org/10.6084/m9.figshare.13009997).

Implementation
The installation of VGEA requires the pipeline to be downloaded onto a personal computer
and creation of a conda environment to set up all dependencies. Complete installation
steps are in the github README file: https://github.com/pauloluniyi/VGEA/blob/master/
README.md

The analysis of VGEA is broken down into a set of ‘rules’ that links the output file of an
analysis into the input of the next task in the general workflow (Fig. 1). The dependencies
are fastp for read trimming and read-level quality control, BWA for mapping sequencing
reads to the human reference genome, SAMtools for extracting unmapped reads and also
for splitting bam files into fastq files, IVA for de novo assembly to generate contigs, shiver
to pre-process reads for quality and contamination, then map to a reference tailored to the
sample using corrected contigs supplemented with the user’s choice of existing reference
sequences, SeqKit for cleaning shiver assembly for QUAST, QUAST to evaluate/assess the
quality of genome assemblies andMultiQC for aggregation of the results from fastp, BWA
and QUAST

All of these tools can be installed using a bioconda channel (Grüning et al., 2018). The
input files for VGEA are paired-end fastq files. VGEA allows full customization of the
pipeline, so users can modify the parameters used in running their samples. It is possible
to modify every step of the workflow to suit the samples being processed. Users can also
add more steps to the pipeline as they see fit. The pipeline runs on Linux/Unix and Mac.
However, no prior programming is required to run the pipeline and, once the user supplies
the input, the whole workflow can run automatically from beginning to end.

RESULTS
VGEA carries out read trimming and quality control tasks on input FASTQ data using
fastp (Fig. 2). This increases the quality of data used for subsequent steps of the pipeline.
VGEA then maps reads to the human reference genome in order to remove human
contaminants, the pipeline carries out this step using BWA. Genome assembly and
consensus sequence generation is carried out, together with the generation of summary
minority-variant information (base frequencies at each position) and detailed minority-
variant information (all reads aligned to their correct position in the genome). VGEA
carries out assembly using IVA and generates consensus sequences using shiver. Previous
study by the shiver developers has shown the systematic superiority of mapping to shiver’s
constructed reference compared with mapping the same reads to the closest of 3,249
references: median values of 13 bases called differently and more accurately, zero bases
called differently and less accurately, and 205 bases of missing sequence recovered (Wymant
et al., 2018).
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Figure 1 A schematic workflow of VGEA.User-supplied paired-end fastq files are pre-processed and
trimmed using FASTP followed by mapping to the human reference genome with BWA. Following map-
ping, a BAM file containing unaligned/unmapped reads is extracted using SAMTOOLS. This BAM file is
then split into fastq files of forward and reverse reads also with SAMTOOLS after which de novo assem-
bly is carried out using IVA. Following de novo assembly, SHIVER is used to map the reads and generate
consensus sequences, and detailed minority variant information (full explanation of the shiver method is
in File S1). SEQKIT is used to clean the SHIVER output for QUAST after which genome evaluation and
assessment is carried out using QUAST.MULTIQC is then used for aggregation of results from BWA,
FASTP and QUAST.

Full-size DOI: 10.7717/peerj.12129/fig-1

VGEA also assesses the quality of genome assemblies using QUAST. QUAST evaluates
metrics such as contig sizes, misassemblies and structural variations, genome representation
and its functional elements, variations of N50 based on aligned blocks and then presents
these statistics in graphical form. QUAST also makes a histogram of several metrics
including the number of complete genes, operons and the genome fraction (%). Finally,
VGEA compiles the results of BWA, fastp andQUAST into a singleMultiQC report (Fig. 3).
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Figure 2 Fastp pre-processing report for a SARS-CoV-2 test dataset analyzed using VGEA.
Full-size DOI: 10.7717/peerj.12129/fig-2

Figure 3 MultiQC report of five SARS-CoV-2 datasets analyzed using VGEA.
Full-size DOI: 10.7717/peerj.12129/fig-3
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Table 1 Benchmarking values (time and CPU usage) for a SARS-CoV-2 dataset analyzed using VGEA.

VGEA rule name Time (h:m:s) Maximum
RAM used (MB)

human_reference_index 1:01:53 4688.56
fastp 0:00:14 581.91
bwa_human 0:08:52 5960.95
samtools_extract 0:02:40 16.21
bamtofastq 0:01:39 6.61
aiva 8:19:11 238.57
shiver_init 0:00:53 64.97
shiver_align_contigs 0:04:37 2509.64
shiver_map_reads 0:31:51 567.27
shiver_tidy 0:00:00 1.06
quast 0:00:33 72.51

Notes.
aIVA was run using one CPU core and two threads so if allowed more computational resources, the assembly time will be even
shorter.

Performance evaluation
VGEA makes use of Snakemake’s benchmarking feature which allows the measurement
of the CPU usage and wall clock time of each rule in the pipeline. This allows the user to
know which step of the pipeline requires the least and highest amount of computational
resources. Knowledge of this can help the user decide on the number of threads to dedicate
to each rule as VGEA also makes use of Snakemake’s multi-threading feature. Table 1
shows the benchmarking values for a sample SARS-CoV-2 dataset analyzed using VGEA.

We compared the contigs generated by VGEA’s assembly step with contigs generated
using two other standalone and commonly used assembly pipelines, SPAdes (Bankevich et
al., 2012) and Velvet (Zerbino & Birney, 2008). We compared against these two pipelines
because most commonly used assembly workflows like viral-ngs and VirAmp are built on
them. We carried out this comparison by making use of five different SARS-CoV-2 test
datasets (namely CV18, CV29, CV45, CV115 and CV145 datasets available on FigShare and
NCBI).We compared the assemblies to the SARS-CoV-2 reference genome, andN50/NG50,
mis-assembly, mismatches and indel scores were used to evaluate the performance of each
assembly method as recommended by Assemblathon 2 (Bradnam et al., 2013) (Table 2).
Basic statistics were calculated using QUAST. All results of our performance evaluation and
comparison are provided as File S2. All analyses were run on a 64-bit personal computer
with 16GB RAM using four threads. SPAdes version 3.15.2 and Velvet version 1.2.10 were
used for the comparison purposes using the default parameters.

Evaluation statistics showed that contigs generated by VGEA had the highest NG50
score for four of the five datasets and the highest N50 scores across all five datasets. In all
five datasets, VGEA’s contigs had the highest genome fraction covering greater than 95%
in four.
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Table 2 Performance comparison using different assembly pipelines.

Sample ID # reads
(x106)

Pipeline # contigs Largest
contig
(bp)

N50 NG50 Genome
fraction
(%)

Mis
assemblies

Mismatches Indels Maximum
RAM used
(MB)

CV18 3.2 VGEA
SPAdes
Velvet

42
384
68

29928
22141
1858

2294
1435
728

29928
22141
922

99.776
99.652
19.326

0
1
0

10
18
3

0
1
0

627
2447
1544

CV29 1.8 VGEA
SPAdes
Velvet

31
478
66

7731
24904
2877

3065
1136
942

7534
24904
1380

99.786
99.632
1.729

0
0
0

9
7
0

0
0
0

484
2314
807

CV45 6.2 VGEA
SPAdes
Velvet

30
45
535

16248
6779
5239

2603
1255
898

16248
2447
3030

98.291
94.957
14.256

1
0
0

11
35
0

0
12
0

666
2504
1360

CV115 2 VGEA
aSPAdes
Velvet

28
49
41

5225
1942
2847

2258
1068
819

3060
1828
931

96.957
-
68.134

0
–
0

12
–
9

0
–
0

177
1735
511

CV145 4.4 VGEA
SPAdes
Velvet

28
188
178

6807
3216
1798

2049
1190
682

4214
2477
1107

73.093
5.073
3.578

0
2
0

14
13
0

0
0
0

635
2547
1459

Notes.
aQUAST gave no genome fraction value for this sample.

Comparison of maximum RAM used by VGEA, SPAdes and Velvet showed that VGEA
used the least amount of RAM for the analyses of all five datasets used for comparison.
SPAdes and Velvet however ran faster than VGEA for all analyses.

DISCUSSION
VGEA is built on the snakemake workflow management system (BKöster & Rahmann,
2012), a workflow management system that allows the effortless deployment and execution
of complex distributed computational workflows in any UNIX-based system, from local
machines to high-performance computing clusters. It is a user-friendly, customizable and
reproducible pipeline which can be deployed on a personal computer and which can run
from start to finish with a single command.

VGEA was designed with ease-of-use in mind and so all its dependencies can be
installed in a conda environment under the bioconda channel (Grüning et al., 2018making
it particularly useful for scientists with little or no computational background and for
scientists in LMICswho don’t havemuch access to high-performance computing clusters or
cloud-computing resources. VGEA capitalizes on Snakemake’s multi-threading feature so
that makes it possible for it to be deployed on laptops with greater computing performance
or a computing server to improve its speed. The pipeline was tested with paired-end
short-read sequencing data produced by the illumina platform (MiSeq, MiSeq FGx and
HiSeq 2500).

The results generated by the major steps of the VGEA pipeline are summed up together
into a MultiQC report which can be easily interpreted and understood by anyone with
little or no knowledge of bioinformatics.
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CONCLUSION
VGEA was built primarily by biologists and in a manner that is easy to be employed by
users without significant computational background. As new and innovative tools for
viral genome analysis and assembly are increasingly being developed, these can easily be
incorporated into the VGEA pipeline. We hope that other scientists can build upon and
improve VGEA as a tool to extract more qualitative and quantitative information from
viral genomes.

Abbreviations

VGEA Viral Genomes Easily Assembled
NGS Next generation sequencing
RNA Ribonucleic acid
SARS Severe Acute Respiratory Syndrome
MERS Middle East Respiratory Syndrome
IVA Iterative Virus Assembler
SHIVER Sequences from HIV Easily Reconstructed
HPC High Performance Computing
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