

Polycaprolactone nanofibers as an adjuvant strategy for Tamoxifen release and their cytotoxicity on breast cancer cells

Ana Pinzón-García ¹, Ruben Sinisterra ¹, Maria Cortes ², Fredy Mesa ^{Corresp., 3}, Sandra Ramirez Clavijo ³

¹ Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

² Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

³ Faculty of Natural Sciences, Department of Biology, Universidad del Rosario, Bogotá, Colombia

Corresponding Author: Fredy Mesa

Email address: fredy.mesa@urosario.edu.co

Breast cancer is the second leading cause of death in women, and tamoxifen citrate (TMX) is accepted widely for the treatment of hormone receptor-positive breast cancers. Several local drug-delivery systems, including nanofibers, have been developed for antitumor treatment. Nanofibers are biomaterials that mimic the natural extracellular matrix, and they have been used as controlled release devices because they enable highly efficient drug loading. The purpose of the present study was to develop polycaprolactone (PCL) nanofibers incorporating TMX for use in the treatment of breast tumors. Pristine PCL and PCL-TMX nanofibers were produced by electrospinning and characterized physiochemically using different techniques. In addition, an in vitro study of TMX release from the nanofibers was performed. The PCL-TMX nanofibers showed sustained TMX release up to 14 h, releasing 100% of the TMX. The Resazurin reduction assay was used to evaluate the TMX cytotoxicity on MCF-7 breast cancer cell line and PBMCs human. The PCL-TMX nanofiber was slightly cytotoxic in PBMCs and highly toxic in the MCF-7. Based on these results, the PCL-TMX nanofibers developed have potential as an alternative for chronic TMX use for breast cancer treatment without affecting other cells or tissues.

1 **Polycaprolactone nanofibers as an adjuvant strategy**
2 **for Tamoxifen release and their cytotoxicity on breast**
3 **cancer cells**

4

5

6 A. D. Pinzón-García¹, R. D. Sinisterra¹, M. E. Cortés², F. Mesa^{3, f}, S. Ramírez-Clavijo^{3,*}

7

8 ¹ Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais,
9 Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP 31270901, Brazil

10 ² Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais,
11 Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP 31270901, Brazil

12 ³ Universidad del Rosario, Faculty of Natural Sciences, Department of Biology, Carrera 24 #
13 63C-69, Bogotá D.C., 111221, Colombia

14

15 Corresponding Author:

16 F. Mesa^f

17 S. Ramírez-Clavijo*

18 Email address: fredy.mesa@urosario.edu.co; sandra.ramirez@urosario.edu.co

19

20 **Abstract**

21 Breast cancer is the second leading cause of death in women, and tamoxifen citrate (TMX) is
22 accepted widely for the treatment of hormone receptor-positive breast cancers. Several local drug-
23 delivery systems, including nanofibers, have been developed for antitumor treatment. Nanofibers
24 are biomaterials that mimic the natural extracellular matrix, and they have been used as controlled
25 release devices because they enable highly efficient drug loading. The purpose of the present study
26 was to develop polycaprolactone (PCL) nanofibers incorporating TMX for use in the treatment of
27 breast tumors. Pristine PCL and PCL-TMX nanofibers were produced by electrospinning and
28 characterized physiochemically using different techniques. In addition, an in vitro study of TMX
29 release from the nanofibers was performed. The PCL-TMX nanofibers showed sustained TMX
30 release up to 14 h, releasing 100% of the TMX. The Resazurin reduction assay was used to evaluate
31 the TMX cytotoxicity on MCF-7 breast cancer cell line and PBMCs human. The PCL-TMX
32 nanofiber was slightly cytotoxic in PBMCs and highly toxic in the MCF-7. Based on these results,
33 the PCL-TMX nanofibers developed have potential as an alternative for chronic TMX use for
34 breast cancer treatment without affecting other cells or tissues.

35

36 **Introduction**

37 Breast cancer is the second leading cause of death in women, after lung cancer ("International
38 Agency for Research on Cancer," 2018). Treatment strategies for this disease include surgery,
39 radiation therapy, chemotherapy, hormonal therapy, and targeted therapy, often applied in

40 combination. Endocrine therapy is the treatment of choice for patients with hormone receptor–
41 positive (HR+) breast cancer.

42

43 Breast cancer subtypes are defined by the expression of estrogen (ER) and progesterone (PR)
44 receptors and the status of the HER-2 gene, which may be amplified. Breast cancer cell lines with
45 molecular profiles similar to those of tumors are used to evaluate the effects of anticancer drugs in
46 vitro. The MCF-7 cell line derives from the pleural effusion of a patient with breast
47 adenocarcinoma and represents the luminal A breast cancer subtype because it has the same
48 molecular profile (ER+, PR+, normal HER-2 status). The use of anti-ER drugs, such as tamoxifen
49 (TMX), for the treatment of HR+ (ER+ and PR+) breast cancers is widely accepted (Johnston et
50 al., 2016).

51

52 TMX, also known as 4-hydroxytamoxifen, is a nonsteroidal compound that selectively modulates
53 the ER with antagonistic or agonist action, depending on the organ on which it acts (Salami &
54 Karami-Tehrani, 2003). It is an agonist in the liver, uterus, and bones, and an antagonist in the
55 brain and mammary glands and vasomotor symptoms (Sestak et al., 2006). TMX has been used to
56 stop the proliferation and inducing apoptosis of breast tumor cells through its anti-ER action
57 (Mandlekar & Kong, 2001; Salami & Karami-Tehrani, 2003).

58

59 TMX has cytostatic and cytotoxic properties in the MCF-7 breast cancer cell line, not only stopping
60 proliferation and inducing apoptosis, but also inducing differentiation and reducing cholesterol
61 synthesis (Kedjouar et al., 2004; Medina, Favre & Poirot, 2004); it also modulates immunity in
62 patients with breast cancer (Robinson et al., 1993; Behjati & Frank, 2009). Compared with those
63 of healthy controls, lymphocytes from women with breast cancer treated with TMX showed
64 significantly reduced killer activity, associated with a decrease in the absolute number of CD4-
65 type lymphocytes, and a greater proliferation response in the presence of the concanavalin A
66 mitogen (Rotstein et al., 1988; Robinson et al., 1993; Behjati & Frank, 2009). TMX is also
67 effective against Ebola virus (De Clercq, 2015) and human immunodeficiency virus (Laurence,
68 Cooke & Sikder, 1990) infections, and a recent review highlighted its benefits in the treatment of
69 respiratory diseases, such as coronavirus disease pneumonia (Salman et al., 2020). TMX and its
70 active metabolites have prolonged serum half-lives, and higher doses have not been associated
71 with improved outcomes; lower dosages have not been tested adequately. Furthermore, it is established
72 in the literature that chronic TMX use (for ≥ 5 years) could reduce the risk of death from PR+ ER+
73 breast cancer (Salami & Karami-Tehrani, 2003; Karn et al., 2010; Group (EBCTCG), 2011; Hong
74 et al., 2016; Drăgănescu & Carmocan, 2017) but when is used with potent inhibitors of CYP2D6
75 could be a risk of mortality (Donneyong et al., 2016).

76

77

78 It is well known that the nanometric scale devices used in current research for the prevention,
79 treatment and diagnosis of diseases such as cancer are mostly natural or synthetic polymers. The

Furthermore,
it is

allowable

desirable properties for these materials are biocompatibility, biodegradability, allow controlled release of active agents and present similarity to the native extracellular matrix of human tissues and cells (Venugopal, Zhang & Ramakrishna, 2005; Caracciolo et al., 2011; Rogina, 2014; Mochane et al., 2019). At the same time, local delivery systems have the advantage over systemic therapy of continuous drug delivery at higher concentrations directly to target sites. The benefits of these systems include improved patient compliance, the reduction of toxic effects and systemic complications (Vyas, Sihorkar & Mishra, 2000; Jain et al., 2008; Joshi et al., 2016), mimicking of the natural extracellular matrix (ECM), and highly efficient drug loading for controlled release. Nanoscale systems, such as those in which nanofibers are employed, may present a promising opportunity for the efficient treatment of solid tumors.

90

Electrospun nanofibers are nanometric structures produced with synthetic or natural elements that create continuous filaments with a maximum diameter of 500 nm (Caracciolo et al., 2011). These materials are preferably biodegradable, to avoid the use of additional systems for their removal. The simplest use of nanofibers as a local drug release system involves the preparation of a polymer solution and its mixing with the drug, followed by nanofiber manufacture. Among numerous methods, electrospinning is becoming the main technique for the production of materials and carpets made of nano-polymer fibers and metal oxide (Barnes et al., 2007; Duque, Rodriguez & Lopez, 2013; Rogina, 2014; Li et al., 2019). This method is simple, versatile, common, and economical (Rogina, 2014); it is performed in an electrospinning machine, which enables the use of different compounds and control of manufacturing parameters to determine the diameter, size, and porosity of the continuous nanofibers produced (Barnes et al., 2007). Various biopolymers have been used for tailored biomedical applications (Mochane et al., 2019).

103

Most nanometric-scale devices used in current research on the prevention, diagnosis, and treatment of diseases such as cancer are made of natural or synthetic polymers. Desirable properties for these materials are biocompatibility, biodegradability, capacity for controlled release of active agents, and similarity to the native ECM of human tissues and cells (Venugopal, Zhang & Ramakrishna, 2005; Caracciolo et al., 2011; Rogina, 2014; Mochane et al., 2019). Poly (ε-caprolactone) (PCL), a semi-crystalline aliphatic polyester, is the most commonly used synthetic polymer in medical applications because it biodegrades slowly and is biocompatible, given its similarity to natural tissue components such as collagen fibers and ECM and diameters of 50–500 nm (Venugopal, Zhang & Ramakrishna, 2005; Barnes et al., 2007). PCL has good mechanical properties and thermal stability and is easy to process, compatible with hard and soft tissues, and accepted by the US Food and Drug Administration as a drug-delivery vehicle (Song et al., 2018). It has been used to develop devices for anticancer molecule release, an emerging promising alternative for cancer treatment (Monteiro et al., 2017).

117

In the present study, we developed PCL-pristine (P) and PCL-TMX nanofibers by electrospinning (Vitchuli et al., 2011) for local drug delivery to solid breast tumors. The nanofibers were

120 characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy
121 (FTIR) and attenuated total reflectance infrared spectroscopy (FTIR-ATR), X-ray powder
122 diffraction (XRD), thermal analysis, and contact angle measurement. Resazurin assays (Escobar,
123 2010) were used to assess their cytotoxic effects on MCF-7 cells and peripheral PBMCs from a
124 healthy donor.

Move definition from line
199 to here

125

126

127 Materials & Methods

128

129 Materials

130 PCL with molecular weights of 43,000–500,000 was purchased from Polysciences, Inc. (USA).
131 TMX was supplied by Araujo Drug Supply S.A. (Brazil). Dichloromethane (DCM; 99.5%) and
132 methanol (MetOH; 99.8%) were acquired from Vetec (Brazil). All reagents were of analytical
133 grade and were used as received.

134

135

136 Preparation of PCL Nanofiber Solutions and Electrospinning

137 To prepare the PCL-P and PCL-TMX polymer solutions, 800 mg PCL was dissolved in 10 mL
138 DCM/MetOH mixture (50%/50% v/v) in each case. For the PCL-TMX solution, 15 mg TMX was
139 added. The solutions were agitated for 12 h at 25.0°C before use.

140

141 Each polymer solution was loaded into a 10-mL standard plastic syringe fitted with a 27-G blunted
142 stainless-steel needle using a syringe pump (PHD 2000; Harvard Apparatus). The distance between
143 the needle and the aluminum foil-wrapped collector was set at 15 cm, and electrospinning was
144 performed with a solution flow rate of 10 mL/h and voltage of 20 kV generated by a high-voltage
145 power supply (Gamma High Voltage, USA). The resulting nanofibers were collected and stored
146 for physicochemical characterization and microbiological and cytotoxicity testing.

147

148

149 Physicochemical Characterization

150 The conditions for the physicochemical characterization of the PCL and PCL-TMX nanofibers
151 were similar and adjusted according to (Ramírez-Agudelo et al., 2018; Dias et al., 2019).

152

earlier studies

153 Nanofiber morphology was analyzed by scanning electron microscopy (SEM) (FEG-Quanta 200;
154 FEI) with an accelerating voltage of 20 kV. Before analysis of SEM images, each nanofiber
155 sample was coated with a 5-nm-thick layer of gold using a sputter coater (MD20; Bal-Tec). The
156 average nanofiber diameter was calculated from at least 100 measurements obtained with Image J
157 software (National Institutes of Health, Bethesda, USA). ATR was performed with a
158 spectrophotometer (Spectrum 1SR; Perkin Elmer) equipped with a universal ATR sampling
159 accessory and a diamond top plate. The FTIR-ATR spectra of the PCL-P and PCL-TMX

160 nanofibers and TMX were obtained in the region of 4000–650 cm⁻¹, with four scans obtained per
161 sample at a resolution of 4 cm⁻¹. The data were analyzed with the Spectrum software provided
162 with the instrument (Perkin Elmer). The XRD patterns of the nanofibers were visualized using an
163 X-ray diffractometer (XRD-7000; Shimadzu) with Cu K α λ = 0.154051 radiations over a 2 θ range
164 of 4–60° at a scanning speed of 2 θ /min. Thermogravimetric and differential thermogravimetric
165 analysis (TGA/DTG) was performed using a TGA Q5000 device (TA Instruments, USA) with
166 sample heating at a rate of 10°C/min from 25°C to 600°C and under an N₂ flow rate of 50 mL/min.
167 The TG curves represent the thermal degradation of the samples. The data were processed using
168 the software supplied with the instrument (Universal Analysis 200; TA Instruments).

169

170 A contact angle measuring system (SEO Phoenix 300 Touch) was used to determine nanofiber
171 wettability. The nanofibers were placed on a sample stand, and water was dropped onto their
172 surfaces while a camera recorded an image. The Surfaceware 9 software was used to determine
173 the average contact angle.

174

175 To evaluate the drug release profile of the PCL-TMX nanofibers (loaded at 25.5 μ g TMX/mg
176 nanofiber approximately), approximately 15 mg of nanofibers was cut into specimens (15 × 15
177 mm), which were placed into Eppendorf tubes. The tubes were then incubated at 37°C in 2 mL
178 phosphate-buffered saline (PBS; pH 7.4) with 0.01% Sodium Dodecyl Sulfate (SDS) for
179 increasing the TMX solubility, in a thermostatic shaker at 50 rpm. Samples (2 mL) were removed
180 at 0.5, 1, 2, 4, 8, 10, 24, 48, 72, 120, and 144 h for the quantification of TMX release; after each
181 analysis, the same volume of fresh PBS solution was added to the tube. The amount of TMX
182 released was determined using an ultraviolet-visible (UV-vis) spectrophotometer (Multiskan
183 Spectrum MCC/340; Thermo Scientific) at a wavelength of 365 nm, based on a calibration curve
184 (R^2 = 0.99). Each sample was evaluated in triplicate.

185

186

187 Cytotoxicity Testing

188 For the in vitro analysis of cytotoxicity, the MCF-7 cell line was obtained from frozen vials of
189 laboratory stock obtained from the ATCC (Manassas, VA, USA). The MCF-7 cells were grown in
190 Dulbecco's modified Eagle medium (DMEM; Gibco) prepared with 1% (v/v) antibiotic and
191 antimycotic solution (ref. 15240062; Gibco) and supplemented with 10% fetal bovine serum (FBS;
192 Gibco), in 75-cm² plastic bottles at 37°C in a 95% humid atmosphere with 5% CO₂.

193

194 To avoid the interference in the experiment of the action of the steroids present in the FBS, and of
195 the weak estrogenic activity of the phenol red present in the DMEM, the cells were washed with
196 PBS and then medium with 10% carbon-stripped FBS (Sigma) and phenol red-free DMEM was
197 added 48 h before incubation with the nanofibers.

198

199 For peripheral-blood mononuclear cell (PBMCs) isolation, 10-mL peripheral blood samples were
200 obtained by venipuncture of the brachial vein from a healthy volunteer who had provided informed
201 consent. The blood was collected into tubes with heparin, and PBMCs were obtained using a Ficoll
202 gradient procedure (Rotstein et al., 1988). Briefly, the 10-mL tubes of blood were centrifuged at
203 2000 rpm for 5 min, and the buffy coat was then removed with a sterile 2-mL pipette. The buffy
204 coat (2 mL) was added gently to a 15-mL tube with 2 mL Ficoll Histopaque-1077 (Sigma), which
205 was centrifuged without brake for 20 min at 2000 rpm. Then, the white layer was recovered with
206 a sterile 2-mL pipette and placed in a new tube with 5 mL PBX 1X prepared from a 10X solution
207 (ref. 70011044; Gibco), which was centrifuged twice at 2500 rpm for 5 min. The cell pellet was
208 then recovered, gently resuspended, and placed in a new 15-mL tube containing 5 mL PB-MAX
209 karyotyping medium (Invitrogen) with 100 μ L phytohemagglutinin (PHA) M (ref. 10576-015;
210 Gibco) and antibiotic and antimycotic solution (ref. 15240062; Gibco). The tube was stored at
211 37°C and 5% CO₂ for 24 h before nanofibers treatment with. Incomplete statement

212
213 The cytotoxicity activity of PCL-TMX nanofibers were evaluated by an indirect contact resazurin
214 assay. The mean absorbance values obtained for all groups were distributed normally, and the
215 control group data were adjusted to 100% viability. Cytotoxicity was calculated based on cell
216 viability relative to this group: none, >90%; slight, 60–90%; moderate, 30–59%; and severe, <30%
217 (Basak et al., 2016). This test indicates the number of viable cells and the level of metabolic activity
218 in a sample. Resazurin, a blue dye, is metabolized by mitochondrial enzymes in cells, which
219 transforms it into fluorescent pink resorufin, which the cells release into the culture medium.
220 Treatments can be monitored by taking several measurements of the same group of cells, as
221 resazurin is not toxic. Plates are removed from the incubator for a short time (5–10 min) to take
222 measurements, and the culture conditions are then restored (Escobar, 2010; Uzarski et al., 2017).
223 The MCF-7 cells were seeded in a 96-well culture plate at a density of 15,000/200 μ L for 24 h.
224 Then, a 7mm diameter circle containing approximately 16 μ M of TMX was added to each well
225 with 200 μ L the culture medium for 1–6 days, in duplicate. Every day, a plate was taken from the
226 incubator and the culture medium was removed; the wells were washed with 200 μ L PBS, and
227 fresh serum-free medium with 4.4 μ M resazurin was added, followed by further incubation under
228 the same initial conditions. After 4, 6, and 24 h, absorbance was measured at the emission
229 wavelength of 595 nm and excitation wavelength of 535 nm using a spectrophotometer (Cytation
230 3 (Borra et al., 2009; Uzarski et al., 2017).
231 free tamoxifen

232 An experiment with Tamoxifen free was made, MCF-7 cells were cultured with concentrations of
233 free TMX between (0-20 μ M), an effect similar on viability percentage to PCL-TMX, was
234 observed with concentrations between 13 and 20 μ M (see Supplementary figure).
235 with

236 For PBMCs assays, 15,000 cells/200 μ L were placed in 96-well plates after 24 h culture and
237 incubated with the PCL-P and PCL-TMX nanofibers, for 24 hours. The plates were then
238 centrifuged at 2000 rpm for 5 min, and the medium was replaced with PB-MAX containing 4.4

239 mM resazurin, followed by further incubation under the same conditions. After 4h, 6h, 24h, 30h
240 and 48h the absorbance was **measurement** the same way to MCF-7 cells lines.

241 **measured in**

242 **as with**

243 Statistical Analysis

244 The results were organized by treatment: PCL-P, PCL-TMX and without nanofiber and by
245 numbers of resorufin measurements according to cell type. The normality test Shapiro-Wilk was
246 applied, then the treatments were compared using Student's *t* test for unpaired variables: MCF-
247 7+PCL-P vs. MCF-7+PCL-TMX, MCF-7+PCL-P vs. MCF-7 without nanofiber, MCF-7+PCL-
248 TMX vs. MCF-7 without nanofiber and PBMCs+PCL-P vs. PBMCs+PCL-TMX, PBMCs+PCL-
249 P vs. PBMCs without nanofiber, PBMCs +PCL-TMX vs. PBMCs without nanofiber). Here we
250 found that the PCL-TMX treatment reduced the percentage viability of MCF-7, **besides** the **and**
251 difference was statistically significant in all measurements ($p \leq 0.05$). One day after PCL-P
252 treatment of MCF-7 cells, the percentage of viability increases slightly and it is statistically
253 significant only in first day at 4h ($p= 0.0160$) and on the sixth day at 24h ($p= 0.0317$), in the latter
254 case, a clone of MCF-7 with a higher proliferation rate probably emerged. PCL-P induced an
255 increase in the percentage of viability of PBMCs on the first day of treatment, even above the cells
256 without treatment, while PCL-TMX reduced it however, applying the Student's *t* test the
257 differences were not significant in the PCL-P treatments, but they were significant for the PCL-
258 TMX at 4h $p = 0.005$ and 6h $p = 0.0243$.

259

260 Also, ANOVA was applied to three treatments for each cell type (MCF-7+PCL-P vs. MCF7+PCL-
261 TMX vs. MCF-7 without nanofiber and PBMCs +PCL-P vs. PBMCs+PCL-TMX vs. PBMCs
262 without nanofiber). All treatments showed statistically significant differences, but this test does
263 not discriminate between groups. Additionally, BONFERRONI test was used to compare each
264 treatment with no nanofiber addition (MCF-7+PCL-P vs MCF-7 without nanofiber, MCF7+PCL-
265 TMX vs MCF-7 without nanofiber and PBMCs+PCL-P vs PBMCs without nanofiber,
266 PBMCs+PCL-TMX vs. PBMCs without nanofiber). This showed that PCL-P increases the
267 percentage of viability in a statistically significant way except for the 6h data. On the other hand,
268 PCL-TMX decreases this value and only in a statistically significant way for the measurement
269 taken at 24 h.

270

271

272 Results and Discussion

273

274 Physicochemical Characterization

275 SEM showed that all PCL-P and PCL-TMX nanofibers were uniaxial, non-porous, and distributed
276 randomly. The incorporation of TMX altered the nanofiber morphology and diameter (see Fig. 1).

277 **The PCL-P nanofibers displayed a bimodal diameter distribution**, whereas that of the PCL-TMX
278 nanofibers was modal. The **greatest** average diameters were 484 ± 168 nm for PCL-P nanofibers

279 **largest**

Fig 1 shows
only 1 peak.

279 and 400 ± 236 nm for PCL-TMX nanofibers. The PCL-P nanofiber diameters were comparable to
280 those reported previously (Katsogiannis, Vladisavljević & Georgiadou, 2015), and the reduction
281 of the average diameter with TMX incorporation is consistent with previous reports that drug or
282 particle incorporation reduces PCL nanofiber diameters (Zamani et al., 2010; Aristilde et al., 2010;
283 Monteiro et al., 2017; Alavarse et al., 2017; Pinzón-García et al., 2017).

284

285

286 **Figure 1.** The morphology and diameter distribution of PCL nanofibers showed in micrographs,
287 and histograms corresponding of PCL nanofibers SEM micrographs of a) PCL, b) PCL-TMX.
288 Histograms of the diameter of nanofibers of c) PCL, d) PCL-TMX.

PCL-P

289

290

291 The FTIR-ATR spectra of TMX and the PCL-P and PCL-TMX nanofibers are shown in Fig. 2.
292 TMX showed a band of intensity at 3229 cm^{-1} due to the O–H from alcohol and phenolic groups.
293 The most characteristic TMX bands were observed: the C = O band at 1627 cm^{-1} , the N–H band
294 at 1575 cm^{-1} , the C = C stretching band (reflecting aromatic ring vibrations) at 1453 cm^{-1} , the
295 double amino C–N stretching bands at 1227 cm^{-1} , and the phenolic C–O stretching band at 1174
296 cm^{-1} (Aristilde et al., 2010; dos Santos Ferreira da Silva et al., 2015). For the PCL-P nanofiber,
297 characteristic infrared bands were observed at 1720 cm^{-1} (C = O carbonyl stretching), 1240 cm^{-1}
298 (asymmetrical C–O–C stretching), 1157 cm^{-1} (symmetrical C–O–C stretching), 2945 cm^{-1}
299 (asymmetrical CH₂ stretching), and 2868 cm^{-1} (symmetrical CH₂ stretching) (Elzein et al., 2004;
300 Gomes et al., 2008). For the PCL-TMX nanofibers, the TMX absorption peaks were not observed,
301 likely due to the small quantity of TMX in them and stretching overlap with adsorption bands of
302 the PCL polymer (Liebenberg et al., 1999; Khalf & Madihally, 2017).

303

304

305 **Figure 2.** FTIR spectra of TMX, PCL, and PCL-TMX nanofibers.

PCL-P

306

307

308 Fig. 3 shows the XRD patterns of TMX and the PCL-P and PCL-TMX nanofibers. TMX showed
309 low-intensity peaks due to its polycrystalline structure; the main peaks were at $2\theta = 8.5^\circ$, 9.3° ,
310 10.6° , 17.0° , 21.1° , and 23.0° (Liebenberg et al., 1999; Thangadurai et al., 2005; Toro R et al.,
311 2007). All PCL-P nanofibers showed two characteristic peaks at $2\theta = 21.25^\circ$ and 23.55° , attributed
312 to (110) and (200) PCL semicrystalline lattice planes (Baji et al., 2007; Wang, Guo & Cheng,
313 2008; Kim et al., 2012). No characteristic TMX peak was detected in the PCL-TMX nanofiber
314 pattern. These results can be explained by the lack of time for the polymers and other compounds
315 to crystallize and form organized structures during electrospinning, which is a very rapid method
316 of polymer fiber preparation (Wei et al., 2010).

317

318

319 **Figure 3.** XRD patterns of (a) TMX, (b) PCL, (c) PCL-TMX

320

321 Fig. 4 shows the TG and DTG curves of TMX nanofibers. These curves for TMX showed that
322 three events of mass loss occurred at temperatures of up to 600°C. The first event corresponds to
323 7.4% mass loss at about 100°C, which can be attributed to dehydration. The second event occurred
324 between 126°C and 380°C, with 34% mass loss (also observed on the DTG curve), and the third
325 event occurred between 400°C and 600°C, with 74% mass loss. These events can be attributed to
326 the oxidative decomposition of TMX and the remaining carbonaceous matter (dos Santos Ferreira
327 da Silva et al., 2015; Cervini et al., 2015). The nanofiber patterns (Fig. 4a, b) were similar to the
328 reported PCL weight loss pattern, which comprises one thermal decomposition event starting at
329 about 340°C and ending at 470°C (Mohamed et al., 2008). The PCL-TMX nanofibers showed
330 greater thermal stability than did the PCL-P nanofibers. The TG curves for the PCL-P and PCL-
331 TMX nanofibers showed that one thermal decomposition event occurred at about 408°C, with
332 complete decomposition occurring by 600°C (Fig. 4c).

333 total weight loss only for PCL-
334 P not PCL-TMX at 600C

4a

In this T
range, there
are 2 peaks
in DTG and
2 wt loss
steps in TG.
Please
check the
weight loss
values for all
steps.

335 **Figure 4.** a) TG, b) DTG and c) temperature difference curves of TMX, PCL-P, and PCL-TMX

336

337 The contact angles of the nanofibers surfaces were measured to assess the wettability and
338 hydrophilicity of the nanofibers. Table 1 shows the contact angles for the PCL nanofibers and PCL-
339 TMX nanofibers. The contact angle of the PCL-TMX nanofiber was smaller than that of the PCL-P
340 nanofiber (hydrophobic nature (Madhaiyan et al., 2013; Tiye et al., 2019)), perhaps due to the
341 highly hydrophilic COO- moiety of citrate TMX on the surface of the former (Huang et al., 2010).
342 Greater nanofiber wettability may improve cell proliferation and biocompatibility (Sharma et al.,
343 2014). In a similar work, the incorporation of 5-FLU, paclitaxel, and other drugs into PCL
344 nanofibers also increased nanofiber hydrophilicity and provided a good release profile
345 (Karuppuswamy et al., 2015; Iqbal et al., 2017).

346

347

348 **In Vitro Drug Release**

349 Profiles of cumulative TMX release from the PCL-TMX nanofibers over 14 h are shown in Fig.
350 5. After 12 h, no TMX signal was detected by UV-vis quantification, reflecting complete TMX
351 release. Thus, to evaluate the kinetics of TMX release from the nanofibers, the cumulative release
352 of the drug was considered in up to 10 h and 12 h, to PCL-TMX. The large surface areas and three-
353 dimensional open porous structures of nanofibers may reduce the constraint on drug diffusion and
354 release (Seeram Ramakrishna, Zamani & Molamma P Prabhakaran, 2013). In addition, the greater
355 hydrophilicity of PCL-TMX nanofibers certainly increased TMX release.

356

357 Three distinct, sequential stages of TMX release, reflecting different processes of diffusion from
358 the PCL matrix, were observed (Fig. 5a), in accordance with the literature (Varshosaz et al., 2011;

not
understandable

359 Sohrabi et al., 2013). In the first stage, there was a linear relationship with a very pronounced and
360 moderate slope. A burst effect was seen, with release of approximately 87% of the TMX release
361 in the first hour of the experiment. This initial rapid release may have been due to the accumulation
362 of the TMX molecules at or near the PCL nanofiber surfaces during electrospinning, facilitating
363 TMX release into the media (Zamani et al., 2010). The second stage of release occurred between
364 1 and 4 h; the release rate decreased gradually, resulting in a moderate slope, as a consequence of
365 TMX diffusion through the PCL nanofibers instead of PCL degradation. The third stage occurred
366 between 4 and 10 h and involved the least TMX release. Thus, sustained TMX release from the
367 PCL-TMX nanofibers was observed up to 14 h. These findings are expected for this type of system
368 because an initial burst of drug release is required to promote a local antitumor effect; the initial
369 dose kills the majority of cancerous cells, and the subsequent controlled release prevents tumor
370 cell growth and proliferation (Ma et al., 2011).

371

372

373 **Figure 5.** a) Release profiles of TMX from PCL-TMX nanofibers in PBS pH 7.4 and b) Higuchi
374 equation to TMX release from PCL-TMX nanofiber (Where M_t/M_∞ is the fraction of TMX
375 delivery in time t , and K is release speed constant).

376

377

378 The mechanism of TMX release was evaluated using the Higuchi kinetic model, based on Fickian
379 diffusion mechanism (Nie et al., 2009). The Higuchi model of the TMX release mechanism best
380 fit to the data for the first 8 h (Fig. 5b). As this model assumes Fickian diffusion, the cumulative
381 percentage of the drug released (Q) was plotted against the square root of time ($t^{1/2}$), i.e., $Q = K \times$
382 $t^{1/2}$, where K is the Higuchi rate constant. The results indicated that diffusion along the PCL matrix
383 occurred, and that TMX release was not dominated by polymer erosion, as claimed in previous
384 studies of biodegradable polymers and water-soluble molecules (Luong-Van et al., 2006;
385 Fredenberg et al., 2011).

386

387 Other studies of drug-delivery systems for anticancer molecules, such as TMX, have shown
388 sustained release over 10 h (Guimarães et al., 2015), 6 days (Criado-Gonzalez et al., 2019), 8 days
389 (Liu et al., 2016), 14 days, 25 days (Iqbal et al., 2017), and 35 days, with different release
390 mechanisms and cytotoxicity. Formulations of nanofibers loaded with tetracycline hydrochloride
391 (TCH), an antibiotic in the same group as TMX, have shown good cytocompatibility in normal
392 cells (Qi et al., 2013; Ranjbar-Mohammadi et al., 2016; Alavarse et al., 2017). Similarly, in this
393 study, the PCL-TMX nanofibers displayed good biocompatibility and potential for use in the
394 treatment of solid tumors.

395

396 **Cytotoxicity**

397

Not as
shown in
Fig 5a

398 The PCL-TMX showed greater cytotoxicity against MCF-7 cells than did the PCL-P (see Fig. 6);
399 20 % cell viability was observed on the first day, in contrast to the 100% and 127% viability
400 observed in untreated cells and those incubated with PCL-P, respectively. After the second day,
401 resazurin metabolism was barely detected in cells incubated with PCL-TMX; those incubated with
402 PCL-P showed a slight decrease in viability but like no treated cell.
403

This part is
repeated
below.

404 TMX inhibits MCF-7 proliferation (Niro, Hennebert & Morfin, 2010), arresting cells in the G0–
405 G1 phases of the cell cycle. It also activates apoptosis via procaspase 8, followed by events such
406 as an increase in reactive oxygen species and the release of pro-apoptotic factors from the
407 mitochondria. Real-time polymerase chain reaction revealed an increase in FasL mRNA and tumor
408 necrosis factor- α , as well as a decrease in mitochondrial transmembrane potential, after TMX
409 treatment. All these changes are related to the activation of apoptosis (Subramani et al., 2014).
410
411

412 **Figure 6.** Percentage of MCF-7 cell viability: cytotoxic effect of PCL-P and PCL-TMX on 15.000
413 MCF-7 cells was evaluated after 1 to 6 days of exposure. The reduction of resazurin to resorufin
414 was followed at 4, 6 and 24 hours. Using Student's t test PCL-TMX reduced the percentage of
415 viability statistically significant in all treatments, identified by * ($p \leq 0.05$). PCL-P treatment was
416 statistically significant by slightly increasing the percentage of viability on the first day at 4h ($p =$
417 0.0160) and the sixth day at 24h ($p = 0.03117$) and decreasing the third day at 24h ($p = 0.0425$)
418 identified by **.
419

420 Afterward 24 h PCL-TMX showed greater cytotoxicity against MCF-7 than did the PCL-P (Fig.
421 6); 20% ($p = 0.041$) cell viability was observed on the first day, in contrast to the 100% ($p = 0.049$)
422 and 127% ($p = 0.016$) viability observed in untreated cells and those incubated with PCL-P,
423 respectively. This can be explained because the TMX inhibits MCF-7 proliferation (Niro,
424 Hennebert & Morfin, 2010), arresting cells in the G0–G1 phases of the cell cycle. It also activates
425 apoptosis via procaspase 8, followed by events such as an increase in reactive oxygen species and
426 the release of pro-apoptotic factors from the mitochondria. Real-time polymerase chain reaction
427 revealed an increase in FasL mRNA and tumor necrosis factor- α , as well as a decrease in
428 mitochondrial transmembrane potential, after TMX treatment. All these changes are related to the
429 activation of apoptosis (Subramani et al., 2014). After 48h of PCL-TMX incubation, a 99% ($p =$
430 0.016) reduction in cell viability, representing a significant difference from the other groups,
431 (Supplementary Table S1). On day 6, slight recovery with 2% viability was observed, possibly
432 reflecting the growth of a treatment-resistant clone. MCF-7 cells were cultured with concentrations
433 of free TMX among 10–20 μ M, an effect similar on viability percentage to PCL-TMX, was
434 observed with concentrations between 13 and 20 μ M.
435

436 The effect of TMX on PBMCs is not clear. Here we observed a large reduction of viability. The
437 first day the viability percentage reached zero at 4h ($p = 0.050$) and 6h ($p = 0.0243$). On the contrary,

438 PCL-P increased in viability to 256%, which shows that this polymer could be activated PBMCs
439 proliferation (Fig. 7). In one study, lymphocytes obtained from patients with breast cancer showed
440 no change in cytotoxic activity type natural killer (NK) cells or proliferative response to mitogens
441 after 8 days of TMX treatment (Sheard et al., 1986). This means that TMX does not activate the
442 NK cells from PBMCs ~~nor~~ induce their proliferation. In a similar study involving 6–12 months
443 of treatment, a reduced number of lymphocytes with suppressive function was observed (Joensuu,
444 Toivanen & Nordman, 1986). In patients treated with TMX for 1.5–2 years, a decrease in NK cell
445 activity and increase in response to the concanavalin A mitogen were observed (Mandeville, Ghali
446 & Chausseau, 1984). This suggests that if TMX is applied locally, unwanted effects on other
447 tissues can be avoided.

448

449

450 **Figure 7.** Percentage of PBMCs viability: cytotoxic effect of a) PCL-P and b) PCL-TMX ~~upon~~
451 cultured 15.000 PBMCs for 24 hours. The reduction of resazurin to resorufin was ~~follow-up~~ at 4,
452 6, 24, 30 and 48 hours. Increase in the percentage of viability was observed with exposure to
453 PCL-P and reduction with PCL-TMX, the statistical significances are identified by *, the values
454 are in the supplementary table S1.

455

456

457 For PBMCs obtained from the peripheral blood of patients with breast cancer and treated with
458 TMX or left untreated, the response to concanavalin A can take up to 5 days (Rotstein et al., 1988).
459 In this study, PBMCs obtained from the peripheral blood of a healthy volunteer and cultured in
460 the presence of PHA showed detectable metabolic activity in the resazurin assay until the fourth
461 day of culture (Fig. 7). However, lymphocytes in culture under the stimulation of a mitogen such
462 as PHA are viable for about 72 h. The viability of PBMCs increased almost threefold in the
463 presence of PCL-P and decreased by approximately 99% with of PCL-TMX. Little is known about
464 the possible activation and proliferation of PBMCs induced by PCL-P, however they have been
465 used to promote tissue healing in order to promote cell migration (Schoenenberger et al., 2020). In
466 further research, it would be interesting to delve into this aspect. Viability reduction by PCL-TMX
467 is consistent with that reported by Oliveira et al (Oliveira, Genari & Dolder, 2010), who showed
468 cell death due to apoptosis and autophagy in lymphocytes treated with tamoxifen for 24 and 48h,
469 in a time – dependent manner, although they applied a dose of 20 μ M while in this study it was 16
470 μ M. They conclude that the effect of TMX on lymphocytes is independent of the estrogen receptor
471 (Behjati & Frank, 2009). Other side effects of TMX are the induction of proliferation in the
472 endometrium, association with liver cancer, increased blood coagulation, retinopathy and corneal
473 opacities formation (Memisoglu-Bilensoy et al., 2005). Among the potential biomedical (drug-
474 delivery) applications of electrospun nanofibers, local postoperative chemotherapy for the
475 prevention of tumor recurrence and metastasis is prominent (Hu et al., 2014). PCL-P is used to
476 administer several types of drugs in the treatment of cancer such as cisplatin, doxycycline, curcumin,
477 paclitaxel among others (Malikmammadov et al., 2018), but there are no reports of tamoxifen
478 delivery systems with PCL nanofibers under the conditions described here.

479

480 In this study, the PCL-TMX nanofibers displayed good biocompatibility, and thus potential
481 application for the treatment of solid tumors. Similarly, nanofibers loaded with TCH have shown
482 good cytocompatibility in normal cells (Qi et al., 2013; Ranjbar-Mohammadi et al., 2016; Alavarse
483 et al., 2017). Other TMX release systems using nanoparticles achieve 68% release in a first hour
484 (Chawla & Amiji, 2002) then maintains the release until 24hours, while nanofibers released up to
485 87% of their content in the first time and maintain a sustained release for hours or days, which can
486 give best results. In addition, the destruction of the nanoparticles requires the use of enzymes such
487 as lipases, which can affect the environment of the treated tissue.

488

489

Does this
refer to Fig
5a? "First
time" means
"first hour"?

See Line
360-361.

490 **Conclusions**

491 PCL-TMX nanofibers were produced effectively by electrospinning and showed sustained TMX
492 release for up to 14 h. In cell viability assays, they exhibited excellent activity against the MCF-7
493 cell line. These results suggest that PCL-TMX nanofibers have potential application as a drug-
494 delivery local system for adjuvant treatment of solid tumors including breast cancer, that could
495 avoid the collateral effects of TMX treatment in other tissues such as endometrium, liver, cornea
496 or cells such as PBMCs. No previous reports of PLC-TMX nanofiber releasing systems in the
497 literature.

498

There are

499 **Acknowledgements**

500 The authors would like to acknowledge the financial support from the following Brazilian
501 Research agencies: CAPES, FAPEMIG, CNPq and Center of Microscopy at UFMG, and the
502 Universidad del Rosario and COLCIENCIAS Contract: FP44842-07-2018 Code: 122277657905,
503 supported this work.

504

505

506

507 **References**

508 Alavarse AC, de Oliveira Silva FW, Colque JT, da Silva VM, Prieto T, Venancio EC, Bonvent J-J. 2017.
509 Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound
510 dressing. *Materials Science and Engineering: C* 77:271–281. DOI: 10.1016/j.msec.2017.03.199.

511

512 Aristilde L, Marichal C, Miéhé-Brendlé J, Lanson B, Charlet L. 2010. Interactions of Oxytetracycline
513 with a Smectite Clay: A Spectroscopic Study with Molecular Simulations. *Environmental Science &*
514 *Technology* 44:7839–7845. DOI: 10.1021/es102136y.

515 Baji A, Wong S-C, Liu T, Li T, Srivatsan TS. 2007. Morphological and X-ray diffraction studies of
516 crystalline hydroxyapatite-reinforced polycaprolactone. *Journal of Biomedical Materials Research Part*
517 *B: Applied Biomaterials* 81B:343–350. DOI: 10.1002/jbm.b.30671.

518

519 Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. 2007. Nanofiber technology: designing the
520 next generation of tissue engineering scaffolds. *Advanced Drug Delivery Reviews* 59:1413–1433. DOI:
521 10.1016/j.addr.2007.04.022.

522

523 Basak V, Bahar TE, Emine K, Yelda K, Mine K, Figen S, Rustem N. 2016. Evaluation of cytotoxicity
524 and gelatinases activity in 3T3 fibroblast cell by root repair materials. *Biotechnology & Biotechnological
525 Equipment* 30:984–990. DOI: 10.1080/13102818.2016.1192960.

526

527 Behjati S, Frank M. 2009. The Effects of Tamoxifen on Immunity. *Current Medicinal Chemistry*
528 16:3076–3080. DOI: 10.2174/092986709788803042.

529

530 Caracciolo, Pablo R Cortez Tornello, Fabián Buffa, Florencia Montini Ballarin, Teresita R Cuadrado,
531 Gustavo A Abraham. 2011. Pequeñas fibras grandes aplicaciones. *Instituto de Investigaciones en Ciencia
532 y Tecnología de Materiales, INTEMA (UNMDP-Conicet), Mar del Plata, Argentina* 20:57–64.

533

534 Cervini P, Ambrozini B, Machado LCM, Ferreira APG, Cavalheiro ÉTG. 2015. Thermal behavior and
535 decomposition of oxytetracycline hydrochloride. *Journal of Thermal Analysis and Calorimetry* 121:347–
536 352. DOI: 10.1007/s10973-015-4447-x.

537

538 Chawla JS, Amiji MM. 2002. Biodegradable poly(epsilon -caprolactone) nanoparticles for tumor-targeted
539 delivery of tamoxifen. *International Journal of Pharmaceutics* 249:127–138. DOI: 10.1016/s0378-
540 5173(02)00483-0.

541

542 Criado-Gonzalez M, Fernandez-Gutierrez M, San Roman J, Mijangos C, Hernández R. 2019. Local and
543 controlled release of tamoxifen from multi (layer-by-layer) alginate/chitosan complex systems.
544 *Carbohydrate Polymers* 206:428–434. DOI: 10.1016/j.carbpol.2018.11.007.

545

546 De Clercq E. 2015. Ebola virus (EBOV) infection: Therapeutic strategies. *Biochemical Pharmacology*
547 93:1–10. DOI: 10.1016/j.bcp.2014.11.008.

548

549 Dias AM, da Silva FG, Monteiro AP de F, Pinzón-García AD, Sinisterra RD, Cortés ME. 2019.
550 Polycaprolactone nanofibers loaded oxytetracycline hydrochloride and zinc oxide for treatment of
551 periodontal disease. *Materials Science and Engineering: C* 103:109798. DOI:
552 10.1016/j.msec.2019.109798.

553

554 Donneyong MM, Bykov K, Bosco-Levy P, Dong Y-H, Levin R, Gagne JJ. 2016. Risk of mortality with
555 concomitant use of tamoxifen and selective serotonin reuptake inhibitors: multi-database cohort study.
556 *BMJ* 354:i5014. DOI: 10.1136/bmj.i5014.

557

558 Drăgănescu M, Carmocan C. 2017. Hormone Therapy in Breast Cancer. *Chirurgia (Bucharest, Romania:
559 1990)* 112:413–417. DOI: 10.21614/chirurgia.112.4.413.

560 Duque L, Rodriguez, Lopez. 2013. ELECTROSPINNING: LA ERA DE LAS NANOFIBRAS. *Revista
561 Iberoamericana de Polímeros* 14:10–27.

562

563 Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P. 2004. FTIR study of polycaprolactone chain
564 organization at interfaces. *Journal of Colloid and Interface Science* 273:381–387. DOI:
565 10.1016/j.jcis.2004.02.001.

566

567 Escobar L. 2010. Aplicación de un método fluorométrico para evaluar la proliferación celular en líneas
568 celulares tumorales. *Vitae* 17:173–180.

569

570 Fredenberg S, Wahlgren M, Reslow M, Axelsson A. 2011. The mechanisms of drug release in
571 poly(lactic-co-glycolic acid)-based drug delivery systems—A review. *International Journal of*
572 *Pharmaceutics* 415:34–52. DOI: 10.1016/j.ijpharm.2011.05.049.

573

574 Gomes ME, Azevedo HS, Moreira AR, Ellä V, Kellomäki M, Reis RL. 2008. Starch–
575 poly(ϵ -caprolactone) and starch–poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering
576 applications: structure, mechanical properties and degradation behaviour. *Journal of Tissue Engineering*
577 and *Regenerative Medicine* 2:243–252. DOI: 10.1002/term.89.

578

579 Group (EBCTCG) EBCTC. 2011. Relevance of breast cancer hormone receptors and other factors to the
580 efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. *The Lancet* 378:771–
581 784. DOI: 10.1016/S0140-6736(11)60993-8.

582

583 Guimarães PPG, Oliveira MF, Gomes ADM, Gontijo SML, Cortés ME, Campos PP, Viana CTR,
584 Andrade SP, Sinisterra RD. 2015. PLGA nanofibers improves the antitumoral effect of daunorubicin.
585 *Colloids and Surfaces B: Biointerfaces* 136:248–255. DOI: 10.1016/j.colsurfb.2015.09.005.

586

587 Hong JH, Ha KS, Jung YH, Won HS, An HJ, Lee GJ, Kang D, Park JC, Park S, Byun JH, Suh YJ, Kim
588 JS, Park WC, Jung SS, Park IY, Chung S-M, Woo IS. 2016. Clinical Features of Male Breast Cancer:
589 Experiences from Seven Institutions Over 20 Years. *Cancer Research and Treatment* 48:1389–1398.
590 DOI: 10.4143/crt.2015.410.

591

592 Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. 2014. Electrospinning of polymeric nanofibers for drug
593 delivery applications. *Journal of Controlled Release* 185:12–21. DOI: 10.1016/j.jconrel.2014.04.018.

594

595 Huang FL, Wang QQ, Wei QF, Gao WD, Shou HY, Jiang SD. 2010. Dynamic wettability and contact
596 angles of poly(vinylidene fluoride) nanofiber membranes grafted with acrylic acid. *Express Polymer*
597 *Letters* 4:551–558. DOI: 10.3144/expresspolymlett.2010.69.

598

599 Cancer Today-Globocan. 2018. Available at <http://gco.iarc.fr/today/home> (accessed April 28, 2021).

600 Iqbal S, Rashid MohammadH, Arbab AliS, Khan M. 2017. Encapsulation of Anticancer Drugs (5-
601 Fluorouracil and Paclitaxel) into Polycaprolactone (PCL) Nanofibers and *In Vitro* Testing for Sustained
602 and Targeted Therapy. *Journal of Biomedical Nanotechnology* 13:355–366. DOI: 10.1166/jbn.2017.2353.

603

604 Jain N, Jain GK, Javed S, Iqbal Z, Talegaonkar S, Ahmad FJ, Khar RK. 2008. Recent approaches for the
605 treatment of periodontitis. *Drug Discovery Today* 13:932–943. DOI: 10.1016/j.drudis.2008.07.010.

606

607 Joensuu H, Toivanen A, Nordman E. 1986. Effect of tamoxifen on immune functions. *Cancer Treatment*
608 *Reports* 70:381–382.

609

610 Johnston S, Basik M, Hegg R, Lausoontornsiri W, Grzeda L, Clemons M, Dreosti L, Mann H, Stuart M,
611 Cristofanilli M. 2016. Inhibition of EGFR, HER2, and HER3 signaling with AZD8931 in combination
612 with anastrozole as an anticancer approach: Phase II randomized study in women with endocrine-therapy-
613 naïve advanced breast cancer. *Breast Cancer Research and Treatment* 160:91–99. DOI: 10.1007/s10549-
614 016-3979-5.

615

616 Joshi D, Garg T, Goyal AK, Rath G. 2016. Advanced drug delivery approaches against periodontitis.
617 *Drug Delivery* 23:363–377. DOI: 10.3109/10717544.2014.935531.

618

619 Karn A, Jha AK, Shrestha S, Acharya B, Poudel S, Bhandari RB. 2010. Tamoxifen for breast cancer.
620 *JNMA; journal of the Nepal Medical Association* 49:62–67.

621

622 Karuppuswamy P, Reddy Venugopal J, Navaneethan B, Luwang Laiva A, Ramakrishna S. 2015.
623 Polycaprolactone nanofibers for the controlled release of tetracycline hydrochloride. *Materials Letters*
624 141:180–186. DOI: 10.1016/j.matlet.2014.11.044.

625

626 Katsogiannis KAG, Vladisavljević GT, Georgiadou S. 2015. Porous electrospun polycaprolactone (PCL)
627 fibres by phase separation. *European Polymer Journal* 69:284–295. DOI:
628 10.1016/j.eurpolymj.2015.01.028.

629

630 Kedjouar B, de Medina P, Oulad-Abdelghani M, Payre B, Silvente-Poirot S, Favre G, Faye J, Poirot M.
631 2004. Molecular characterization of the microsomal tamoxifen binding site. *JOURNAL OF BIOLOGICAL*
632 *CHEMISTRY* 279:34048–34048–34061. DOI: 10.1074/jbc.M405230200.

633

634 Khalf A, Madihally SV. 2017. Modeling the permeability of multiaxial electrospun poly(ϵ -caprolactone)-
635 gelatin hybrid fibers for controlled doxycycline release. *Materials Science and Engineering: C* 76:161–
636 170. DOI: 10.1016/j.msec.2017.03.093.

637

638 Kim Y-J, Park MR, Kim MS, Kwon OH. 2012. Polyphenol-loaded polycaprolactone nanofibers for
639 effective growth inhibition of human cancer cells. *Materials Chemistry and Physics* 133:674–680. DOI:
640 10.1016/j.matchemphys.2012.01.050.

641

642 Laurence J, Cooke H, Sikder S. 1990. Effect of tamoxifen on regulation of viral replication and human
643 immunodeficiency virus (HIV) long terminal repeat-directed transcription in cells chronically infected
644 with HIV-1. *Blood* 75:696–703. DOI: 10.1182/blood.V75.3.696.696.

645

646 Li S, Cui Z, Li D, Yue G, Liu J, Ding H, Gao S, Zhao Y, Wang N, Zhao Y. 2019. Hierarchically
647 structured electrospinning nanofibers for catalysis and energy storage. *Composites Communications* 13:1–
648 11. DOI: 10.1016/j.coco.2019.01.008.

649

650 Liebenberg W, de Villiers MM, Wurster DE, Swanepoel E, Dekker TG, Lötter AP. 1999. The Effect of
651 Polymorphism on Powder Compaction and Dissolution Properties of Chemically Equivalent
652 Oxytetracycline Hydrochloride Powders. *Drug Development and Industrial Pharmacy* 25:1027–1033.
653 DOI: 10.1081/DDC-100102265.

654

655 Liu W, Wang Y, Yao J, Shao Z, Chen X. 2016. Tamoxifen-loaded silk fibroin electrospun fibers.
656 *Materials Letters* 178:31–34. DOI: 10.1016/j.matlet.2016.04.177.

657

658 Luong-Van E, Grøndahl L, Chua KN, Leong KW, Nurcombe V, Cool SM. 2006. Controlled release of
659 heparin from poly(ϵ -caprolactone) electrospun fibers. *Biomaterials* 27:2042–2050. DOI:
660 10.1016/j.biomaterials.2005.10.028.

661

662 Ma G, Liu Y, Peng C, Fang D, He B, Nie J. 2011. Paclitaxel loaded electrospun porous nanofibers as mat
663 potential application for chemotherapy against prostate cancer. *Carbohydrate Polymers* 86:505–512.
664 DOI: 10.1016/j.carbpol.2011.04.082.

665

666 Madhaiyan K, Sridhar R, Sundarajan S, Venugopal JR, Ramakrishna S. 2013. Vitamin B12 loaded
667 polycaprolactone nanofibers: A novel transdermal route for the water soluble energy supplement delivery.
668 *International Journal of Pharmaceutics* 444:70–76. DOI: 10.1016/j.ijpharm.2013.01.040.

669

670 Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. 2018. PCL and PCL-based materials in
671 biomedical applications. *Journal of Biomaterials Science, Polymer Edition* 29:863–893. DOI:
672 10.1080/09205063.2017.1394711.

673

674 Mandeville R, Ghali SS, Chausseau J-P. 1984. In vitro stimulation of human NK activity by an estrogen
675 antagonist (tamoxifen). *European Journal of Cancer and Clinical Oncology* 20:983–985. DOI:
676 10.1016/0277-5379(84)90174-3.

677

678 Mandlekar S, Kong A-NT. 2001. Mechanisms of tamoxifen-induced apoptosis. *Apoptosis* 6:469–469–477.
679 DOI: 10.1023/A:1012437607881.

680

681 Medina P, Favre G, Poirot M. 2004. Multiple Targeting by the Antitumor Drug Tamoxifen: A Structure-
682 Activity Study. *Current Medicinal Chemistry-Anti-Cancer Agents* 4:491–508. DOI:
683 10.2174/1568011043352696.

684 Memisoglu-Bilensoy E, Vural I, Bochot A, Renoir JM, Duchene D, Hincal AA. 2005. Tamoxifen citrate
685 loaded amphiphilic β -cyclodextrin nanoparticles: In vitro characterization and cytotoxicity. *Journal of
686 Controlled Release* 104:489–496. DOI: 10.1016/j.jconrel.2005.03.006.

687

688 Mochane MJ, Motsoeneng TS, Sadiku ER, Mokhena TC, Sefadi JS. 2019. Morphology and Properties of
689 Electrospun PCL and Its Composites for Medical Applications: A Mini Review. *Applied Sciences* 9:2205.
690 DOI: 10.3390/app9112205.

691

692 Mohamed A, Finkenstadt VL, Gordon SH, Biresaw G, Palmquist DE, Rayas-Duarte P. 2008. Thermal
693 properties of PCL/gluten bioblends characterized by TGA, DSC, SEM, and infrared-PAS. *Journal of*
694 *Applied Polymer Science* 110:3256–3266. DOI: 10.1002/app.28914.

695

696 Monteiro APF, Caminhas LD, Ardisson JD, Paniago R, Cortés ME, Sinisterra RD. 2017. Magnetic
697 nanoparticles coated with cyclodextrins and citrate for irinotecan delivery. *Carbohydrate Polymers*
698 163:1–9. DOI: 10.1016/j.carbpol.2016.11.091.

699

700 Nie H-L, Ma Z-H, Fan Z-X, Branford-White CJ, Ning X, Zhu L-M, Han J. 2009. Polyacrylonitrile fibers
701 efficiently loaded with tamoxifen citrate using wet-spinning from co-dissolving solution. *International*
702 *Journal of Pharmaceutics* 373:4–9. DOI: 10.1016/j.ijpharm.2009.03.022.

703

704 Niro S, Hennebert O, Morfin R. 2010. New insights into the protective effects of DHEA1). *Hormone*
705 *Molecular Biology & Clinical Investigation* 4:489-489–498. DOI: 10.1515/HMBCI.2010.050.

706

707 Oliveira NFP de, Genari SC, Dolder H. 2010. Cell death induced by tamoxifen in human blood
708 lymphocytes cultivated *in vitro* - doi: 10.4025/actascibiolsci.v32i4.7015. *Acta Scientiarum. Biological*
709 *Sciences* 32:415–421. DOI: 10.4025/actascibiolsci.v32i4.7015.

710

711 Pinzón-García AD, Cassini-Vieira P, Ribeiro CC, de Matos Jensen CE, Barcelos LS, Cortes ME,
712 Sinisterra RD. 2017. Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic
713 mice: Efficient Cutaneous Wound Healing. *Journal of Biomedical Materials Research Part B: Applied*
714 *Biomaterials* 105:1938–1949. DOI: 10.1002/jbm.b.33724.

715

716 Qi R, Guo R, Zheng F, Liu H, Yu J, Shi X. 2013. Controlled release and antibacterial activity of
717 antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers. *Colloids and*
718 *Surfaces B: Biointerfaces* 110:148–155. DOI: 10.1016/j.colsurfb.2013.04.036.

719

720 Ramírez-Agudelo R, Scheuermann K, Gala-García A, Monteiro APF, Pinzón-García AD, Cortés ME,
721 Sinisterra RD. 2018. Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-
722 loaded Doxycycline: Effective anti-tumoral and antibacterial activity. *Materials Science and Engineering: C* 83:25–34. DOI: 10.1016/j.msec.2017.08.012.

724

725 Ranjbar-Mohammadi M, Zamani M, Prabhakaran MP, Bahrami SH, Ramakrishna S. 2016.
726 Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for
727 periodontal regeneration. *Materials Science and Engineering: C* 58:521–531. DOI:
728 10.1016/j.msec.2015.08.066.

729

730 Robinson E, Rubin D, Mekori T, Segal R, Pollack S. 1993. In vivo modulation of natural killer cell
731 activity by tamoxifen in patients with bilateral primary breast cancer. *Cancer immunology,*
732 *immunotherapy: CII* 37:209–212. DOI: 10.1007/BF01525437.

733

734 Rogina A. 2014. Electrospinning process: Versatile preparation method for biodegradable and natural
735 polymers and biocomposite systems applied in tissue engineering and drug delivery. *Applied Surface
736 Science* 296:221–230. DOI: 10.1016/j.apsusc.2014.01.098.

737

738 Rotstein S, Blomgren H, Petrini B, Wasserman J, von Stedingk LV. 1988. Influence of adjuvant
739 tamoxifen on blood lymphocytes. *Breast Cancer Research and Treatment* 12:75–79. DOI:
740 10.1007/BF01805743.

741

742 Salami S, Karami-Tehrani F. 2003. Biochemical studies of apoptosis induced by tamoxifen in estrogen
743 receptor positive and negative breast cancer cell lines. *Clinical Biochemistry* 36:247–253. DOI:
744 10.1016/S0009-9120(03)00007-9.

745

746 Salman, Falah Hasan Obayes AL-Khikani, Raghda Maytham Hameed, Younus Jasim Abdullah,
747 Mohanad Kadhim Mirdan Al-Ibraheemi, Atyaf Ali Al-Asadi. 2020. Tamoxifen from chemotherapy to
748 antiviral drug: Possible activity against COVID-19. *Biomedical and Biotechnology Research Journal*
749 4:108-108–116. DOI: 10.4103/bbrj.bbrj_53_20.

750

751 dos Santos Ferreira da Silva J, López Malo D, Anceski Bataglion G, Nogueira Eberlin M, Machado
752 Ronconi C, Alves Júnior S, de Sá GF. 2015. Adsorption in a Fixed-Bed Column and Stability of the
753 Antibiotic Oxytetracycline Supported on Zn(II)-[2-Methylimidazolate] Frameworks in Aqueous Media.
754 *PLOS ONE* 10:e0128436. DOI: 10.1371/journal.pone.0128436.

755

756 Schoenenberger AD, Tempfer H, Lehner C, Egloff J, Mauracher M, Bird A, Widmer J, Maniura-Weber
757 K, Fuentese SF, Traweger A, Silvan U, Snedeker JG. 2020. Macromechanics and polycaprolactone fiber
758 organization drive macrophage polarization and regulate inflammatory activation of tendon in vitro and in
759 vivo. *Biomaterials* 249:120034. DOI: 10.1016/j.biomaterials.2020.120034.

760

761 Seeram Ramakrishna, Zamani M, Molamma P Prabhakaran. 2013. Advances in drug delivery via
762 electrospun and electrosprayed nanomaterials. *International Journal of Nanomedicine*:2997. DOI:
763 10.2147/IJN.S43575.

764

765 Sestak I, Kealy R, Edwards R, Forbes J, Cuzick J. 2006. Influence of hormone replacement therapy on
766 tamoxifen-induced vasomotor symptoms. *Journal of Clinical Oncology: Official Journal of the American
767 Society of Clinical Oncology* 24:3991–3996. DOI: 10.1200/JCO.2005.04.3745.

768

769 Sharma J, Zhang X, Sarker T, Yan X, Washburn L, Qu H, Guo Z, Kucknoor A, Wei S. 2014.
770 Biocompatible electrospun tactic poly(methyl methacrylate) blend fibers. *Polymer* 55:3261–3269. DOI:
771 10.1016/j.polymer.2014.05.028.

772

773 Sheard CR, Reilly F, Tee DE, Vergani D, Lowe D, Baum M, Cameron AE. 1986. The effect of adjuvant
774 cyclophosphamide or tamoxifen on the numbers of lymphocytes bearing T cell or NK cell markers.
775 *British Journal of Cancer* 54:705–709. DOI: 10.1038/bjc.1986.230.

776

777 Sohrabi A, Shaibani PM, Etayash H, Kaur K, Thundat T. 2013. Sustained drug release and antibacterial
778 activity of ampicillin incorporated poly(methyl methacrylate)-nylon6 core/shell nanofibers. *Polymer*
779 54:2699–2705. DOI: 10.1016/j.polymer.2013.03.046.

780

781 Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. 2018. Current development of biodegradable
782 polymeric materials for biomedical applications. *Drug Design, Development and Therapy* Volume
783 12:3117–3145. DOI: 10.2147/DDDT.S165440.

784

785 Subramani T, Yeap SK, Ho WY, Ho CL, Omar AR, Aziz SA, Rahman NMohdANAbd, Alitheen NB.
786 2014. Vitamin C suppresses cell death in MCF-7 human breast cancer cells induced by tamoxifen.
787 *Journal of Cellular and Molecular Medicine* 18:305–313. DOI: 10.1111/jcmm.12188.

788

789 Thangadurai S, Abraham JT, Srivastava AK, Nataraja Moorthy M, Shukla SK, Anjaneyulu Y. 2005. X-
790 Ray Powder Diffraction Patterns for Certain .BETA.-Lactam, Tetracycline and Macrolide Antibiotic
791 Drugs. *Analytical Sciences* 21:833–838. DOI: 10.2116/analsci.21.833.

792

793 Tiyek I, Gunduz A, Yalcinkaya F, Chaloupek J. 2019. Influence of Electrospinning Parameters on the
794 Hydrophilicity of Electrospun Polycaprolactone Nanofibres. *Journal of Nanoscience and Nanotechnology*
795 19:7251–7260. DOI: 10.1166/jnn.2019.16605.

796

797 Toro R, de Delgado GD, Bahsas A, Delgado JM. 2007. The presence of polymorphism in oxytetracycline
798 hydrochloride shown by X-ray powder diffraction techniques. :563–568.

799

800 Uzarski JS, DiVito MD, Wertheim JA, Miller WM. 2017. Essential design considerations for the
801 resazurin reduction assay to noninvasively quantify cell expansion within perfused extracellular matrix
802 scaffolds. *Biomaterials* 129:163–175. DOI: 10.1016/j.biomaterials.2017.02.015.

803

804 Varshosaz J, Jannesari M, Morshed M, Zamani M. 2011. Composite poly(vinyl alcohol)/poly(vinyl
805 acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs.
806 *International Journal of Nanomedicine*:993. DOI: 10.2147/IJN.S17595.

807

808 Venugopal J, Zhang YZ, Ramakrishna S. 2005. Fabrication of modified and functionalized
809 polycaprolactone nanofibre scaffolds for vascular tissue engineering. *Nanotechnology* 16:2138–2142.
810 DOI: 10.1088/0957-4484/16/10/028.

811

812 Vitchuli N, Shi Q, Nowak J, Kay K, Caldwell JM, Breidt F, Bourham M, McCord M, Zhang X. 2011.
813 Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning–electrospraying hybrid process for
814 use in protective applications. *Science and Technology of Advanced Materials* 12:055004. DOI:
815 10.1088/1468-6996/12/5/055004.

816

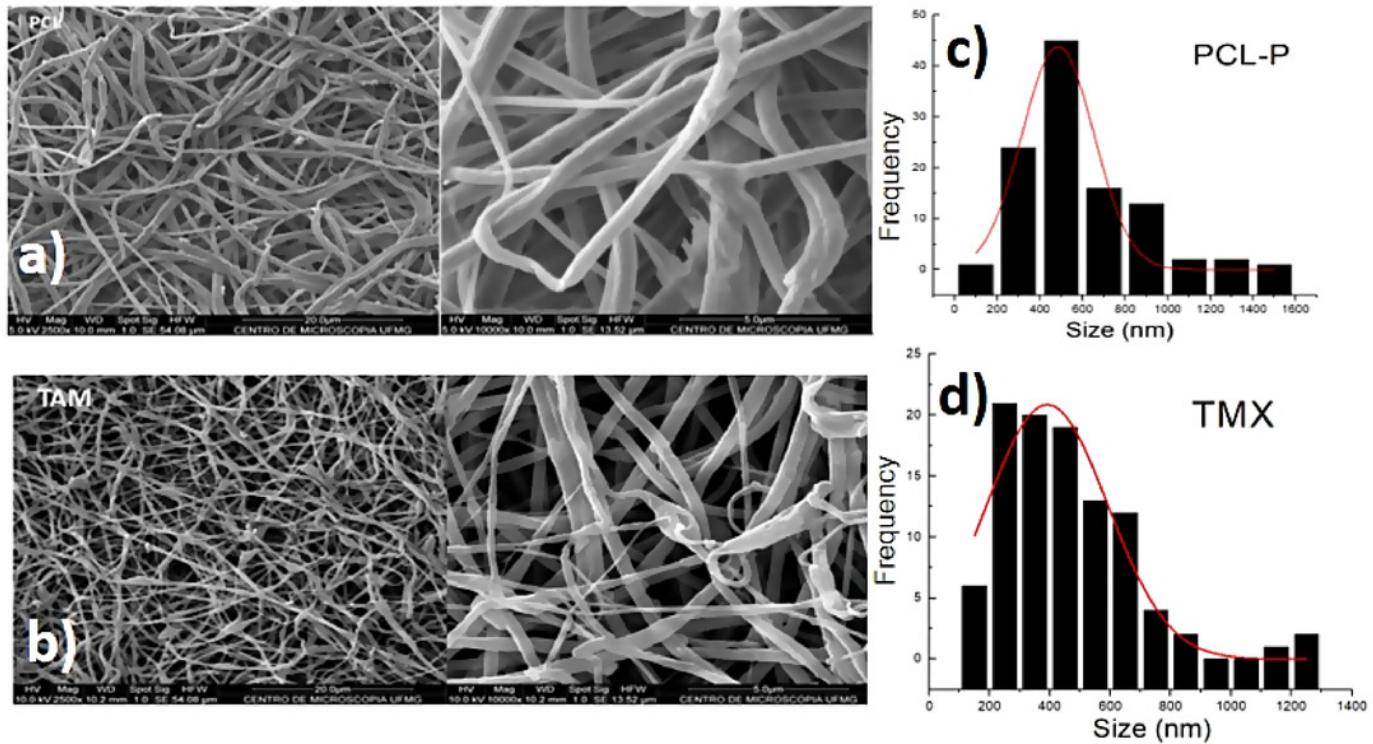
817 Vyas SP, Sihorkar V, Mishra V. 2000. Controlled and targeted drug delivery strategies towards
818 intraperiodontal pocket diseases. *Journal of Clinical Pharmacy and Therapeutics* 25:21–42. DOI:
819 10.1046/j.1365-2710.2000.00261.x.

820

821 Wang S, Guo S, Cheng L. 2008. Disodium norcantharidate loaded poly(ϵ -caprolactone) microspheres.
822 *International Journal of Pharmaceutics* 350:130–137. DOI: 10.1016/j.ijpharm.2007.08.030.

823

824 Wei A, Wang J, Wang X, Wei Q, Ge M, Hou D. 2010. Preparation and characterization of the electrospun
825 nanofibers loaded with clarithromycin. *Journal of Applied Polymer Science* 118:346–352. DOI:
826 10.1002/app.32363.


827

828 Zamani M, Morshed M, Varshosaz J, Jannesari M. 2010. Controlled release of metronidazole benzoate
829 from poly ϵ -caprolactone electrospun nanofibers for periodontal diseases. *European Journal of
830 Pharmaceutics and Biopharmaceutics* 75:179–185. DOI: 10.1016/j.ejpb.2010.02.002.

Figure 1

morphology and diameter distribution.

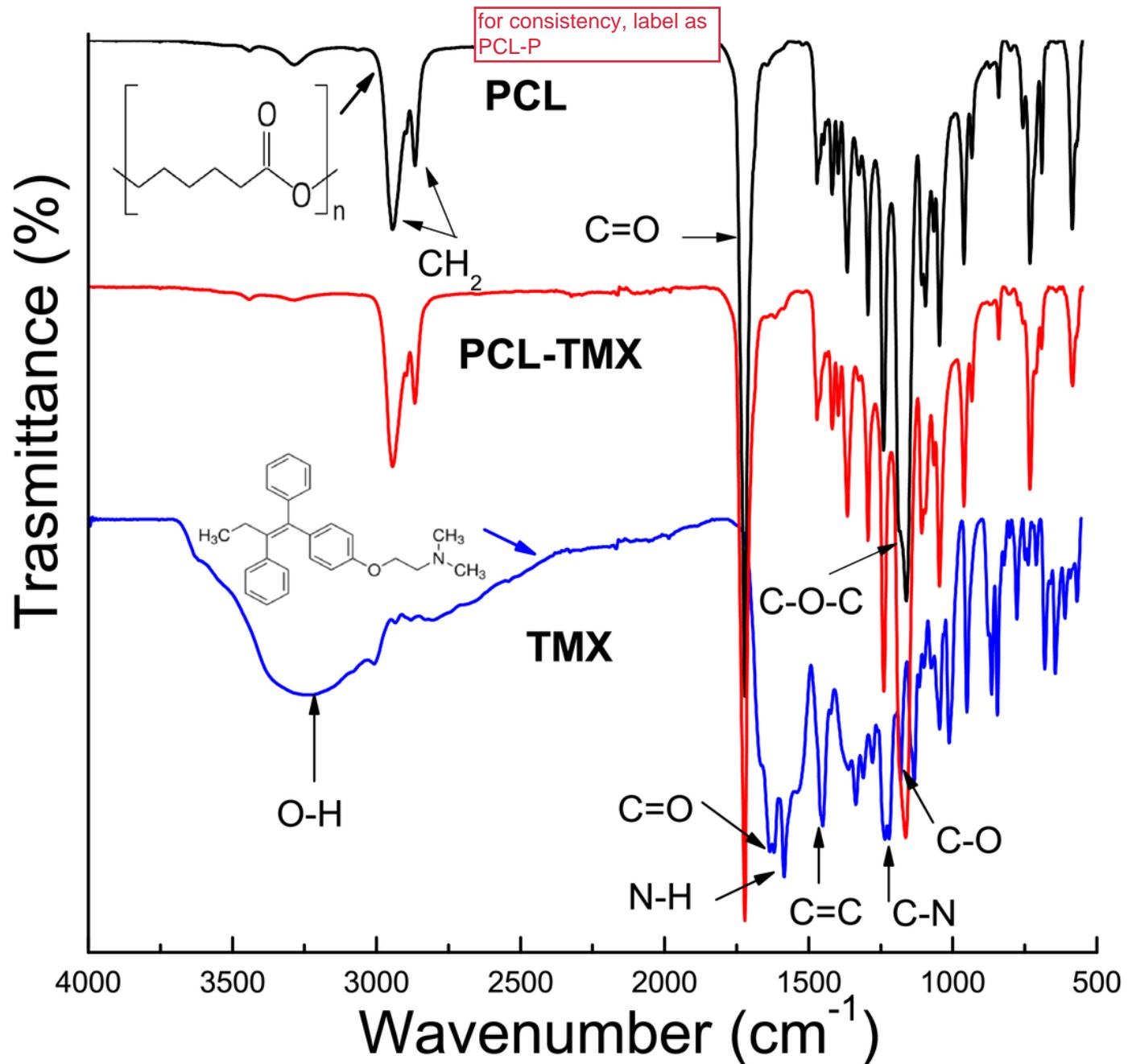

The morphology and diameter distribution of PCL nanofibers showed in micrographs, and histograms corresponding of PCL nanofibers SEM micrographs of a) PCL-P, b) PCL-TMX. Histograms of the diameter of nanofibers of c) PCL-P, d) PCL-TMX.

Figure 2

FTIR spectra

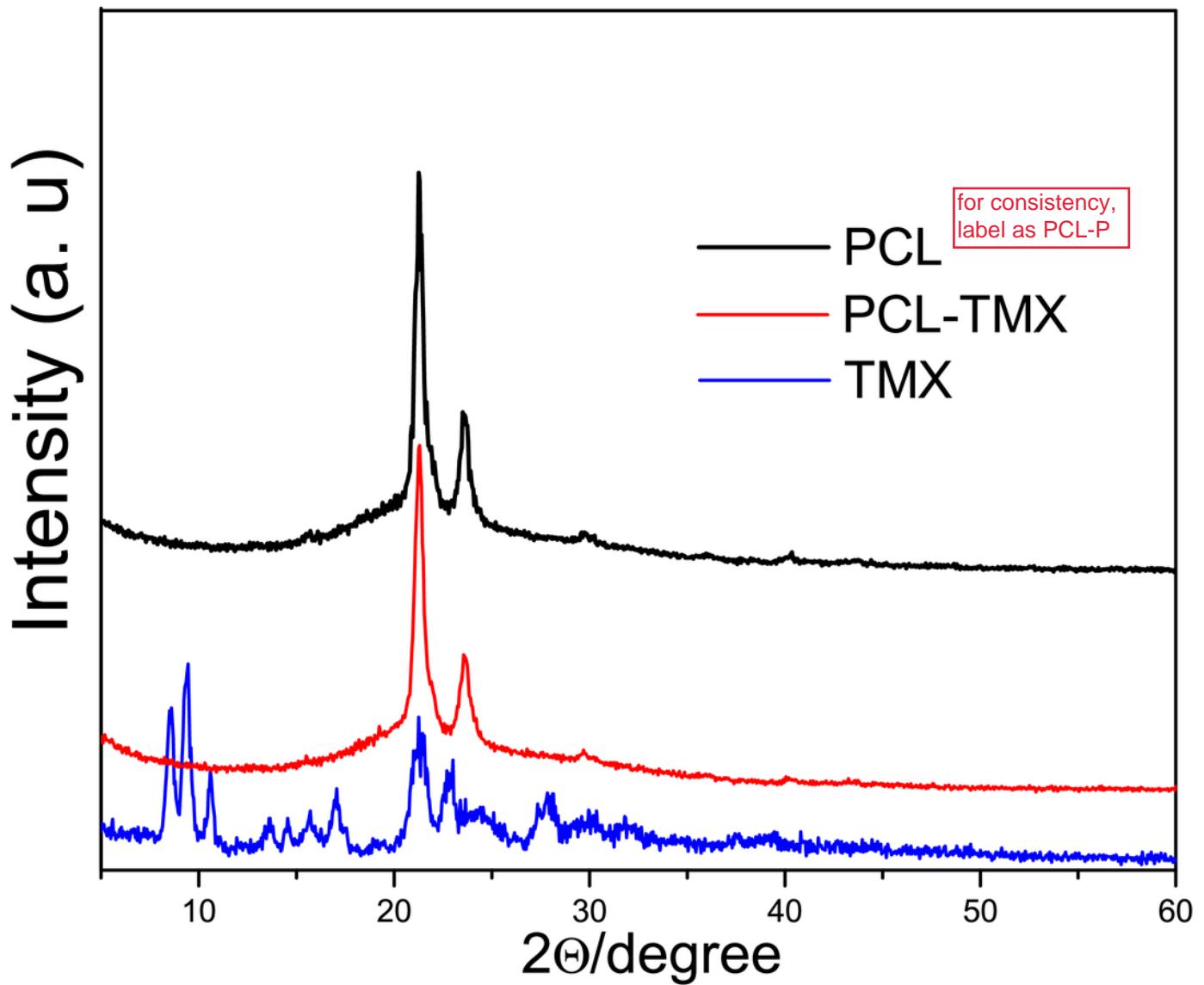

FTIR spectra of TMX, PCL-P, and PCL-TMX electrospun nanofibers.

Figure 3

XRD.

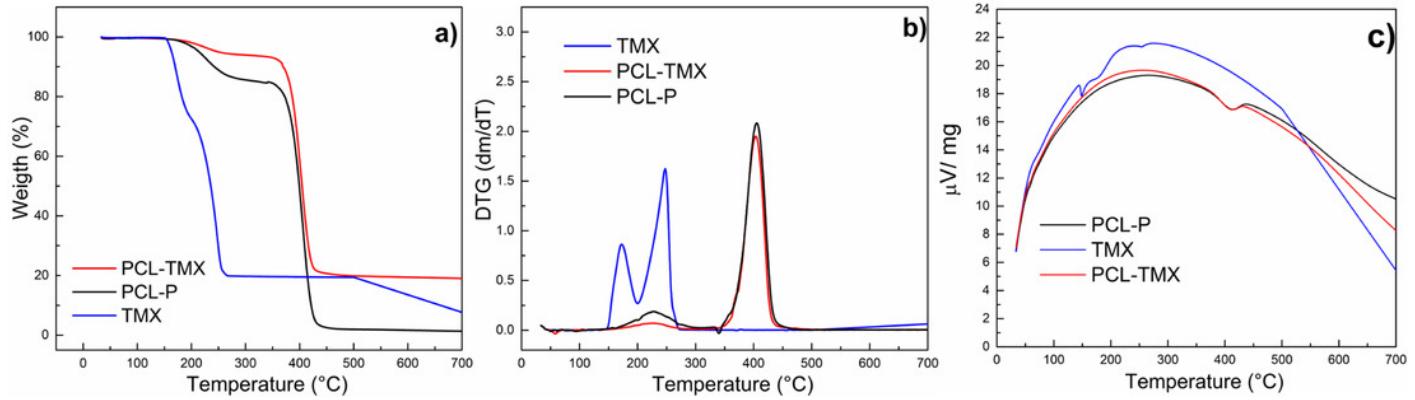

XRD patterns of (a) TMX, (b) PCL-P, (c) PCL-TMX

Figure 4

Thermogravimetric analysis.

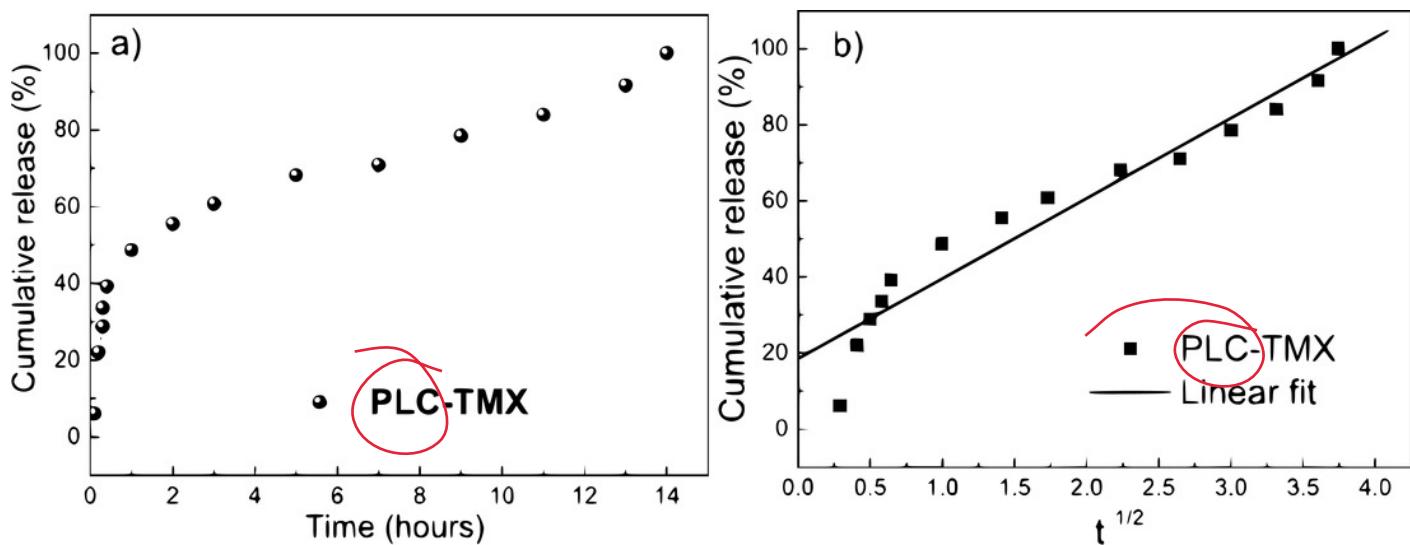

a) TG, b) DTG and c) temperature difference curves of TMX, PCL-P, and PCL-TMX

Figure 5

Drug release.

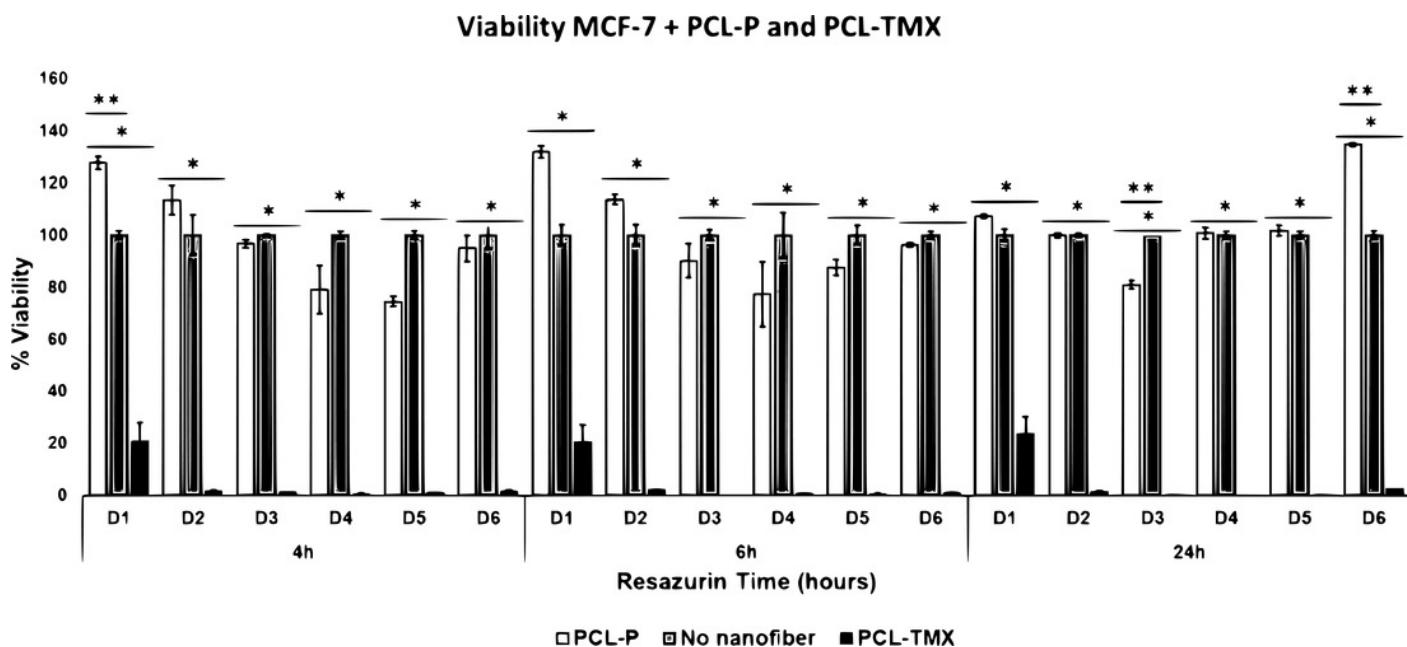

a) Release profiles of TMX from PCL-TMX nanofibers in PBS pH 7.4 and b) Higuchi equation to TMX release from PCL-TMX nanofiber (Where M_t/M_∞ is the fraction of TMX delivery in time t , and K is release speed constant).

Figure 6

Cytotoxicity assay.

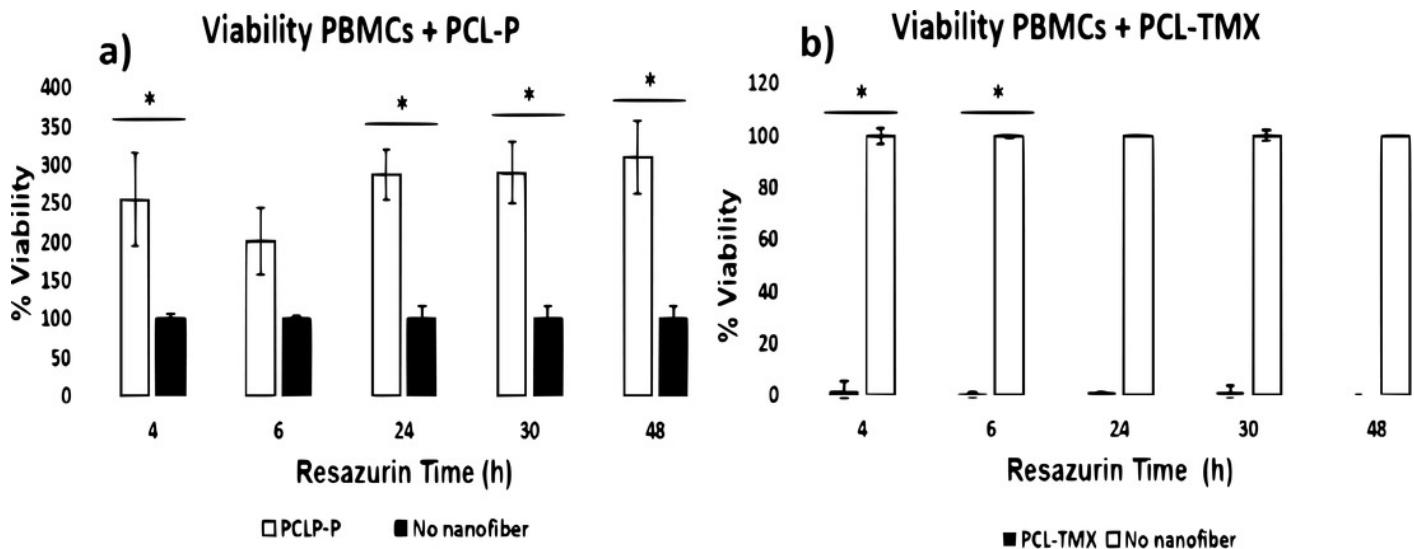

Percentage of MCF-7 cell viability: cytotoxic effect of PCL-P and PCL-TMX on 15.000 MCF-7 cells was evaluated after 1 to 6 days of exposure. The reduction of resazurin to resorufin was followed at 4, 6 and 24 hours. Using Student's t test PCL-TMX reduced the percentage of viability statistically significant in all treatments, identified by * ($p \leq 0.05$). PCL-P treatment was statistically significant by slightly increasing the percentage of viability on the first day at 4h ($p = 0.0160$) and the sixth day at 24h ($p= 0.03117$) and decreasing the third day at 24h ($p= 0.0425$) identified by **.

Figure 7

Percentage of PBMCs viability

Percentage of PBMCs viability: cytotoxic effect of a) PCL-P and b) PCL-TMX upon cultured 15.000 PBMCs for 24 hours. The reduction of resazurin to resorufin was followed up at 4, 6, 24, 30 and 48 hours. Increase in the percentage of viability was observed with exposure to PCL-P and reduction with PCL-TMX, the statistical significances are identified by *, the values are in the supplementary table S1.

Table 1(on next page)

Contact angle.

Contact angle of the PCL nanofibers after 1s and 120s.

Nanofibers	Time /s	Contact angle / degrees
PCL-P	1	105.75
	120	96.58
PCL-TMX	1	55.79
	120	32.54