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Breast cancer is the second leading cause of death in women, and tamoxifen citrate (TMX)
is accepted widely for the treatment of hormone receptor–positive breast cancers. Several
local drug-delivery systems, including nanofibers, have been developed for antitumor
treatment. Nanofibers are biomaterials that mimic the natural extracellular matrix, and
they have been used as controlled release devices because they enable highly efficient
drug loading. The purpose of the present study was to develop polycaprolactone (PCL)
nanofibers incorporating TMX for use in the treatment of breast tumors. Pristine PCL and
PCL-TMX nanofibers were produced by electrospinning and characterized physiochemically
using different techniques. In addition, an in vitro study of TMX release from the nanofibers
was performed. The PCL-TMX nanofibers showed sustained TMX release up to 14 h,
releasing 100% of the TMX. The Resazurin reduction assay was used to evaluate the TMX
cytotoxicity on MCF-7 breast cancer cell line and PBMCs human. The PCL-TMX nanofiber
was slightly cytotoxic in PBMCs and highly toxic in the MCF-7. Based on these results, the
PCL-TMX nanofibers developed have potential as an alternative for chronic TMX use for
breast cancer treatment without affecting other cells or tissues.
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20 Abstract

21 Breast cancer is the second leading cause of death in women, and tamoxifen citrate (TMX) is 
22 accepted widely for the treatment of hormone receptor–positive breast cancers. Several local drug-
23 delivery systems, including nanofibers, have been developed for antitumor treatment. Nanofibers 
24 are biomaterials that mimic the natural extracellular matrix, and they have been used as controlled 
25 release devices because they enable highly efficient drug loading. The purpose of the present study 
26 was to develop polycaprolactone (PCL) nanofibers incorporating TMX for use in the treatment of 
27 breast tumors. Pristine PCL and PCL-TMX nanofibers were produced by electrospinning and 
28 characterized physiochemically using different techniques. In addition, an in vitro study of TMX 
29 release from the nanofibers was performed. The PCL-TMX nanofibers showed sustained TMX 
30 release up to 14 h, releasing 100% of the TMX. The Resazurin reduction assay was used to evaluate 
31 the TMX cytotoxicity on MCF-7 breast cancer cell line and PBMCs human. The PCL-TMX 
32 nanofiber was slightly cytotoxic in PBMCs and highly toxic in the MCF-7. Based on these results, 
33 the PCL-TMX nanofibers developed have potential as an alternative for chronic TMX use for 
34 breast cancer treatment without affecting other cells or tissues.

35

36 Introduction

37 Breast cancer is the second leading cause of death in women, after lung cancer (“International 
38 Agency for Research on Cancer,” 2018). Treatment strategies for this disease include surgery, 
39 radiation therapy, chemotherapy, hormonal therapy, and targeted therapy, often applied in 
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40 combination. Endocrine therapy is the treatment of choice for patients with hormone receptor–
41 positive (HR+) breast cancer.
42

43 Breast cancer subtypes are defined by the expression of estrogen (ER) and progesterone (PR) 
44 receptors and the status of the HER-2 gene, which may be amplified. Breast cancer cell lines with 
45 molecular profiles similar to those of tumors are used to evaluate the effects of anticancer drugs in 
46 vitro. The MCF-7 cell line derives from the pleural effusion of a patient with breast 
47 adenocarcinoma and represents the luminal A breast cancer subtype because it has the same 
48 molecular profile (ER+, PR+, normal HER-2 status). The use of anti-ER drugs, such as tamoxifen 
49 (TMX), for the treatment of HR+ (ER+ and PR+) breast cancers is widely accepted (Johnston et 
50 al., 2016).
51

52 TMX, also known as 4-hydroxytamoxifen, is a nonsteroidal compound that selectively modulates 
53 the ER with antagonistic or agonist action, depending on the organ on which it acts (Salami & 
54 Karami-Tehrani, 2003). It is an agonist in the liver, uterus, and bones, and an antagonist in the 
55 brain and mammary glands and vasomotor symptoms (Sestak et al., 2006). TMX has been used to 
56 stop the proliferation and inducing apoptosis of breast tumor cells through its anti-ER action 
57 (Mandlekar & Kong, 2001; Salami & Karami-Tehrani, 2003).
58

59 TMX has cytostatic and cytotoxic properties in the MCF-7 breast cancer cell line, not only stopping 
60 proliferation and inducing apoptosis, but also inducing differentiation and reducing cholesterol 
61 synthesis (Kedjouar et al., 2004; Medina, Favre & Poirot, 2004); it also modulates immunity in 
62 patients with breast cancer (Robinson et al., 1993; Behjati & Frank, 2009). Compared with those 
63 of healthy controls, lymphocytes from women with breast cancer treated with TMX showed 
64 significantly reduced killer activity, associated with a decrease in the absolute number of CD4-
65 type lymphocytes, and a greater proliferation response in the presence of the concanavalin A 
66 mitogen (Rotstein et al., 1988; Robinson et al., 1993; Behjati & Frank, 2009). TMX is also 
67 effective against Ebola virus (De Clercq, 2015) and human immunodeficiency virus (Laurence, 
68 Cooke & Sikder, 1990) infections, and a recent review highlighted its benefits in the treatment of 
69 respiratory diseases, such as coronavirus disease pneumonia (Salman et al., 2020). TMX and its 
70 active metabolites have prolonged serum half-lives, and higher doses have not been associated 
71 with improved outcomes; lower dosages have not been tested adequately. Furthere is established 
72 in the literature that chronic TMX use (for ≥5 years) could reduce the risk of death from PR+ ER+ 
73 breast cancer (Salami & Karami-Tehrani, 2003; Karn et al., 2010; Group (EBCTCG), 2011; Hong 
74 et al., 2016; Drăgănescu & Carmocan, 2017) but when is used with potent inhibitors of CYP2D6  
75 could be a risk of mortality (Donneyong et al., 2016).
76

77

78 It is well known that the nanometric scale devices used in current research for the prevention, 
79 treatment and diagnosis of diseases such as cancer are mostly natural or synthetic polymers. The 
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80 desirable properties for these materials are biocompatibility, biodegradability, allow controlled 
81 release of active agents and present similarity to the native extracellular matrix of human tissues 
82 and cells (Venugopal, Zhang & Ramakrishna, 2005; Caracciolo et al., 2011; Rogina, 2014; 
83 Mochane et al., 2019).  At the same time, local delivery systems have the advantage over systemic 
84 therapy of continuous drug delivery at higher concentrations directly to target sites. The benefits 
85 of these systems include improved patient compliance, the reduction of toxic effects and systemic 
86 complications (Vyas, Sihorkar & Mishra, 2000; Jain et al., 2008; Joshi et al., 2016), mimicking of 
87 the natural extracellular matrix (ECM), and highly efficient drug loading for controlled release. 
88 Nanoscale systems, such as those in which nanofibers are employed, may present a promising 
89 opportunity for the efficient treatment of solid tumors.
90

91 Electrospun nanofibers are nanometric structures produced with synthetic or natural elements that 
92 create continuous filaments with a maximum diameter of 500 nm (Caracciolo et al., 2011). These 
93 materials are preferably biodegradable, to avoid the use of additional systems for their removal. 
94 The simplest use of nanofibers as a local drug release system involves the preparation of a polymer 
95 solution and its mixing with the drug, followed by nanofiber manufacture. Among numerous 
96 methods, electrospinning is becoming the main technique for the production of materials and 
97 carpets made of nano-polymer fibers and metal oxide (Barnes et al., 2007; Duque, Rodriguez & 
98 Lopez, 2013; Rogina, 2014; Li et al., 2019). This method is simple, versatile, common, and 
99 economical (Rogina, 2014); it is performed in an electrospinning machine, which enables the use 

100 of different compounds and control of manufacturing parameters to determine the diameter, size, 
101 and porosity of the continuous nanofibers produced (Barnes et al., 2007). Various biopolymers 
102 have been used for tailored biomedical applications (Mochane et al., 2019).
103

104 Most nanometric-scale devices used in current research on the prevention, diagnosis, and treatment 
105 of diseases such as cancer are made of natural or synthetic polymers. Desirable properties for these 
106 materials are biocompatibility, biodegradability, capacity for controlled release of active agents, 
107 and similarity to the native ECM of human tissues and cells (Venugopal, Zhang & Ramakrishna, 
108 2005; Caracciolo et al., 2011; Rogina, 2014; Mochane et al., 2019). Poly (ε-caprolactone) (PCL), 
109 a semi-crystalline aliphatic polyester, is the most commonly used synthetic polymer in medical 
110 applications because it biodegrades slowly and is biocompatible, given its similarity to natural 
111 tissue components such as collagen fibers and ECM and diameters of 50–500 nm (Venugopal, 
112 Zhang & Ramakrishna, 2005; Barnes et al., 2007). PCL has good mechanical properties and 
113 thermal stability and is easy to process, compatible with hard and soft tissues, and accepted by the 
114 US Food and Drug Administration as a drug-delivery vehicle (Song et al., 2018). It has been used 
115 to develop devices for anticancer molecule release, an emerging promising alternative for cancer 
116 treatment (Monteiro et al., 2017).
117

118 In the present study, we developed PCL-pristine (P) and PCL-TMX nanofibers by electrospinning 
119 (Vitchuli et al., 2011) for local drug delivery to solid breast tumors. The nanofibers were 
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120 characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy 
121 (FTIR) and attenuated total reflectance infrared spectroscopy (FTIR-ATR), X-ray powder 
122 diffraction (XRD), thermal analysis, and contact angle measurement. Resazurin assays (Escobar, 
123 2010) were used to assess their cytotoxic effects on MCF-7 cells and peripheral PBMCs from a 
124 healthy donor.
125

126

127 Materials & Methods

128

129 Materials

130 PCL with molecular weights of 43,000–500,000 was purchased from Polysciences, Inc. (USA). 
131 TMX was supplied by Araujo Drug Supply S.A. (Brazil). Dichloromethane (DCM; 99.5%) and 
132 methanol (MetOH; 99.8%) were acquired from Vetec (Brazil). All reagents were of analytical 
133 grade and were used as received.
134

135

136 Preparation of PCL Nanofiber Solutions and Electrospinning

137 To prepare the PCL-P and PCL-TMX polymer solutions, 800 mg PCL was dissolved in 10 mL 
138 DCM/MetOH mixture (50%/50% v/v) in each case. For the PCL-TMX solution, 15 mg TMX was 
139 added. The solutions were agitated for 12 h at 25.0°C before use.
140

141 Each polymer solution was loaded into a 10-mL standard plastic syringe fitted with a 27-G blunted 
142 stainless-steel needle using a syringe pump (PHD 2000; Harvard Apparatus). The distance between 
143 the needle and the aluminum foil–wrapped collector was set at 15 cm, and electrospinning was 
144 performed with a solution flow rate of 10 mL/h and voltage of 20 kV generated by a high-voltage 
145 power supply (Gamma High Voltage, USA). The resulting nanofibers were collected and stored 
146 for physicochemical characterization and microbiological and cytotoxicity testing.
147

148

149 Physicochemical Characterization

150 The conditions for the physicochemical characterization of the PCL and PCL-TMX nanofibers 
151 were similar and adjusted according to (Ramírez-Agudelo et al., 2018; Dias et al., 2019).
152

153 Nanofiber morphology was analyzed by scanning electron microscopy (SEM) (FEG-Quanta 200; 
154 FEI) with an accelerating voltage of 20 kV. Before analysis of  SEM images, each nanofiber 
155 sample was coated with a 5-nm-thick layer of gold using a sputter coater (MD20; Bal-Tec). The 
156 average nanofiber diameter was calculated from at least 100 measurements obtained with Image J 
157 software (National Institutes of Health, Bethesda, USA). ATR was performed with a 
158 spectrophotometer (Spectrum 1SR; Perkin Elmer) equipped with a universal ATR sampling 
159 accessory and a diamond top plate. The FTIR-ATR spectra of the PCL-P and PCL-TMX 
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160 nanofibers and TMX were obtained in the region of 4000–650 cm−1, with four scans obtained per 
161 sample at a resolution of 4 cm−1. The data were analyzed with the Spectrum software provided 
162 with the instrument (Perkin Elmer). The XRD patterns of the nanofibers were visualized using an 
163 X-ray diffractometer (XRD-7000; Shimadzu) with Cu Kα λ = 0.154051 radiations over a 2θ range 
164 of 4–60° at a scanning speed of 2θ/min. Thermogravimetric and differential thermogravimetric 
165 analysis (TGA/DTG) was performed using a TGA Q5000 device (TA Instruments, USA) with 
166 sample heating at a rate of 10°C/min from 25°C to 600°C and under an N2 flow rate of 50 mL/min. 
167 The TG curves represent the thermal degradation of the samples. The data were processed using 
168 the software supplied with the instrument (Universal Analysis 200; TA Instruments).
169

170 A contact angle measuring system (SEO Phoenix 300 Touch) was used to determine nanofiber 
171 wettability. The nanofibers were placed on a sample stand, and water was dropped onto their 
172 surfaces while a camera recorded an image. The Surfaceware 9 software was used to determine 
173 the average contact angle.
174

175 To evaluate the drug release profile of the PCL-TMX nanofibers (loaded at 25.5 μg TMX/mg 
176 nanofiber approximately), approximately 15 mg of nanofibers was cut into specimens (15 × 15 
177 mm), which were placed into Eppendorf tubes. The tubes were then incubated at 37°C in 2 mL 
178 phosphate-buffered saline (PBS; pH 7.4) with 0.01% Sodium Dodecyl Sulfate (SDS) for 
179 increasing the TMX solubility, in a thermostatic shaker at 50 rpm. Samples (2 mL) were removed 
180 at 0.5, 1, 2, 4, 8, 10, 24, 48, 72, 120, and 144 h for the quantification of TMX release; after each 
181 analysis, the same volume of fresh PBS solution was added to the tube. The amount of TMX 
182 released was determined using an ultraviolet–visible (UV-vis) spectrophotometer (Multiskan 
183 Spectrum MCC/340; Thermo Scientific) at a wavelength of 365 nm, based on a calibration curve 
184 (R2 = 0.99). Each sample was evaluated in triplicate.
185

186

187 Cytotoxicity Testing

188 For the in vitro analysis of cytotoxicity, the MCF-7 cell line was obtained from frozen vials of 
189 laboratory stock obtained from the ATCC (Manassas, VA, USA). The MCF-7 cells were grown in 
190 Dulbecco's modified Eagle medium (DMEM; Gibco) prepared with 1% (v/v) antibiotic and 
191 antimycotic solution (ref. 15240062; Gibco) and supplemented with 10% fetal bovine serum (FBS; 
192 Gibco), in 75-cm2 plastic bottles at 37°C in a 95% humid atmosphere with 5% CO2.
193

194 To avoid the interference in the experiment of the action of the steroids present in the FBS, and of 
195 the weak estrogenic activity of the phenol red present in the DMEM, the cells were washed with 
196 PBS and then medium with 10% carbon-stripped FBS (Sigma) and phenol red–free DMEM was 
197 added 48 h before incubation with the nanofibers.
198
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199 For peripheral-blood mononuclear cell (PBMCs) isolation, 10-mL peripheral blood samples were 
200 obtained by venipuncture of the brachial vein from a healthy volunteer who had provided informed 
201 consent. The blood was collected into tubes with heparin, and PBMCs were obtained using a Ficoll 
202 gradient procedure (Rotstein et al., 1988). Briefly, the 10-mL tubes of blood were centrifuged at 
203 2000 rpm for 5 min, and the buffy coat was then removed with a sterile 2-mL pipette. The buffy 
204 coat (2 mL) was added gently to a 15-mL tube with 2 mL Ficoll Histopaque-1077 (Sigma), which 
205 was centrifuged without brake for 20 min at 2000 rpm. Then, the white layer was recovered with 
206 a sterile 2-mL pipette and placed in a new tube with 5 mL PBX 1X prepared from a 10X solution 
207 (ref. 70011044; Gibco), which was centrifuged twice at 2500 rpm for 5 min. The cell pellet was 
208 then recovered, gently resuspended, and placed in a new 15-mL tube containing 5 mL PB-MAX 
209 karyotyping medium (Invitrogen) with 100 µL phytohemagglutinin (PHA) M (ref. 10576-015; 
210 Gibco) and antibiotic and antimycotic solution (ref. 15240062; Gibco). The tube was stored at 
211 37°C and 5% CO2 for 24 h before nanofibers treatment with.
212

213 The cytotoxicity activity of PCL-TMX nanofibers were evaluated by an indirect contact resazurin 
214 assay. The mean absorbance values obtained for all groups were distributed normally, and the 
215 control group data were adjusted to 100% viability. Cytotoxicity was calculated based on cell 
216 viability relative to this group: none, >90%; slight, 60–90%; moderate, 30–59%; and severe, <30% 
217 (Basak et al., 2016). This test indicates the number of viable cells and the level of metabolic activity 
218 in a sample. Resazurin, a blue dye, is metabolized by mitochondrial enzymes in cells, which 
219 transforms it into fluorescent pink resorufin, which the cells release into the culture medium. 
220 Treatments can be monitored by taking several measurements of the same group of cells, as 
221 resazurin is not toxic. Plates are removed from the incubator for a short time (5–10 min) to take 
222 measurements, and the culture conditions are then restored (Escobar, 2010; Uzarski et al., 2017). 
223 The MCF-7 cells were seeded in a 96-well culture plate at a density of 15,000/200 µL for 24 h. 

224 Then, a 7mm diameter circle containing approximately 16 M of TMX was added to each well 
225 with 200 µL the culture medium for 1–6 days, in duplicate. Every day, a plate was taken from the 
226 incubator and the culture medium was removed; the wells were washed with 200 µL PBS, and 
227 fresh serum-free medium with 4.4 µM resazurin was added, followed by further incubation under 
228 the same initial conditions. After 4, 6, and 24 h, absorbance was measured at the emission 
229 wavelength of 595 nm and excitation wavelength of 535 nm using a spectrophotometer (Cytation 
230 3 (Borra et al., 2009; Uzarski et al., 2017).
231

232 An experiment with Tamoxifen free was made, MCF-7 cells were cultured with concentrations of 
233 free TMX between (0-20µM), an effect similar on viability percentage to PCL-TMX, was 
234 observed with concentrations between 13 and 20 µM (see Supplementary figure).
235

236 For PBMCs assays, 15,000 cells/200 µL were placed in 96-well plates after 24 h culture and 
237 incubated with the PCL-P and PCL-TMX nanofibers, for 24 hours. The plates were then 
238 centrifuged at 2000 rpm for 5 min, and the medium was replaced with PB-MAX containing 4.4 
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239 mM resazurin, followed by further incubation under the same conditions. After 4h, 6h, 24h, 30h 
240 and 48h the absorbance was measurement the same way to MCF-7 cells lines.
241

242

243 Statistical Analysis

244 The results were organized by treatment: PCL-P, PCL-TMX and without nanofiber and by 
245 numbers of resorufin measurements according to cell type. The normality test Shapiro–Wilk was 
246 applied, then the treatments were compared using Student’s t test for unpaired variables: MCF-
247 7+PCL-P vs. MCF-7+PCL-TMX, MCF-7+PCL-P vs. MCF-7 without nanofiber, MCF-7+PCL-
248 TMX vs. MCF-7 without nanofiber and PBMCs+PCL-P vs. PBMCs+PCL-TMX, PBMCs+PCL-
249 P vs. PBMCs without nanofiber, PBMCs +PCL-TMX vs. PBMCs without nanofiber). Here we 
250 found that the PCL-TMX treatment reduced the percentage viability of MCF-7, besides the 
251 difference was statistically significant in all measurements (p ≤ 0.05). One day after PCL-P 
252 treatment of MCF-7 cells, the percentage of viability increases slightly and it is statistically 
253 significant only in first day at 4h (p= 0.0160) and on the sixth day at 24h (p= 0.0317), in the latter 
254 case, a clone of MCF-7 with a higher proliferation rate probably emerged. PCL-P induced an 
255 increase in the percentage of viability of PBMCs on the first day of treatment, even above the cells 
256 without treatment, while PCL-TMX reduced it however, applying the Student's t test the 
257 differences were not significant in the PCL-P treatments, but they were significant for the PCL-
258 TMX at 4h p = 0.005 and 6h p = 0.0243. 
259

260 Also, ANOVA was applied to three treatments for each cell type (MCF-7+PCL-P vs. MCF7+PCL-
261 TMX vs. MCF-7 without nanofiber and PBMCs +PCL-P vs. PBMCs+PCL-TMX vs. PBMCs 
262 without nanofiber). All treatments showed statistically significant differences, but this test does 
263 not discriminate between groups. Additionally, BONFERRONI test was used to compare each 
264 treatment with no nanofiber addition (MCF-7+PCL-P vs MCF-7 without nanofiber, MCF7+PCL-
265 TMX vs MCF-7 without nanofiber and PBMCs+PCL-P vs PBMCs without nanofiber, 
266 PBMCs+PCL-TMX vs. PBMCs without nanofiber). This showed that PCL-P increases the 
267 percentage of viability in a statistically significant way except for the 6h data. On the other hand, 
268 PCL-TMX decreases this value and only in a statistically significant way for the measurement 
269 taken at 24 h.
270

271

272 Results and Discussion

273

274 Physicochemical Characterization

275 SEM showed that all PCL-P and PCL-TMX nanofibers were uniaxial, non-porous, and distributed 
276 randomly. The incorporation of TMX altered the nanofiber morphology and diameter (see Fig. 1). 
277 The PCL-P nanofibers displayed a bimodal diameter distribution, whereas that of the PCL-TMX 
278 nanofibers was modal. The greatest average diameters were 484 ± 168 nm for PCL-P nanofibers 
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279 and 400 ± 236 nm for PCL-TMX nanofibers. The PCL-P nanofiber diameters were comparable to 
280 those reported previously (Katsogiannis, Vladisavljević & Georgiadou, 2015), and the reduction 
281 of the average diameter with TMX incorporation is consistent with previous reports that drug or 
282 particle incorporation reduces PCL nanofiber diameters (Zamani et al., 2010; Aristilde et al., 2010; 
283 Monteiro et al., 2017; Alavarse et al., 2017; Pinzón-García et al., 2017).
284

285

286 Figure 1. The morphology and diameter distribution of PCL nanofibers showed in micrographs, 
287 and histograms corresponding of PCL nanofibers SEM micrographs of a) PCL, b) PCL-TMX. 
288 Histograms of the diameter of nanofibers of c) PCL, d) PCL-TMX.
289

290

291 The FTIR-ATR spectra of TMX and the PCL-P and PCL-TMX nanofibers are shown in Fig. 2. 
292 TMX showed a band of intensity at 3229 cm–1 due to the O–H from alcohol and phenolic groups. 
293 The most characteristic TMX bands were observed: the C = O band at 1627 cm–1, the N–H band 
294 at 1575 cm–1, the C = C stretching band (reflecting aromatic ring vibrations) at 1453 cm–1, the 
295 double amino C–N stretching bands at 1227 cm–1, and the phenolic C–O stretching band at 1174 
296 cm–1 (Aristilde et al., 2010; dos Santos Ferreira da Silva et al., 2015). For the PCL-P nanofiber, 
297 characteristic infrared bands were observed at 1720 cm–1 (C = O carbonyl stretching), 1240 cm–1 
298 (asymmetrical C–O–C stretching), 1157 cm−1 (symmetrical C–O–C stretching), 2945 cm–1 
299 (asymmetrical CH2 stretching), and 2868 cm–1 (symmetrical CH2 stretching) (Elzein et al., 2004; 
300 Gomes et al., 2008). For the PCL-TMX nanofibers, the TMX absorption peaks were not observed, 
301 likely due to the small quantity of TMX in them and stretching overlap with adsorption bands of 
302 the PCL polymer (Liebenberg et al., 1999; Khalf & Madihally, 2017).
303

304

305 Figure 2. FTIR spectra of TMX, PCL, and PCL-TMX nanofibers.
306

307

308 Fig. 3 shows the XRD patterns of TMX and the PCL-P and PCL-TMX nanofibers. TMX showed 
309 low-intensity peaks due to its polycrystalline structure; the main peaks were at 2θ = 8.5°, 9.3°, 
310 10.6°, 17.0°, 21.1°, and 23.0° (Liebenberg et al., 1999; Thangadurai et al., 2005; Toro R et al., 
311 2007). All PCL-P nanofibers showed two characteristic peaks at 2θ = 21.25° and 23.55°, attributed 
312 to (110) and (200) PCL semicrystalline lattice planes  (Baji et al., 2007; Wang, Guo & Cheng, 
313 2008; Kim et al., 2012). No characteristic TMX peak was detected in the PCL-TMX nanofiber 
314 pattern. These results can be explained by the lack of time for the polymers and other compounds 
315 to crystallize and form organized structures during electrospinning, which is a very rapid method 
316 of polymer fiber preparation (Wei et al., 2010).
317

318
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319 Figure 3.  XRD patterns of (a) TMX, (b) PCL, (c) PCL-TMX
320

321 Fig. 4 shows the TG and DTG curves of TMX nanofibers. These curves for TMX showed that 
322 three events of mass loss occurred at temperatures of up to 600°C. The first event corresponds to 
323 7.4% mass loss at about 100°C, which can be attributed to dehydration. The second event occurred 
324 between 126°C and 380°C, with 34% mass loss (also observed on the DTG curve), and the third 
325 event occurred between 400°C and 600°C, with 74% mass loss. These events can be attributed to 
326 the oxidative decomposition of TMX and the remaining carbonaceous matter (dos Santos Ferreira 
327 da Silva et al., 2015; Cervini et al., 2015). The nanofiber patterns (Fig. 4a, b) were similar to the 
328 reported PCL weight loss pattern, which comprises one thermal decomposition event starting at 
329 about 340°C and ending at 470°C (Mohamed et al., 2008). The PCL-TMX nanofibers showed 
330 greater thermal stability than did the PCL-P nanofibers. The TG curves for the PCL-P and PCL-
331 TMX nanofibers showed that one thermal decomposition event occurred at about 408°C, with 
332 complete decomposition occurring by 600°C (Fig. 4c).
333

334

335 Figure 4. a) TG, b) DTG and c) temperature difference curves of TMX, PCL-P, and PCL-TMX 
336

337 The contact angles of the nanofibers surfaces were measured to assess the wettability and 
338 hydrophilicity of the nanofibers. Table 1 shows the contact angles for the PCL nanofibers and PCL-
339 TMX nanofibers. The contact angle of the PCL-TMX nanofiber was smaller than that of the PCL-P 
340 nanofiber (hydrophobic nature (Madhaiyan et al., 2013; Tiyek et al., 2019)), perhaps due to the 
341 highly hydrophilic COO– moiety of citrate TMX on the surface of the former (Huang et al., 2010). 
342 Greater nanofiber wettability may improve cell proliferation and biocompatibility (Sharma et al., 
343 2014). In a similar work, the incorporation of 5-FLU, paclitaxel, and other drugs into PCL 
344 nanofibers also increased nanofiber hydrophilicity and provided a good release profile 
345 (Karuppuswamy et al., 2015; Iqbal et al., 2017). 
346

347

348 In Vitro Drug Release

349 Profiles of cumulative TMX release from the PCL-TMX nanofibers over 14 h are shown in Fig. 
350 5. After 12 h, no TMX signal was detected by UV-vis quantification, reflecting complete TMX 
351 release. Thus, to evaluate the kinetics of TMX release from the nanofibers, the cumulative release 
352 of the drug was considered in up to 10 h and 12 h, to PCL-TMX. The large surface areas and three-
353 dimensional open porous structures of nanofibers may reduce the constraint on drug diffusion and 
354 release (Seeram Ramakrishna, Zamani & Molamma P Prabhakaran, 2013). In addition, the greater 
355 hydrophilicity of PCL-TMX nanofibers certainly increased TMX release.
356

357 Three distinct, sequential stages of TMX release, reflecting different processes of diffusion from 
358 the PCL matrix, were observed (Fig. 5a), in accordance with the literature (Varshosaz et al., 2011; 
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359 Sohrabi et al., 2013). In the first stage, there was a linear relationship with a very pronounced and 
360 moderate slope. A burst effect was seen, with release of approximately 87% of the TMX release 
361 in the first hour of the experiment. This initial rapid release may have been due to the accumulation 
362 of the TMX molecules at or near the PCL nanofiber surfaces during electrospinning, facilitating 
363 TMX release into the media (Zamani et al., 2010). The second stage of release occurred between 
364 1 and 4 h; the release rate decreased gradually, resulting in a moderate slope, as a consequence of 
365 TMX diffusion through the PCL nanofibers instead of PCL degradation. The third stage occurred 
366 between 4 and 10 h and involved the least TMX release. Thus, sustained TMX release from the 
367 PCL-TMX nanofibers was observed up to 14 h. These findings are expected for this type of system 
368 because an initial burst of drug release is required to promote a local antitumor effect; the initial 
369 dose kills the majority of cancerous cells, and the subsequent controlled release prevents tumor 
370 cell growth and proliferation (Ma et al., 2011).
371

372

373 Figure 5. a) Release profiles of TMX from PCL-TMX nanofibers in PBS pH 7.4 and b) Higuchi 
374 equation to TMX release from PCL-TMX nanofiber (Where Mt/M∞ is the fraction of TMX 
375 delivery in time t, and K is release speed constant).
376

377

378 The mechanism of TMX release was evaluated using the Higuchi kinetic model, based on Fickian 
379 diffusion mechanism (Nie et al., 2009). The Higuchi model of the TMX release mechanism best 
380 fit to the data for the first 8 h (Fig. 5b). As this model assumes Fickian diffusion, the cumulative 
381 percentage of the drug released (Q) was plotted against the square root of time (t ½), i.e., Q = K × 
382 t ½, where K is the Higuchi rate constant. The results indicated that diffusion along the PCL matrix 
383 occurred, and that TMX release was not dominated by polymer erosion, as claimed in previous 
384 studies of biodegradable polymers and water-soluble molecules (Luong-Van et al., 2006; 
385 Fredenberg et al., 2011).
386

387 Other studies of drug-delivery systems for anticancer molecules, such as TMX, have shown 
388 sustained release over 10 h (Guimarães et al., 2015), 6 days (Criado-Gonzalez et al., 2019), 8 days 
389 (Liu et al., 2016), 14 days, 25 days (Iqbal et al., 2017), and 35 days, with different release 
390 mechanisms and cytotoxicity. Formulations of nanofibers loaded with tetracycline hydrochloride 
391 (TCH), an antibiotic in the same group as TMX, have shown good cytocompatibility in normal 
392 cells  (Qi et al., 2013; Ranjbar-Mohammadi et al., 2016; Alavarse et al., 2017). Similarly, in this 
393 study, the PCL-TMX nanofibers displayed good biocompatibility and potential for use in the 
394 treatment of solid tumors.
395

396 Cytotoxicity

397
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398 The PCL-TMX showed greater cytotoxicity against MCF-7 cells than did the PCL–P (see Fig. 6); 
399 20 % cell viability was observed on the first day, in contrast to the 100% and 127% viability 
400 observed in untreated cells and those incubated with PCL-P, respectively. After the second day, 
401 resazurin metabolism was barely detected in cells incubated with PCL-TMX; those incubated with 
402 PCL-P showed a slight decrease in viability but like no treated cell.
403

404 TMX inhibits MCF-7 proliferation (Niro, Hennebert & Morfin, 2010), arresting cells in the G0–
405 G1 phases of the cell cycle. It also activates apoptosis via procaspase 8, followed by events such 
406 as an increase in reactive oxygen species and the release of pro-apoptotic factors from the 
407 mitochondria. Real-time polymerase chain reaction revealed an increase in FasL mRNA and tumor 
408 necrosis factor-α, as well as a decrease in mitochondrial transmembrane potential, after TMX 
409 treatment. All these changes are related to the activation of apoptosis (Subramani et al., 2014).
410

411

412 Figure 6. Percentage of MCF-7 cell viability: cytotoxic effect of PCL-P and PCL-TMX on 15.000 
413 MCF-7 cells was evaluated after 1 to 6 days of exposure. The reduction of resazurin to resorufin 
414 was followed at 4, 6 and 24 hours. Using Student’s t test PCL-TMX reduced the percentage of 
415 viability statistically significant in all treatments, identified by * (p ≤ 0.05). PCL-P treatment was 
416 statistically significant by slightly increasing the percentage of viability on the first day at 4h (p = 
417 0.0160) and the sixth day at 24h (p= 0.03117) and decreasing the third day at 24h (p= 0.0425) 
418 identified by **.
419

420 Afterward 24 h PCL-TMX showed greater cytotoxicity against MCF-7 than did the PCL–P (Fig. 
421 6); 20% (p= 0.041) cell viability was observed on the first day, in contrast to the 100% (p= 0.049) 
422 and 127% (p= 0.016) viability observed in untreated cells and those incubated with PCL-P, 
423 respectively. This can be explained because the TMX inhibits MCF-7 proliferation (Niro, 
424 Hennebert & Morfin, 2010), arresting cells in the G0–G1 phases of the cell cycle. It also activates 
425 apoptosis via procaspase 8, followed by events such as an increase in reactive oxygen species and 
426 the release of pro-apoptotic factors from the mitochondria. Real-time polymerase chain reaction 
427 revealed an increase in FasL mRNA and tumor necrosis factor-α, as well as a decrease in 
428 mitochondrial transmembrane potential, after TMX treatment. All these changes are related to the 
429 activation of apoptosis  (Subramani et al., 2014). After 48h of PCL-TMX incubation, a 99% (p= 
430 0.016) reduction in cell viability, representing a significant difference from the other groups, 
431 (Supplementary Table S1). On day 6, slight recovery with 2% viability was observed, possibly 
432 reflecting the growth of a treatment-resistant clone. MCF-7 cells were cultured with concentrations 

433 of free TMX among (0-20M), an effect similar on viability percentage to PCL-TMX, was 

434 observed with concentrations between 13 and 20 M.
435

436 The effect of TMX on PBMCs is not clear. Here we observed a large reduction of viability. The 
437 first day the viability percentage reached zero at 4h (p= 0.050) and 6h (p= 0.0243). On the contrary, 
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438 PCL-P increased in viability to 256%, which shows that this polymer could be activated PBMCs 
439 proliferation (Fig. 7). In one study, lymphocytes obtained from patients with breast cancer showed 
440 no change in cytotoxic activity type natural killer (NK) cells or proliferative response to mitogens 
441 after 8 days of TMX treatment (Sheard et al., 1986). This means that TMX does not activate the 
442 NK cells from PBMCs neither induce their proliferation. In a similar study involving 6–12 months 
443 of treatment, a reduced number of lymphocytes with suppressive function was observed (Joensuu, 
444 Toivanen & Nordman, 1986). In patients treated with TMX for 1.5–2 years, a decrease in NK cell 
445 activity and increase in response to the concanavalin A mitogen were observed  (Mandeville, Ghali 
446 & Chausseau, 1984). This suggests that if TMX is applied locally, unwanted effects on other 
447 tissues can be avoided.
448

449

450 Figure 7. Percentage of PBMCs viability: cytotoxic effect of a) PCL-P and b) PCL-TMX upon 
451 cultured 15.000 PBMCs for 24 hours. The reduction of resazurin to resorufin was follow-up at 4, 
452 6, 24, 30 and 48 hours. Increase in the percentage of viability was observed with exposure to 
453 PCL-P and reduction with PCL-TMX, the statistical significances are identified by *, the values 
454 are in the supplementary table S1.
455

456

457 For PBMCs obtained from the peripheral blood of patients with breast cancer and treated with 
458 TMX or left untreated, the response to concanavalin A can take up to 5 days (Rotstein et al., 1988). 
459 In this study, PBMCs obtained from the peripheral blood of a healthy volunteer and cultured in 
460 the presence of PHA showed detectable metabolic activity in the resazurin assay until the fourth 
461 day of culture (Fig. 7). However, lymphocytes in culture under the stimulation of a mitogen such 
462 as PHA are viable for about 72 h. The viability of PBMCs increased almost threefold in the 
463 presence of PCL-P and decreased by approximately 99% with of PCL-TMX. Little is known about 
464 the possible activation and proliferation of PBMCs induced by PCL-P, however they have been 
465 used to promote tissue healing in order to promote cell migration (Schoenenberger et al., 2020). In 
466 further research, it would be interesting to delve into this aspect. Viability reduction by PCL-TMX 
467 is consistent with that reported by Oliveira et al (Oliveira, Genari & Dolder, 2010), who showed 
468 cell death due to apoptosis and autophagy in lymphocytes treated with tamoxifen for 24 and 48h, 
469 in a time – dependent manner, although they applied a dose of 20 M while in this study it was 16 
470 M. They conclude that the effect of TMX on lymphocytes is independent of the estrogen receptor 
471 (Behjati & Frank, 2009). Other side effects of TMX are the induction of proliferation in the 
472 endometrium, association with liver cancer, increased blood coagulation, retinopathy and corneal 
473 opacities formation (Memisoglu-Bilensoy et al., 2005). Among the potential biomedical (drug-
474 delivery) applications of electrospun nanofibers, local postoperative chemotherapy for the 
475 prevention of tumor recurrence and metastasis is prominent (Hu et al., 2014). PCL-P is used to 
476 administer several types of drugs in the treatment of cancer such as cisplatin, doxycline, curcumin, 
477 paclitaxel among others (Malikmammadov et al., 2018), but there are no reports of tamoxifen 
478 delivery systems with PCL nanofibers under the conditions described here.
479
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480 In this study, the PCL-TMX nanofibers displayed good biocompatibility, and thus potential 
481 application for the treatment of solid tumors. Similarly, nanofibers loaded with TCH have shown 
482 good cytocompatibility in normal cells (Qi et al., 2013; Ranjbar-Mohammadi et al., 2016; Alavarse 
483 et al., 2017). Other TMX release systems using nanoparticles achieve 68% release in a first hour 
484 (Chawla & Amiji, 2002) then maintains the release until 24hours, while nanofibers released up to 
485 87% of their content in the first time and maintain a sustained release for hours or days, which can 
486 give best results. In addition, the destruction of the nanoparticles requires the use of enzymes such 
487 as lipases, which can affect the environment of the treated tissue.
488

489

490 Conclusions

491 PCL-TMX nanofibers were produced effectively by electrospinning and showed sustained TMX 
492 release for up to 14 h. In cell viability assays, they exhibited excellent activity against the MCF-7 
493 cell line. These results suggest that PCL-TMX nanofibers have potential application as a drug-
494 delivery local system for adjuvant treatment of solid tumors including breast cancer, that could 
495 avoid the collateral effects of TMX treatment in other tissues such as endometrium, liver, cornea 
496 or cells such as PBMCs. No previous reports of PLC-TMX nanofiber releasing systems in the 
497 literature.
498
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Figure 1
morphology and diameter distribution.

The morphology and diameter distribution of PCL nanofibers showed in micrographs, and
histograms corresponding of PCL nanofibers SEM micrographs of a) PCL-P, b) PCL-TMX.
Histograms of the diameter of nanofibers of c) PCL-P, d) PCL-TMX.
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Figure 2
FTIR spectra

FTIR spectra of TMX, PCL-P, and PCL-TMX electrospun nanofibers.
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Figure 3
XRD.

XRD patterns of (a) TMX, (b) PCL-P, (c) PCL-TMX
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Figure 4
Thermogravimetric analysis.

TG, b) DTG and c) temperature difference curves of TMX, PCL-P, and PCL-TMX
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Figure 5
Drug release.

a) Release profiles of TMX from PCL-TMX nanofibers in PBS pH 7.4 and b) Higuchi equation to
TMX release from PCL-TMX nanofiber (Where Mt/M∞ is the fraction of TMX delivery in time t,

and K is release speed constant).
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Figure 6
Cytotoxicity assay.

Percentage of MCF-7 cell viability: cytotoxic effect of PCL-P and PCL-TMX on 15.000 MCF-7
cells was evaluated after 1 to 6 days of exposure. The reduction of resazurin to resorufin was
followed at 4, 6 and 24 hours. Using Student’s t test PCL-TMX reduced the percentage of
viability statistically significant in all treatments, identified by * (p ≤ 0.05). PCL-P treatment
was statistically significant by slightly increasing the percentage of viability on the first day
at 4h (p = 0.0160) and the sixth day at 24h (p= 0.03117) and decreasing the third day at
24h (p= 0.0425) identified by **.
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Figure 7
Percentage of PBMCs viability

Percentage of PBMCs viability: cytotoxic effect of a) PCL-P and b) PCL-TMX upon cultured
15.000 PBMCs for 24 hours. The reduction of resazurin to resorufin was follow-up at 4, 6, 24,
30 and 48 hours. Increase in the percentage of viability was observed with exposure to PCL-P
and reduction with PCL-TMX, the statistical significances are identified by *, the values are in
the supplementary table S1.
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Table 1(on next page)

Contact angle.

Contact angle of the PCL nanofibers after 1s and 120s.
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Nanofibers Time /s Contact angle / degrees

1 105.75
PCL-P

120 96.58

1 55.79
PCL-TMX

120 32.54

1
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