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ABSTRACT
Background. Diabetic retinopathy (DR) is characterized by a gradually progressive
alteration in the retinal microvasculature that leads to middle-aged adult acquired
persistent blindness. Limited research has been conducted on DR pathogenesis at the
gene level. Thus, we aimed to reveal novel key genes that might be associated with DR
formation via a bioinformatics analysis.
Methods. The GSE53257 dataset from the Gene Expression Omnibus was downloaded
for gene co-expression analysis. We identified significant gene modules via the
Weighted Gene Co-expression Network Analysis, which was conducted by the Protein-
Protein Interaction (PPI) Network via Cytoscape and from this we screened for key
genes and gene sets for particular functional and pathway-specific enrichments. The
hub gene expression was verified by real-time PCR in DR rats modeling and an external
database.
Results. Two significant gene modules were identified. Significant key genes were
predominantly associated with mitochondrial function, fatty acid oxidation and
oxidative stress. Among all key genes analyzed, six up-regulated genes (i.e., SLC25A33,
NDUFS1, MRPS23, CYB5R1, MECR, and MRPL15) were highly and significantly
relevant in the context of DR formation. The PCR results showed that SLC25A33 and
NDUFS1 expression were increased in DR rats modeling group.
Conclusion. Gene co-expression network analysis highlights the importance of
mitochondria and oxidative stress in the pathophysiology of DR. DR co-expressing
gene module was constructed and key genes were identified, and both SLC25A33 and
NDUFS1 may serve as potential biomarker and therapeutic target for DR.

Subjects Biochemistry, Bioinformatics, Molecular Biology, Diabetes and Endocrinology,
Ophthalmology
Keywords Diabetic retinopathy, Weighted gene co-expression network analysis, Key genes,
SLC25A33, NDUFS1

INTRODUCTION
Diabetic retinopathy (DR) is one of the most adverse complications of diabetes, which
has emerged as the most common cause of visual impairment and irreversible blindness
among working adults and middle-aged people (Heng et al., 2013; Mishra et al., 2016;
Platania et al., 2018). Globally, an estimated 415 million people with diabetes in 2015,
the patient number expected to rise up to 642 million by the year 2040. The estimated
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annual incidence of diabetic retinopathy ranged from 2.2% to 12.7% and progression from
3.4% to 12.3% (Sabanayagam et al., 2019). Although therapeutic approaches for DR have
improved, such as photocoagulation with an argon laser, and intravitreal injections of anti-
Vascular Endothelial Growth Factor (VEGF) therapy, the incidence of visual impairment in
patients with proliferative diabetic retinopathy is not lower and treatment of DR remains
challenging (Khan et al., 2020; Rodríguez et al., 2019). Increasing evidence shows that
genetic features, oxidative stress, mitochondria dysfunction, lipid/lipoprotein-associated,
pro-inflammatory, and advanced glycation end-products (AGEs), as well as environmental
factors contributed to the etiology and development of DR (Jenkins et al., 2015). However,
the exact pathogenesis of DR is complicated and remains largely unclear (Heng et al., 2013;
Thebeau et al., 2020).

With the progress of genome-wide research, novel biomarkers include those associated
with inflammation and angiogenesis that are known to play important roles in the
development of novel therapeutics (Jenkins et al., 2015). Recently, circulating miRNAs as
non-invasive biomarker to identify andmonitored of diabetes microvascular complications
has been studied (Greco et al., 2020). Previous studies have suggested that miRNAs offer
insights into the pathophysiological states of DR (Mammadzada et al., 2019). Accumulating
studies have highlighted critical roles for miRNAs in diabetic retinopathy, which may offer
new targets for early detection and therapeutic intervention of diabetic retinopathy (Zhang
et al., 2017). A thorough investigation of the molecular mechanisms of DR is critical.
However, the value of their clinical application is currently limited and requires further
study. Simultaneously, some associated genes have not been reported and the gene networks
thought to be connected with the etiology of DR have not been clearly defined.

The aim of this paper is to further elucidate the interplay of genetic biomarkers and
enriched signaling pathways associated with the pathogenesis of DR, clarifying potential
genes and biological pathways that may contribute to the discovery of new and valuable
targets for the treatment aimed at decreasing vision loss in DR patients.

The Gene Expression Omnibus is a public and freely available database to obtain
gene expression datasets with valuable information and new insights into the molecular
pathogenesis of DR. WGCNA clustering criteria play a significant biological role and much
research effort has been devoted to understanding the molecular mechanisms of many
diseases (You et al., 2018). A comprehensive integration of gene co-expression network in
DR is still rare for the present. Therefore, it is necessary to use systems biology tools to
gather datasets to forecasted the functional gene networks and obtain the stable and credible
results, which may be clusters of genes with biological implications having important roles
in the pathogenesis and development of DR.

MATERIALS AND METHODS
Material and data
We downloaded the datasets selected in this study from the Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53257). We acquired
the original gene expression profile from the GSE53257 dataset that was provided by
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Govindarajan, which included 16 human retina samples that were classified into three
study groups as follows: (1) retina of patients with diabetic retinopathy; (2) retina of
diabetic patients with no signs of diabetic retinopathy; and (3) retina of control patients
without diabetes that were extracted from cadaveric eyes. This classification described
the preparation of samples in their study. Then, microarray analyses and experiments
were completed, following which, the Agilent custom algorithm was used to design the
probe sets that were printed on the GPL18056 platform. The robust multiarray average
algorithm (Sahlabadi et al., 2018) was used to perform quartile data standardization of
the downloaded data and background correction. We filtered the lack of corresponding
gene symbols for the probes, and reserved the maximum values of the gene symbols using
multiple probes. All data were processed with the Limma package of R software (Version
3.5.3) as described previously (Han et al., 2020).

Weighted gene co-expression network analysis
After raw data preprocessing, the weighted gene co-expression network was constructed
by the WGCNA package of R (version 1.69) to identify the importance of genes and
associated modules in this study as described previously (Han et al., 2020). The WGCNA
procedure calculated a Pearson correlation matrix for all genes in a pairwise manner
then a correlation matrix was calculated. The soft threshold (power) value was set at ‘‘8’’.
The matrix was converted into an adjacency matrix by raising all values to a power ‘‘
β’’ from the correlation matrix. Average linkage hierarchical clustering was then created
to categorize modules of closely interrelated genes. According to the topological overlap
matrix dissimilarity function was signed as a TOM-Type, and network inter-connectedness
was performed by calculating the topologic overlap. On being built on the 1-TOM in terms
of their connection strengths, the genes were grouped by average hierarchical clustering,
which was measured by means of the hclust function. Modules were referred to as groups
of exceedingly co-expressed genes, which usually consisted of more than 30 genes. After
relating modules to clinical traits, modules with the highest correlation coefficient were
choosed for subsequent analysis.

Protein–protein interaction (PPI) network construction and analysis
To detect the relationship between genes at the protein level and to identify the key genes
that were included in modules, the Cytoscape (version 3.4.0) software was applied in order
to search experiment-validated PPIs amongst common selected module genes and visualize
networks. Next, topologic properties of the computing, the degree, and the ‘‘betweenness’’
of the distribution network was analyzed using the cytoHubba app in two module PPIs.

Gene function analysis and functional enrichment analysis
Currently, Gene Ontology (GO) is the most widely acknowledged gene function knowledge
base. The cluster profiler package (Yu et al., 2012) was used in this study to evaluate gene
function profiles and gene clusters with the aim of recognizing biological functions of the
primary gene in the modules. According to each given gene list from selected modules,
we could implement pathway and process enrichment analyses via the following ontology
sources: GO for biological processes, GO for molecular functions, and GO for cellular
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components. Herein, 10 biological processes with a p-value of each module were listed,
which reflected functional characteristics of the modules.

Validation of the key genes
Validation of key gens was divided in two parts. One part is that we used the diabetic rats
model to validate the candidate genes through quantitative reverse transcription (q-PCR)
analysis. Another part is an external databases validation.

Validation of the DR model in rats
Animals
Fourteen healthy 10-week-old male Sprague Dawley (SD) rats, average weighing between
300–400 g with clear ocular media and no ocular fundal lesions were purchased from
Changsha Tianqin Biotechnology Co., Ltd. (Changsha, Hunan, China). The SD rats and
their feeds were tested physically and chemically by the Center for Disease Control and
Prevention of Hunan Province (sample acceptance Nos. 2017DW041, 2017DS009). All
rats were housed in a pathogen-free facility under controlled environment with ad libitum
access to water and food (temperature 18–25 ◦C; humidity 50%–70%; and light cycle 12-h
light/12-h dark).

Diabetes model and experimental grouping
SD rats were randomly divided into two groups, including diabetic rats and control group.
After fasting for 12 h, rat models of diabetes were established by intraperitoneal injection
of 60 mg/kg 1% streptozotocin solution (STZ) (Portillo et al., 2017). Moreover, 3 day after
STZ injection blood glucose (BG) in caudal venous of rat were detected, and BG levels of
>16.7 mmol/L were considered as a success model. Rats with blood glucose levels below
16.7 mmol/l were excluded from our study. After successful modeling, body weights and
fasting blood glucose levels of rats were measured once every 4 weeks. The rats were
sacrificed 3 months after the model was established. To achieve loss of consciousness and
death with a minimal pain, suffering and distress to animals, all rats were euthanized by
rapid cervical dislocation. Then, the rat eyeballs were obtained and rat retinal issues were
collected. There were no surviving rats at the end of experiment. This study complied
with the Chinese guidelines of the Experimental Animals and was approved by the Ethical
Committee of Central South University Xiangya School of Medicine Affiliated Haikou
Hospital (SC20170103).

Quantitative PCR
Total RNA extraction from rat retina tissues with TRIzol method, mRNA reverse
transcribed to cDNA and real-time quantitative PCR (qPCR) were performed according
with the manufacturer’s instructions. The primer sequence information was shown in
Table S1. The primers were synthesized by Shanghai Biotechnology (Shanghai, China).
qPCR was conducted in a total reaction volume of 30 µl, including 2 µl of template cDNA,
1 uL each of Primer R and Primer F, 15 uL of 2X SYBGREEN PCR Master Mix (Kangwei
Century Co. LTD, Beijing, China) and 11 uL of ddH2O. Then, 40 cycles of an amplification
and quantification program (95 ◦C for 15 s and 60 ◦C for 30 s) were carried out and melt
curve analysis was performed.
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The conservation analysis of SLC25A33 and NDUFS1 in human,
mouse and rat
The conservation analysis of SLC25A33 and NDUFS1 were made via DNAMAN software
(https://www.lynnon.com/dnaman.html) and National Center for Biology Information
(NCBI) database in human, mouse, and rat.

Validation of the external dataset
We validated the candidate genes through a public database, the database (GSE87433)
from the GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87433). The
GSE87433 provided by Friedrichs, which included 6 normal control samples and 6 diabetic
retinopathy samples in mouse model.

Statistical analysis
The two-tailed Students’ t -test was used to identify the differences between groups. We
used the R statistical analysis package (version 3.5.3) to statistically analyze the data. An
alpha value of P < 0.05 was measured and considered a statistically significant event or
comparison in this study.

RESULTS
DR microarray datasets
To establish a gene co-expression network, the raw GSE data was downloaded from GEO.
The original data was pre-processedwith R for background correlation and standardization.
The R-package annotationwas used tomatch the probe of the gene symbol. Probematching
to multiple genes was removed, and the maximal value of a gene that matched multiple
probes was taken as the final expression value. One dataset from the GPL18056 platform
was selected. Details of the datasets are described in Fig. 1.

Construction of a co-expression and a PPI network
The clustering tree found that three samples were mixed and eliminated. The remaining 13
samples are analyzed by WGCNA for the next step. We filtered out the probe sets with no
significant variance in expression for all analyzed samples (Fig. 1B). Then, the R package
WGCNA was used to generate 15 modules from 1,037 probe sets (Figs. 1C and 1D). The
black module contained 58 genes, the blue module contained 148 genes, the cyan module
contained 42 genes, the pink module contained 53 genes, the green module contained 66
genes, the brown module contained 116 genes, the red module contained 64 genes, the
turquoise module contained 149 genes, the yellow module contained 80 genes, the tan
module contained 43 genes, the magenta module contained 53 genes, the green/yellow
module contained 48 genes, the purple module contained 51 genes, and the salmonmodule
contained 43 genes (Table S2). Genes could not be contained in any of the modules that
were otherwise placed into the grey modules and were removed for subsequent analysis
(Fig. 1E).

Among the 15 modules, the module eigengene (ME) cyan (r = 0.66, P= 6E-13) and the
ME blue (r = 0.6, P = 2E-10) modules were significantly associated with the DR and DM
modules (Figs. 2A and 2B). The key drivers in the two modules of interest showed closely
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Figure 1 Study flowchart andWGCNA analysis.Details of the study flowchart (A). Dendrogram of
sample clustering to detect outliers (B). Power value for the adjacency matrix in WGCNA, where the red
line signals 0.9 on the vertical axis (C) The hierarchical clustering dendrogram of genes in GSE with each
branch representing a gene, and each color representing a co-expression module in DR (D). The eigen-
gene adjacency heatmap between modules (E).

Full-size DOI: 10.7717/peerj.12126/fig-1

significant intramodular and genetic connectivity (Figs. 2C and 2D). Hence, we selected
the 42 genes in the ME cyan module and the 149 genes in the ME blue module to structure
the PPI and co-expression networks. Finally, a co-expression network containing 41 nodes
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Full-size DOI: 10.7717/peerj.12126/fig-2

and 591 edges in the ME cyan module, and 148 nodes and 7,323 edges in the ME blue
module were completed (Figs. 3A–3D).

Pathway and process enrichment analysis
We listed the analysis of the functional enrichment results of two major co-expression
modules (Table 1). In the GO cellular component in the cyan module, the most enriched
were the following: the mitochondrial matrix, the proton-transporting ATP synthase
complex, the NADH dehydrogenase complex, and the oxidoreductase complex, among
others (Fig. 4A, Table S3). In the GO cellular component in the blue module, the most
enriched were the mitochondrial protein complex, the oxidoreductase complex, and the
NADH dehydrogenase complex, among some others (Fig. 4B, Table S4).

In the GO molecular function in the cyan module, the most enriched included the
oxido-reductase activity, acting on the CH-CH group of donors, the oxidoreductase
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Table 1 Information of 10 key genes.

Gene symbol Gene title Related biological process

SLC25A33 Solute Carrier Family
25 Member 33

GO:0015218: pyrimidine nucleotide
transmembrane transporter activity
GO:0072531: pyrimidine-containing compound
transmembrane transport

MRPS23 Mitochondrial
Ribosomal Protein S23

GO:0003723: RNA binding
GO:0005515: protein binding
GO:0032543: mitochondrial translation

CYB5R1 Cytochrome B5
Reductase 1

GO:0004128: cytochrome-b5
reductase activity, acting on NAD(P)H
GO:0016491: oxidoreductase activity
GO:0006839: mitochondrial transport

NDUFS1 NADH:Ubiquinone
Oxidoreductase Core
Subunit S1

GO:0008137: NADH dehydrogenase (ubiquinone) activity
GO:0016491: oxidoreductase activity
GO:0042775: mitochondrial ATP synthesis coupled electron
transport

MECR Mitochondrial Trans-2-
Enoyl-CoA Reductase

GO:0006629: lipid metabolic process
GO:0006631: fatty acid metabolic process
GO:0055114: oxidation–reduction process

MRPL15 Mitochondrial
Ribosomal Protein L15

GO:0070125: mitochondrial translational elongation
GO:0070126: mitochondrial translational termination
GO:0140053: mitochondrial gene expression

ATP5O ATP synthase GO:0046034: ATP metabolic process
MTFR1 Mitochondrial Fission

Regulator 1
GO:0005739: mitochondrion
GO:0015980: energy derivation by oxidation of organic
compounds

CCDC90A Coiled-Coil Domain-
Containing Protein
90A, Mitochondrial

GO:0006816: calcium ion transport
GO:0036444: calcium import into the mitochondrion
GO:0051561: positive regulation of mitochondrial calcium
ion concentration

ACADL Acyl-CoA
Dehydrogenase Long
Chain

GO:0000062: fatty-acyl-CoA binding
GO:0016401: palmitoyl-CoA oxidase activity
GO:0016491: oxidoreductase activity

activity, acting on NAD(P)H, and the ADP transmembrane transporter activity, among
others (Fig. 4C, Table S5). Moreover, the blue module was enriched into a molecular
function that was involved in multiple fields, including the structural constituent of the
ribosome, aminoacyl-tRNA ligase activity, oxidoreductase activity, NADH dehydrogenase
(ubiquinone) activity, and oxidoreductase activity (Fig. 4D, Table S6).

The genes of the cyan module were significantly enriched in those exhibiting a biological
function with key roles in the following functional domains: mitochondrial transport; ATP
metabolic processes; oxidative phosphorylation; fatty acid oxidation; and other functions
(Fig. 4E, Table S7). Amongst the GO biological processes in the blue module, the most
outstanding genes that were evidently presented included mitochondrial gene expression,
oxidative phosphorylation, ATP metabolic processes, fatty acid oxidation, and reactive
oxygen species biosynthetic processes, and so on (Fig. 4F, Table S8).
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Identify and verified hub genes in the cyan and the blue modules
In this current work, Cytoscape was used to visualize the cyan and blue modules as
networks, from which thirty percent of the genes were selected for further analysis
by descending sequenced candidate genes of node degree or ‘‘betweenness’’ into the
cytoHubba application. The first five genes in each module were considered hub genes
(Table 1), and included SLC25A33, ACADL, ATP50, MTFR1, and CCDC90A in the cyan
module and NDUFS1, MECR, MRPL15, MRPS23, CYB5R1, in the blue module (Figs. 5A–
5D). Moreover, when compared with the normal group, mitochondria-related genes
(i.e., SLC25A33, NDUFS1, MRPS23, CYB5R1, MECR, and MRPL15) were significantly
upregulated in the DR group (Fig. 6). Summary of the hub genes and the possible
mechanisms in DR were suggested in Fig. 7.

Validation of the key genes
Verification of the performance of DR model
Seven rats were successfully modeled, while another 7 rats were treated with an
intraperitoneal injection of normal saline as a control. The fasting plasma glucose
(FBG) of rats in control subjects was normal (FBG < 6.1 mmol/L), while the FBG in
experimental group were significantly higher levels during the experimental process. There
was statistically significant difference (P < 0:05). The initial body weight of rats was not
significantly different (P > 0.05). The weight of control group rats was with the steady
increase, while the weight in experimental group decreased. The difference was statistically
significant between the two groups (P < 0:05, Table S9).

SLC25A33 and NDUFS1 were validated by qPCR. The results of qPCR revealed that
SLC25A33 and NDUFS1 were significantly differentially expressed between DR model and
control group (Figs. 7A and 7B).

The conservation analysis of SLC25A33 and NDUFS1 genes
To detect the gene conservation of SLC25A33 and NDUFS1 in human, mouse and rat,
NCBI database was used. Among the SLC25A33 and NDUFS1 genes, results showed that
the gene structure exhibitted high conservatism in human, mouse, and rat (Fig. S1).

Verification of the external dataset
We found 5 genes annotated in the validation of dataset (GSE87433) on account of the
probe sets inmousemodel, meanwhile the 5 genes represented the same trend of expression
(up-or downregulated) in the microarray analysis (SLC25A33, NDUFS1, ACADL, ATP50,
CCDC90A) (Fig. S2), suggesting a good concordance.

DISCUSSION
DR is a vision-threatening complication of diabetes affecting the structure and cellular
composition of the microvasculature. The pathogenesis of DR is complicated and remains
largely unclear. It is believed that genetic, environmental and biochemical contribute to
the the development of DR. Although some other genes have been reported in DR, the
comprehensive analysis of the gene networks and funtional studies associated with the
etiology of DR are still lag behind and not been clearly defined.
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In our WGCNA analysis, the genes were classified into 15 co-expressed biologically
functional modules. This line of study indicated particular novel insights into the
pathogenesis of DR at a systems level. In this study, to further understand the significance
of these functional modules in the pathogenesis of DR, we performing the enrichment
analysis.
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Crucial pathways in important modules might perhaps hold the most challenging
correlation with the symptoms or pathophysiology of DR. The gene enrichment analysis
in the blue module mainly involved those of the ‘‘reactive oxygen species biosynthetic and
metabolic process, oxidative stress,mitochondrial gene expression and function,’’ which are
relevant to oxidative stress and reactive oxygen responses. Currently, tissue oxidative stress
is considered as a vital component in the development of DR (Wu, Tang & Chen, 2014).
The enriched function of cyan module pathways mainly contain pathway-specific gene sets
involved in the ATP metabolic process, oxidative phosphorylation, fatty acid oxidation,
mitochondrial process, and the cellular response to oxidative stress. The regulation of
oxidative phosphorylation and ATP metabolic processes suggest that various pathways and
metabolism are active in tissue cells when DR is activated.

Therefore, mitochondrial ATP, the response to reactive oxygen species and the response
to oxidative stress pathway plays a vital role in the incidence of the pathway leading to, or
associated with DR.
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However, when considering the molecular mechanisms, and the potential roles played
bymitochondrial transport, we recognize that themitochondrial respiratory chain complex
assembly in DR remains poorly understood and warrants further elucidation in the future.

Meanwhile, we listed top 11 related genes in cyan module and 35 related genes in blue
module in the visualization operation to show the reliability of the results. Quite a few
crucially up-regulated or down-regulated genes were identified in our study, some of which
are novel DR gene signatures and their molecular mechanisms and physiological roles still
remain largely unknown in DR pathogenesis.
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Our discussion therefore mainly focuses on the genes that are selected to be closely
related to the occurrence and development of DR. Herein, we further discussed 10 key
genes that included: NDUFS1, SLC25A33,MECR,MRPL15,MRPS23, CYB5R1, CCDC90A
, MTFR1, ATP50 and ACADL.

Complex I (CI) is the first enzyme of the mitochondrial respiratory chain (Ni et al.,
2019). NDUFS1, which belongs to the 75 kDa complex I subunit family located at the
mitochondrial inner membrane, is an integral part of the carbohydrate, energy, and amino
acid metabolic pathways that play an important role in glycol-metabolic diseases, which
have already been reported in many diseases, such as in clear-cell renal-cell carcinoma
(Ellinger et al., 2017), lung cancer (Su et al., 2016), schizophrenia and negative symptoms
(Zhu et al., 2015), and diabetes mellitus (Wu et al., 2017), but the molecular mechanism
underlying its effects remains unclear in diabetes mellitus and also not was not reported
in diabetic retinopathy. Moreover, NDUFS1 belongs to oxidative phosphorylation genes,
and encodes NADH dehydrogenase with a coordinated increase expression involved in
the mitochondrial respiration chain (Liu et al., 2015). However, high glucose conditions
induced a significant increase in intracellular reactive oxygen species and subsequently
increased the activity of NADH oxidase (Fan, Qiao & Tang, 2017). The biallelic mutations
in NDUFS1 dampen the stability of the entire N-module of Complex I, indicative of ROS
stress (Ni et al., 2019). In addition, by sequestering NDUFS1, where in super-complex
destabilization and oxidative phosphorylation is inefficient (Elkholi et al., 2019). When
NDUFS1 is negatively regulated, it results in decreased mitochondrial respiration, and
commitment to the mitochondrial apoptotic pathway. Oxidative stress and mitochondrial
dysfunction were involved in the pathogenesis of diabetic retinopathy (Wu et al., 2018),
we hypothesized that NDUFS1 might play an important role in DR. SLC25A33 belongs
to the SLC25 family of mitochondrial carrier proteins that transport molecules over the
mitochondrial membrane (Haitina et al., 2006). Previously published work suggested that
SLC25A33 promotes cell growth as a mitochondrial UTP carrier (Lyons et al., 2017) and
plays a key physiological role in completing transport stages that are vital for mitochondrial
DNA and RNA synthesis and breakdown (Di Noia et al., 2014). MECR, a novel gene of
mitochondrial and an oxidoreductase, it catalyzes the last step in mitochondrial fatty
acid synthesis. In the livers of mice with liver fibrosis, MECR as lipoic acid synthetic
pathway enzymes were significantly reduced (Luo & Shen, 2020). Moreover, MECR is
reportedly crucial in many diseases, such as hepatocelluar carcinoma (Cai et al., 2019),
childhood-onset dystonia and optic atrophy (Heimer et al., 2016). Meanwhile, a marked
body of evidence from both cohort and case-control studies have indicated the significant
relevance between the disorder of lipid levels and DR (Das et al., 2015). Our results show
that MECR was up-regulated in the DR process. This gives a hint that MECR might be
vital in the pathogenesis of DR and might also be a novel gene therapeutic target in the
treatment of DR. BothMRPL15 andMRPS23 belong to the mitochondrial biomarker set of
genes, which might encode mammalian mitochondrial ribosomal proteins and thus assist
in protein synthesis within the mitochondrion. Previous research has shown that both
MRPL15 and MRPS23 can be selected as companion diagnostics, to decide which breast
cancer patients might benefit most from clinical therapy (Sotgia, Fiorillo & Lisanti, 2017).
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CYB5R1 includes oxidoreductase activity and cytochrome-b5 reductase activity that acts on
NAD(P)H. CYB5R1 is important in lipid synthesis in adipocyte mitochondria (Neve et al.,
2012), which is a novel beneficial target of demethylation drugs that were also confirmed
by real-time RT-PCR (Ning et al., 2017). CCDC90A, also known and renamed as MCUR1,
modulates mitochondrial calcium uptake as a regulator of the mitochondrial calcium
uniporter complex and thereby maintains normal cellular bioenergetics (Mallilankaraman
et al., 2012). Adisorder in CCDC90A can alter the mitochondrial membrane potential and
mitochondrial calcium uptake capacity, and can disrupt oxidative phosphorylation, lower
cellular ATP and activate AMP kinase-dependent pro-survival autophagy(Mallilankaraman
et al., 2012; Paupe et al., 2015). MCUR1 facilitates epithelial-mesenchymal transition and
metastasis in hepatocellular carcinoma involved via the mitochondrial calcium dependent
ROS/Nrf2/Notch pathway (Jin et al., 2019), however, no relevant literature has been
reported to date in diabetic retinopathy. ATP50 is a component of the F-type ATPase that
is initiated in themitochondrial matrix, which is involved in oxidative phosphorylation that
participates in ATP generation (Rönn et al., 2009). We hypothesized that ATP5O might
contribute to DR, and do so by defective ATP production. MTFR1, a target gene of miR-
324-5p (Ye et al., 2019), encodes a mitochondrial protein that can promote mitochondrial
fission and is crucially involved in oxidative stress. Suppressing MTFR1 translation
attenuates mitochondrial fission, apoptosis and myocardial infarction (Wang et al., 2015),
which indicates that excessive expression of MTFR1 aggravates mitochondrial fission and
apoptosis, meanwhile regulating MTFR1might afford protection against oxidative stress-
induced endothelial progenitor cell injury (Chen et al., 2019). Mitochondrial function
has a profound effect on DR (Shao et al., 2019), among these influences, MTFR1 in all
probability might play a vital role in the mechanism of DR. ACADL belongs to the
mitochondrial flavoenzyme family that are commonly involved in fatty acid. Precious
studies have reported the involvement of lipids in the progression of DR (Zhou et al.,
2018), whereas an increased acetylation of ACADL is related to decreased fat metabolism,
which contributes to damaged mitochondrial function and protein acetylation to influence
fatty acid oxidation and the development of metabolic dysregulation (Softic et al., 2019).
This means hint us that ACADL may be involved in DR, although this hypothesis requires
further investigation.

All of the above related experiments of the10 genes are not reported in DR. In terms of
validation of the key genes, first, an external validation was carried out using the validation
dataset. Last, among the significantly up-regulated genes, the high ranking SLC25A33 and
NDUFS1 were validated using RT-qPCR analysis in our experiment. The results revealed
SLC25A33 and NDUFS1 expression were highly significant in DR group, which deserved
our further attention. Both the genes are associated with mitochondrial function, oxidative
stress and fatty acid metabolism. However, further investigations evaluating the specific
effects of SLC25A33 and NDUFS1 on DR development and the molecular mechanism
underlying its effects are required. Moreover, we analyzed the gene conservation of
SLC25A33 and NDUFS1 in human, mouse and rats, and the results showed that the gene
structure exhibitted high conservatism among them, which also further proves that our
results are reliable.
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Our findings have identified and selected underlying genes that might play vital roles in
DR pathogenesis. Meanwhile, it highlighted the importance of mitochondria and oxidative
stress of the DR, particularly in providing a more in-depth research on molecular level.
Nevertheless, we acknowledge that several potential limitations in our study need to be
considered. First, original data lacks sufficient clinical data and sample outcomes, which
is limited in the judgment of module importance. Second, due to human retinal sample
requires the acquisition from human cadaver eye, it is harder to obtain in clinical practice.
So we only verify our results using animal models. Meanwhile, the conservation of RNA
expression level should be considered. But verify the results via a large-scale human retinal
sample will be better. Consequently, further specific studies are needed to provide greater
insights into DR progression and diagnosis with the aim of strengthening the management
of this disease.

CONCLUSION
In the present study, the biggest characteristic is that not only novel underlying genes were
found via bioinformatics analysis, and which were verified by real-time PCR in DR rats
modeling and an external database, but also gene co-expression network analysis highlights
the importance of mitochondria and oxidative stress in the pathophysiology of diabetic
retinopathy. Mitochondria involved in the process of disease initiation and progression
still is a hot spot in diabetic retinopathy. Our findings clearly elucidate the potential role
of the underlying genes and pathways in the development of DR, and both SLC25A33 and
NDUFS1 may serve as potential disease markers and therapeutic target for DR.
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