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ABSTRACT
The entire world is witnessing the coronavirus pandemic (COVID-19), caused by a
novel coronavirus (n-CoV) generally distinguished as Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2). SARS-CoV-2 promotes fatal chronic respiratory
disease followed by multiple organ failure, ultimately putting an end to human life.
International Committee on Taxonomy of Viruses (ICTV) has reached a consensus that
SARS-CoV-2 is highly genetically similar (up to 89%) to the Severe Acute Respiratory
Syndrome Coronavirus (SARS-CoV), which had an outbreak in 2003. With this
hypothesis, current work focuses on identifying the spreader nodes in the SARS-CoV-
human protein–protein interaction network (PPIN) to find possible lineage with the
disease propagation pattern of the current pandemic. Various PPIN characteristics like
edge ratio, neighborhood density, and node weight have been explored for defining
a new feature spreadability index by which spreader proteins and protein–protein
interaction (in the form of network edges) are identified. Top spreader nodes with a
high spreadability index have been validated by Susceptible-Infected-Susceptible (SIS)
disease model, first using a synthetic PPIN followed by a SARS-CoV-human PPIN. The
ranked edges highlight the path of entire disease propagation fromSARS-CoV to human
PPIN (up to level-2 neighborhood). The developed network attribute, spreadability
index, and the generated SIS model, compared with the other network centrality-based
methodologies, perform better than the existing state-of-art.

Subjects Bioinformatics, Computational Biology, Genomics
Keywords Spreader nodes, Spreader edges, Spreadability index, Severe acute respiratory
syndrome coronavirus, protein–protein interaction network, Node weight, Neighborhood
density, Edge ratio, Susceptible-infected-susceptible model, Human-SARS-CoV protein–protein
interaction network

INTRODUCTION
The COVID-19 pandemic registered its first case on 31 December 2019 (World Health
Organization, 2020b). First, it laid its foundation in the Chinese city of Wuhan (Hubei
province) (Wang et al., 2020). Soon, it made several countries worldwide (Centers for
Disease Control and Prevention (CDC), 2021) its victim by community spreading which
ultimately compelled the World Health Organization (World Health Organization (WHO),
2019) to declare a global health emergency on 30 January 2020 (World Health Organization
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(WHO), 2005b) for the massive outbreak of COVID-19. Owing to its expected fatality rate,
which is about 4%, as projected by WHO (World Health Organization (WHO), 2005a),
researchers from nations all over the world have joined their hands to work together to
understand the spreading mechanisms of this virus SARS-CoV-2 (Heymann, 2020; Huang
et al., 2020; Liu & Wang, 2020; Zhou et al., 2020) and to find out all possible ways to save
human lives from the dark shadow of COVID-19.

Coronavirus belongs to the family Coronaviridae. This single-stranded RNA virus
affects not only humans but also mammals and birds too. Due to coronavirus, common
fever/flu symptoms are noted in humans, followed by acute respiratory infections.
Nevertheless, coronaviruses like Middle East Respiratory Syndrome (MERS) and Severe
Acute Respiratory Syndrome (SARS) can create a global pandemic due to their infectious
nature. Both of these coronaviruses are the member of genus Betacoronavirus under
Coronaviridae. SARS started a significant outbreak in 2003, originating from Southern
China. Seven hundred seventy-four deaths were reported among 8098 globally registered
cases resulting in an estimated fatality rate of 14%–15% (World Health Organization
(WHO), 2003). While MERS commenced in Saudi Arabia, creating an endemic in 2012.
The world witnessed 858 deaths among 2494 registered positive cases. It generated a high
fatality rate of 34.4% in comparison to SARS.

SARS-CoV-2 is under the same Betacoronavirus genus as that of MERS and SARS
coronavirus (Lu et al., 2020). It comprises several structural and non-structural proteins.
The structural proteins include the envelope (E) protein, membrane (M) protein,
nucleocapsid (N) protein, and the spike (S) protein. Though SARS-CoV-2 has been
identified recently, there is an intense scarcity of data and necessary information needed
to gain immunity against SARS-CoV-2. Studies have revealed that SARS-CoV-2 is
highly genetically similar to SARS-CoV based on several experimental genomic analyses
(Hoffmann et al., 2020; Letko, Marzi & Munster, 2020; Lu et al., 2020; Zhou et al., 2020).
This is also the reason behind the naming of SARS-CoV-2 by the International Committee
on Taxonomy of Viruses (ICTV) (World Health Organization (WHO), 2020a). Due to this
genetic similarity, the immunological study of SARS-CoV may lead to the discovery of
SARS-CoV-2 potential drug development.

A protein–protein Interaction Network (PPIN) has been used as the central component
in identifying spreader nodes in SARS-CoV in the proposed methodology. PPIN is a very
effective module for protein function determination (Cai, Wang & Deng, 2020; Hakala et
al., 2020; Saha et al., 2019a; Saha et al., 2018; Saha et al., 2019b; Zhao et al., 2020) as well as
in the identification of central/essential spreader nodes in the PPIN (Anthonisse, 1971; He
et al., 2021; Jeong et al., 2001; Joy et al., 2005; Li et al., 2011; Liu, Ma & Chen, 2019; Wen et
al., 2020;Wuchty & Stadler, 2003; Zhong et al., 2021). The compactness of the PPIN and its
transmission capability is estimated using centrality analysis. Anthonisse (1971) proposed a
new centrality measure named Betweenness Centrality (BC). Another centrality measure,
called closeness centrality (CC), is defined by Sabidussi (1966). Twoother essential centrality
measures: degree centrality (DC) (Jeong et al., 2001) and Local average centrality (LAC) (Li
et al., 2011), are also found to be very effective in this area of research.
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Due to the high morbidity and mortality of SARS-CoV2, it has been felt that there is a
pressing need to properly understand the way of viral infection transmission from SARS-
CoV-2 PPIN to human PPIN. This paper considers SARS-CoV PPIN for this research study
due to its high genetic similarity with SARS-CoV-2. Another primary motivation is to study
the spreadability pattern of the ancestral strain of nCoV. In the proposed methodology,
at first, SARS-CoV-Human PPIN (up to level-2) is formed from the collected datasets
(Agrawal, Zitnik & Leskovec, 2017; Pfefferle et al., 2011). Once created, the spreader nodes
are first identified in the SARS-CoV PPIN. Then its level-1 and level-2 interactors in the
human PPIN are extracted using a new network attribute, i.e., spreadability index, which is
a combination of three different network features: (1) edge ratio (Samadi & Bouyer, 2019)
(2) neighborhood density (Samadi & Bouyer, 2019) and (3) node weight (Wang &Wu,
2013). The detected spreader nodes in the human PPIN are validated by the Susceptible,
Infected, and Susceptible (SIS) epidemic disease model (Bailey, 1975). Then the edges
connecting two spreader nodes are ranked based on the average spreadability index. Thus,
the ranked edges highlight the path through which viral infection gets mediated from
SARS-CoV to human PPIN (up to level-2). The entire methodology can be categorized
into 3-steps for (1) identifying the spreader nodes in the SARS-CoV and human PPIN
using spreadability index, (2) validation of spreader nodes by SIS model, and (3) ranking
of the spreader edges.

Developing the spreadability index for raking edges in a host-pathogen PPIN to analyse
the host’s viral infection propagation path is the primary contribution of this work.
Furthermore, considering the current investigation on SARS-CoV and the notable similarity
with its successor virus, we also attempt to shed light on the propagation pattern of viral
infection of SARS-CoV2 in human PPIN.

In the following,we first describe the theory andmethods for different network properties
used to extract the PPIN characteristics. Then we describe the 3-step methodology. First,
the methodology has been described using a synthetic PPIN (generated by Cytoscape;
Shannon et al., 2003). Then, in the experimental results section, we have employed the
developed method on the human-SARS-CoV PPIN to identify the SARS-CoV viral
infection propagation path in the human PPIN. Finally, in the discussion section, we
attempt to relate our findings with the ancestral virus, i.e., SARS-CoV, with its successor,
i.e., SARS-CoV2, to study the SARS-CoV2 disease propagation may follow the pattern
from SARS-CoV.

THEORY & NOTATIONS
The viral infection gets mediated from one part of the PPIN to another through spreader
nodes and edges (Brito & Pinney, 2017). Generally, in disease-specific PPINmodels, at least
two entities are involved: pathogen/Bait and host/Prey (Saha et al., 2017). In this research
work, SARS-CoV takes the role of the former while human the latter one. Viral proteins
of SARS-CoV tend to target their corresponding interaction with human proteins, which
target its next level of proteins. So, the establishment of interactions between SARS-CoV
and human occurs through connected nodes and edges of PPIN. But mostly, these viral
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proteins try to interact more with the central/hub proteins rather than the other proteins
(Brito & Pinney, 2017). Thus, proper identification of central nodes (i.e., spreader nodes)
is required. It is also confirmed that the interaction is not possible without the edges
connecting two spreader nodes. Thus, these connecting edges are called spreader edges.
The proposed methodology involves a proper study and assessment of various existing
established PPIN features followed by identifying spreader nodes, which the SIS model
has also verified. Before going into the detailed study about the proposed work, various
network-based terminologies which are used in this work are discussed below:

1. Protein–protein interaction network (PPIN)
When one protein interacts with another protein, it forms a network-like structure known
as PPIN. Generally, it is portrayed as a graph where proteins are represented as nodes, and
their corresponding connecting edges represent their interactions. Mathematically, PPIN
can be highlighted as a graph Gnv , which consists of a set of vertices v(nodes) connected
by edges e (links). Thus, Gnv = (v,e) (Saha et al., 2014; Saha et al., 2019a).

2. Level-1 and Level-2 proteins
In a PPIN, level-1 proteins of a node are those proteins that are in direct connection with
that node, i.e., its immediate neighbors, whereas level-2 proteins are those proteins that are
indirectly connected with level-1 proteins of that node, i.e., its indirect neighbors (Saha et
al., 2014; Saha et al., 2019a).

3. Graph centrality
Graph centrality is one of the essential aspects for the identification of significant nodes in
a PPIN. The centrality of a node defines how relevant the node is in a PPIN or how much
a node is centrally located in a PPIN.

4. Betweenness centrality (BC)
BC (Anthonisse, 1971) is one of the ways of measuring a node’s impact on the transmission
of information between every pair of nodes in a graph, considering that this transmission
is always executed over the shortest path between them. Mathematically, it is defined as:

C (u)B =
∑
s6=u6=t

ρ(s,u,t )
ρ(s,t )

where ρ(s,t ) is the total number of shortest paths from node s to node t , and ρ(s,u,t ) is
the number of those paths that pass through u.

5. Closeness centrality (CC)
CC (Sabidussi, 1966) is a procedure for detecting nodes that transmit information within a
network efficiently. Nodes with high closeness centrality values are considered to have the
shortest distance to all available nodes in the network. It can be mathematically expressed
as:

C (u)C =
|Nu|−1∑

v∈V dist (u,v)
where |Nu| denotes the number of neighbors of node u and dist (u,v) is the distance of the
shortest path from node u to node v .
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6. Degree centrality (DC)
DC (Jeong et al., 2001) is considered the simplest among the available centrality measures
that only count the degree of a node, i.e., the number of directly connected neighbors.
Nodes having a high degree are said to be the highly connected module of the network. It
is defined as:

C (u)D = |Nu|

where |Nu| denotes the number of neighbors of node u.

7. Local average centrality (LAC)
LAC (Li et al., 2011) of a node represents how close its neighborhood proteins are. It is
defined to be the local metric to compute the essentiality of the node for transmission
ability by considering its modular nature, the mathematical model of which is highlighted
as:

LAC(u)=

∑
w∈Nu

degwCu

|Nu|

where Cu is the subgraph induced by Nu (i.e., the number of neighbors of node u) and
degwcu isthe total number of nodes that are directly connected in Cu.

8. Ego network
Ego network of node i (Si) (Samadi & Bouyer, 2019) is defined as the grouping of node i
itself along with its corresponding level-1 neighbors and interconnections. N (Si) (Samadi
& Bouyer, 2019) consists of the set of nodes which belong to the ego network, Si i.e., {i} ∪
0(i).

9. Edge ratio
The edge ratio of node i (Samadi & Bouyer, 2019) is defined by the following equation:

Edge ratio (i)=

(∑
j∈(i) |0(j)−N (Si)|

)
+1(

1
2
∑

j∈0(j) |0
Si(J )|

)
+1

=
ESi
out +1

ESi
in+1

where ESi
out is the total number of interactions between the ego network Si and the proteins

outside it. ESi
in is the total number of interactions among node i’s neighbors. 0 (i) denotes

the level-1 neighbors of node i.Si is considered to be Ego network. 0Si(j) denotes node j’s
neighbors which belongs Si. In the edge ratio, E

Si
out is positively related to the non-peripheral

location of node i. A large number of interactions resulting from the ego network denotes
that the node has a high level of interconnectivity between its neighbors. On the other hand,
ESi
in is negatively related to the inter-module location of node i. It represents the fact that

the interconnectivity between neighbors is usually connected to the number of structural
holes available around the node. Thus, when the neighbor’s interconnectivity is low, the
root or the central node i gains more control of transmission flow among the neighbors.
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10. Jaccard dissimilarity
The similarity between two nodes is determined by Jaccard dissimilarity (Jaccard, 1912)
based on their common neighbors. Jaccard dissimilarity of node i and j (dissimilarity(i,j))
is defined as:

dissimilarity (i,j)= 1− sim(i,j)=
|0(i)∩0

(
j
)
|

|0(i)∪0
(
j
)
|

where |0(i)∩ 0
(
j
)
| refers to the number of common neighbors of i and j.|0(i)∪ 0

(
j
)
| is

the total number of neighbors of i and j. The similarity degree between i and j is considered
more when they have more common neighbors. Whereas, when dissimilarity between the
neighbors of a node is high, it guarantees that the only common node among the neighbors
is the central node, which is termed a structural hole situation (Samadi & Bouyer, 2019).

11. Neighborhood diversity
The neighborhood diversity (Samadi & Bouyer, 2019) is a significant parameter of a graph
that is based on Jaccard dissimilarity. When the dissimilarity of the neighbors of a node is
high, it assures that the central node is the only neighbor common among the neighbors
of that node, i.e., it represents the structural hole situation. On the other hand, when a
node’s neighborhood diversity reaches its greatest value, it reveals that the neighbors have
no other closer path. Hence, the neighbors should transmit or communicate through this
node. Mathematically, it is defined as:

neighborhood_diversity (i)=
∑
j,k∈(i)

dissimilarity (j,k).

12. Node weight
Node weight (Wang &Wu, 2013) is a graph parameter used to assign weightage to a node
in a graph. Node weight wv of node v ∈V in PPIN is interpreted as the average degree of all
nodes in GV ′ , a sub-graph of a graph GV . It is considered as another measure to determine
the strength of connectivity of a node in a network. Mathematically, it is represented by

wv =

∑
u∈V ′′ deg(u)
|V ′′ |

where V ′′ is the set of nodes in GV ′ . |V
′′

| is the number of nodes in GV ′ . And deg (u) is the
degree of a node u∈V ′′.

DATASET
Three datasets aremainly used for the present study. They are (1) SARS-CoVPPIN (Pfefferle
et al., 2011) which contains only interactions of viral SARS-CoV proteins. (2) SARS-CoV-
Human PPIN (Pfefferle et al., 2011) contains interaction information of SARS-CoV and
human proteins. (3) Human PPIN (Agrawal, Zitnik & Leskovec, 2017; BioSNAP, 2021),
which contains only interactions of human proteins. These datasets are mainly used to
generate two types of PPIN: (1) Synthetic PPIN and (2) Biological PPIN. Synthetic PPINs
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Figure 1 Synthetic PPIN1. The PPIN consists of 33 nodes and 53 edges. Nodes 1, 24 are the essential
spreaders. Node 1 connects the four densely connected modules of the PPIN, which turns this node to
stand in the first position having the highest spreadability index. Node 24 holds the second position for
the spreadability index. Node 24 is one of the most densely connected modules itself despite getting iso-
lated from the main PPIN module of node 1.

Full-size DOI: 10.7717/peerj.12117/fig-1

are the randomly generated sample PPINs (nodes with edges) used for the detailed analysis
and testing of the proposed methodology (for example, please see Fig. 1). The algorithm of
the same is discussed in the supplementary document. Biological PPINs are the complete
PPINs generated from the above datasets on which the proposed methodology is executed
after testing (for example, please the complete PPIN view of SARS-CoV and human PPIN
added at the end of the Experimental Results and Discussion section).

METHODOLOGY
The proposed work can be mainly categorized into three sub-sections: (1) Identification of
spreader nodes by spreadability index, (2) Validation of spreader nodes by SIS model, and
(3) Ranking of spreader edges.
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1. Identification of spreader nodes by spreadability index
The spreadability index of node i is defined as the ability of node i to mediate a viral
infection in a PPIN. Mathematically it can be defined as:

Spreadability_index(i)=
(
Edgeratio (i)×neighborhood_diversity (i)

)
+Nodeweight (wi).

Nodes having a high spreadability index are termed as spreader nodes, i.e., if the viral
proteins establish interactions with these nodes, then the viral infection can be mediated
to a more significant number of nodes in a much short amount of time compared to the
other nodes in PPIN.

Figure 1 represents a sample PPIN where each protein is denoted as a node while edges
mark its interactions with other proteins. The PPIN consists of 33 nodes and 53 edges. The
PPIN data and the protein names and interactions are given as input to the Cytoscape,
which generates the network view as highlighted in Fig. 1. Cytoscape is open-source
software that is used for PPIN generation and visualization (Shannon et al., 2003). The
spreadability index is computed on the synthetic PPIN, shown in Fig. 1, using essential
PPIN characteristics in this PPIN, as stated earlier. The same is compared to DC, BC, CC,
and LAC, highlighted in Tables 1 to 5.

In Fig. 1, it can be observed that nodes 1 and 24 are the essential spreaders. Node 1
connects the four densely connected modules of the PPIN, making this node the topper
with the highest spreadability index. This node has been correctly ranked by all the methods
except LAC and DC. Node 24, though, has a moderate edge ratio and node weight but is
one of the most densely connected modules itself despite getting isolated from the main
PPIN module of node 1. Moreover, node 24 has the highest neighborhood density. It
establishes that the only path of transmission of information for nodes 26, 27, 25, 28, 29,
30, 31, 32, and 33 is node 24. Thus, if viral proteins of SARS-CoV establishes interaction
with node 24, then all the connected nodes will be indirectly coming under the interaction
of viral proteins as the connected nodes have no interactions with other central nodes
except node 24. So, node 24 holds the second position for the spreadability index in our
proposed methodology. Node 24 is not correctly identified as the second most influential
spreader node by the other methods. Further assessment of the remaining nodes highlights
the fact that the performance of the new attribute spreadability index in our proposed
methodology is relatively better in comparison to the others.

2. Validation of spreader nodes by SIS model
To design the mathematical model for this infectious disease, the SIS Epidemic Model
(Bailey, 1975) is used in this proposed methodology by classifying the proteins in SARS-
CoV-human PPIN based on their interactivity status (for more details, please see ‘‘Studied
Models in epidemiology ’’ section of the supplementary document). SIS refers to Susceptible,
Infected and Susceptible states, which are generally considered the three probable protein
states in a PPIN. (1) S - The susceptible states are the states of those human proteins with
which viral proteins have not yet interacted, but they are at risk of getting interacted. In
general, every protein in PPIN is initially in a susceptible state. (2) I –These infected states
are the states of those human proteins with which viral proteins have interacted, and the
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Table 1 Computation of spreadability index of synthetic Fig. 1 and computation of spreadability rate of selected top 10 spreader nodes by the
SIS model.

Rank Proteins ESi
out ESi Edge ratio Neighborhood

diversity
Node
weight

Spreadability
index

Sum of
SIS spreadability
rate of top
10 nodes

1 1 13 0 14.0 5.19 3.40 76.15
2 24 4 2 1.66 12.5 1.87 22.70
3 4 6 1 3.50 3.63 2.40 15.11
4 5 8 3 2.25 4.39 3.60 13.48
5 19 6 2 2.33 3.8 2.80 11.66
6 23 5 4 1.20 6.58 3.00 10.89
7 17 4 1 2.50 3.33 2.00 10.33
8 6 7 0 8.00 0.87 3.00 10.00
9 2 4 4 1.00 6.84 2.83 9.68
10 22 6 4 1.40 3.88 3.60 9.03

2.46

11 25 7 0 8.00 0.71 3.00 8.71
12 27 7 0 8.00 0.71 3.00 8.71
13 28 7 0 8.00 0.71 3.00 8.71
14 30 7 0 8.00 0.71 3.00 8.71
15 18 6 0 7.00 0.85 2.66 8.66
16 20 7 2 2.66 1.78 3.50 8.26
17 7 4 3 1.25 4.15 2.80 7.98
18 21 3 6 0.57 6.66 3.33 7.13
19 3 3 3 1.00 4.00 2.60 6.60
20 16 4 2 1.66 2.06 2.75 6.19
21 15 4 2 1.66 2.06 2.75 6.19
22 31 6 1 3.50 0.75 3.33 5.95
23 33 6 1 3.50 0.75 3.33 5.95
24 32 4 2 1.66 1.75 2.75 5.66
25 8 4 3 1.25 1.88 3.25 5.60
26 14 6 0 7.00 0.40 2.66 5.46
27 9 2 4 0.60 3.64 2.80 4.98
28 10 5 1 3.00 0.50 3.00 4.50
29 13 1 3 0.50 1.70 2.50 3.35
30 11 1 3 0.50 1.70 2.50 3.35
31 12 1 3 0.50 1.70 2.50 3.35
32 29 2 0 3.00 0.00 1.33 1.33
33 26 2 0 3.00 0.00 1.33 1.33

–

viral infection gets mediated. (3) S –The susceptible states are the states of those human
proteins that have lost their interaction with the viral proteins (due to antiviral therapies
or change in interface residues (Brito & Pinney, 2017)) and again become susceptible. The
interaction rate of the viral proteins with human proteins, the loss rate of interactivity of
the human protein with the viral proteins (general assumption is that any protein after
coming out of the infected state gets into a susceptible state again in one day), and the
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Table 2 Computation of CC of synthetic Fig. 1 and computation of spreadability rate of selected top
10 spreader nodes by the SIS model.

Rank Proteins Closeness
centrality

Sum of SIS
spreadability rate
of top 10 nodes

1 1 0.085
2 5 0.083
3 2 0.082
4 4 0.082
5 23 0.081
6 3 0.081
7 21 0.081
8 22 0.081
9 7 0.08
10 15 0.08

1.94

11 16 0.08
12 19 0.079
13 14 0.079801
14 9 0.079602
15 20 0.079602
16 6 0.079602
17 8 0.079404
18 17 0.078818
19 10 0.078624
20 11 0.078049
21 12 0.078049
22 13 0.078049
23 18 0.07767
24 24 0.041558
25 32 0.041237
26 28 0.041237
27 30 0.041237
28 25 0.041237
29 27 0.041237
30 31 0.041184
31 33 0.041184
32 29 0.040921
33 26 0.040921

–

total number of proteins are usually provided as input to SIS model. If a protein gets into
an infected state and has many neighbors, any neighbor can mediate viral infection. So,
the final result is generated after 50 iterations for each protein in the infected state. The
total number of proteins in the susceptible state after 50 iterations in the neighborhood
of each protein in an infected state divided by the total number of proteins in the PPIN
gives the interaction capability of the protein in an infected state. Thus, the spreader nodes
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Table 3 Computation of BC of synthetic Fig. 1 and computation of spreadability rate of selected top 10
spreader nodes by the SIS model.

Rank Proteins Betweeness
centrality

Sum of SIS
spreadability rate
of top 10 nodes

1 1 269.1
2 2 117.93
3 4 117.1
4 3 114
5 5 108
6 24 57
7 23 56.4
8 19 45.56
9 17 39.1
10 7 36.9

2.2

11 6 32.9
12 18 32
13 21 29.36
14 22 20.53
15 16 12.1
16 15 12.1
17 14 12.1
18 28 7
19 30 7
20 25 7
21 27 7
22 20 6.63
23 9 4.16
24 32 1
25 29 1
26 26 1
27 8 0
28 11 0
29 12 0
30 13 0
31 10 0
32 31 0
33 33 0

–

identified by the spreadability index are validated by the interaction rate as generated by the
SIS model for them. It can be observed from Tables 1 to 5 that the proposed methodology
has the highest SIS interaction rate of 2.46 with viral proteins (see Table 1) in comparison
to others for their corresponding top 10 spreader nodes in the synthetic PPIN, as shown in
Fig. 1.
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Table 4 Computation of LAC of synthetic Fig. 1 and computation of spreadability rate of selected top
10 spreader nodes by the SIS model.

Rank Proteins Local average
centrality

Sum of SIS
spreadability
rate of
top 10 nodes

1 21 2.4
2 9 2
3 22 2
4 8 2
5 11 2
6 12 2
7 13 2
8 2 1.6
9 23 1.6
10 7 1.5

2.19

11 3 1.5
12 5 1.5
13 16 1.33
14 15 1.33
15 20 1.33
16 32 1.33
17 19 1
18 10 1
19 31 1
20 33 1
21 24 0.57
22 4 0.5
23 17 0.5
24 1 0
25 14 0
26 18 0
27 6 0
28 28 0
29 29 0
30 30 0
31 25 0
32 26 0
33 27 0

–

3. Ranking of Spreader edges
To show the ranking of interacting spreader edges, two synthetic PPINs: PPIN-1 and
PPIN-2, have been considered in Fig. 2. Node D, E, and F are the selected top spreader
nodes in PPIN-1 by spreadability index, similarly explained with a synthetic PPIN in Fig. 1.
To avoid the complexity in the diagram, the top 5 nodes in PPIN-2 (see Table 1) are
selected as spreader nodes. Red-colored edges are the interconnectivity within PPIN-1,
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Table 5 Computation of DC of synthetic Fig. 1 and computation of spreadability rate of selected top
10 spreader nodes by the SIS model.

Rank Proteins Degree
centrality

Sum of SIS
spreadability
rate of
top 10 nodes

1 24 7
2 2 5
3 23 5
4 21 5
5 1 4
6 7 4
7 9 4
8 3 4
9 4 4
10 17 4

2.3

11 5 4
12 22 4
13 19 4
14 8 3
15 11 3
16 12 3
17 13 3
18 16 3
19 15 3
20 20 3
21 32 3
22 10 2
23 14 2
24 18 2
25 6 2
26 28 2
27 29 2
28 30 2
29 25 2
30 26 2
31 27 2
32 31 2
33 33 2

–

while black-colored edges show the interconnectivity within PPIN-2. Green-colored
spreader edges (i.e., edges connected with spreader nodes) show the interconnectivity
between PPIN-1 and PPIN-2. Ranking of a spreader edge measures the interaction ability
of a spreader edge with the viral proteins, i.e., how many nodes get interacted with the viral
proteins through that edge, and the viral infection gets mediated. Thus, all the spreading
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Figure 2 Ranking of spreader edges. Two synthetic PPINs: PPIN-1 and PPIN-2, have been considered for ranking spreader edges based on the
spreadability index. Red-colored edges are the interconnectivity within PPIN-1, while black-colored edges show the interconnectivity within PPIN-
2. Nodes D, E and F, are the detected spreader nodes of PPIN-1, whereas nodes 1, 4, 5, 19 and 24 are the detected spreader nodes of PPIN2. Green-
colored spreader edges (i.e., edges connected with spreader nodes) show the interconnectivity between PPIN-1 and PPIN-2. The thickness of the
edges varies with the order of ranking.

Full-size DOI: 10.7717/peerj.12117/fig-2

Table 6 Ranking of spreader edges for PPIN-1 and PPIN-2 in Fig. 2.

Spreader edges

Rank Spreader nodes
in network 1

Spreader nodes in
network 2

Spreadability
index of spreader
nodes in network 1

Spreadability index
of spreader nodes
in network 2

Ranking of
spreader edges

1 F 1 5.5 76.15 40.825
2 F 24 5.5 22.70 14.104
3 D 4 5.5 15.11 10.308
4 E 5 4.7 13.48 9.0919
5 E 19 4.7 11.66 8.1833

edges are ranked based on the average spreadability index of its connected spreader nodes.
The ranked spreader edges in Fig. 2 are highlighted in Table 6.

EXPERIMENTAL RESULTS & DISCUSSION
The proposed methodology leads to the identification of spreader nodes and edges through
a network characteristic, called spreader index which has also been checked and validated
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Figure 3 Mechanism of transmission of viral infection. SARS-CoV spreaders establish interaction with
human spreader proteins, and the viral infection gets mediated from SARS-CoV PPIN to human PPIN
through them. (A) PPIN of SARS-CoV (red) in which spreader nodes are marked as blue. (B) Interaction
of SARS-CoV spreaders with its level-1 corresponding proteins in human PPIN (marked as green). (C) Se-
lection of spreaders in level-1 (level-1 spreaders are marked as yellow) and level-2 human proteins (level-
2 spreaders are marked as green). Rest proteins in human PPIN are ignored to prevent overlap in the dia-
gram.

Full-size DOI: 10.7717/peerj.12117/fig-3

by the SIS model. Initially, the whole working module is implemented on synthetic PPINs,
as shown in the Methodology section, and then on the SARS-CoV-human dataset. For
this proposed methodology, three PPIN datasets have been curated, already stated in the
dataset section. After removing self-loops and data redundancy, the final SARS-CoV PPIN
consists of 17 interactions among 7 SARS-CoV unique proteins (proteins having only one
frequency of occurrence). Only the densely interconnected SARS-CoV proteins having
direct connections (level-1) with human proteins are considered rather than isolated
proteins. SARS-CoV-Human PPIN includes 118 interactions between SARS-CoV and
humans. It is used to fetch the level-1 interaction of human proteins for the corresponding
SARS-CoV proteins in SARS-CoV PPIN. Human PPIN consists of 314,384 interactions. It
is utilized for getting the indirect interactions (level-2) of level-1 human proteins formed
earlier. The application of the proposed methodology in SARS-CoV-human PPIN is
highlighted in Fig. 3. In Fig. 3A, at first, SARS-CoV PPIN is displayed in which each
protein is marked in red. After that, spreader nodes in SARS-CoV PPIN are identified by
the spreadability index. They are denoted as blue nodes among the red. Once the spreader
nodes are active (Fig. 3B), the viral infection gets mediated through its corresponding direct
partners, i.e., human-level-1proteins (marked in deep green). Then, in Fig. 3C, spreader
nodes are identified in SARS-CoV level-1 human proteins (marked in yellow). The same
will continue to SARS-CoV level-2 human proteins (light green nodes are the spreaders).
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Figure 4 SARS-CoV PPIN. The PPIN consists of the interaction between SARS-CoV proteins only. It is a
collection of 9 SARS-CoV proteins only (marked as red).

Full-size DOI: 10.7717/peerj.12117/fig-4

Table 7 Computation of spreadability index of SARS-CoV PPIN and computation of spreadability rate of selected top 6 spreader nodes by the
SIS model.

Rank Proteins ESi
out ESi Edge

ratio
Neighborhood
density

Node
weight

Spreadability
index

SIS spreadability
rate of top
6 nodes

Sum of SIS
spreadability rate
of top 6 nodes

1 M 7 3 2.0 3.845 3.4 11.090 1
2 S 6 3 1.75 4.047 3.2 10.283 0.2
3 ORF8AB 7 3 2.0 1.785 4.0 7.5714 1
4 ORF8B 5 5 1.0 3.464 3.8 7.2642 0.2
5 E 7 3 2.0 1.428 4.0 6.8571 0.25
6 ORF3A 2 8 0.333 9.249 3.428 6.5119 0.285

2.935

7 ORF7A 2 8 0.333 9.25 3.428 6.5119
8 ORF8A 3 0 4.0 0.0 2.0 2
9 N 3 0 4.0 0.0 2.0 2

– –
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Table 8 Computation of degree centrality of SARS-CoV PPIN and computation of spreadability rate
of selected top six spreader nodes by the SIS model.

Rank Proteins Degree
centrality

SIS spreadability
rate of top
6 nodes

Sum of SIS
spreadability
rate
of top 6 nodes

1 ORF7A 6 0.285
2 ORF3A 6 0.285
3 ORF8B 4 0.2
4 M 4 0.6
5 S 4 0.2
6 E 3 0.25

1.82

7 ORF8AB 3
8 N 1
9 ORF8A 1

– –

Table 9 Computation of closeness centrality of SARS-CoV PPIN and computation of spreadability
rate of selected top six spreader nodes by the SIS model.

Rank Proteins Closeness
centrality

SIS spreadability
rate of top 6 nodes

Sum of SIS
spreadability
rate of
top 6 nodes

1 ORF7A 0.239 0.285
2 ORF3A 0.239 0.285
3 ORF8B 0.224 0.2
4 M 0.224 0.6
5 S 0.224 0.2
6 E 0.215 0.25

1.82

7 ORF8AB 0.22
8 N 0.196
9 ORF8A 0.196

– –

In Fig. 4, SARS-CoV PPIN has been highlighted. There are mainly nine proteins,
including E, M, ORF3A, ORF7A, S, N, ORF8A, ORF8AB, and ORF8B. The computed
spreadability index of these proteins and the corresponding validation by the SIS model are
highlighted in Table 7. It is also compared with other central/ influential spreader node
detection methodologies like DC, CC, LAC, and BC, shown in Tables 8–11. Similarly,
spreader nodes are also identified in SARS-CoV’s level-1 neighbors and level-2 neighbors
(see Figs. 5 and 6).

The spreadability index plays a vital role in this proposed methodology. Spreader nodes
are successfully identified by this scoring technique which covers all the aspects through
which viral infection gets mediated from one node to another in a PPIN (Brito & Pinney,
2017). It should be mentioned here that while identifying spreader nodes in SARS-CoV
level-2 human proteins, it has been noted that the number of nodes is getting increased
significantly with the increment of successive levels. So, high, medium, and low thresholds
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Table 10 Computation of local average centrality of SARS-CoV PPIN and computation of spreadabil-
ity rate of selected top six spreader nodes by the SIS model.

Rank Proteins Local average
centrality

SIS spreadability
rate of top 6 nodes

Sum of SIS
spreadability
rate of
top 6 nodes

1 ORF7A 2.666 0.285
2 ORF3A 2.666 0.285
3 ORF8B 2.5 0.2
4 E 2 0.25
5 ORF8AB 2 1
6 S 1.5 0.2

2.22

7 M 1.5
8 N 0
9 ORF8A 0

– –

Table 11 Computation of betweeness centrality of SARS-CoV PPIN and computation of spreadability
rate of selected top six spreader nodes by the SIS model.

Rank Proteins Betweeness
centrality

SIS spreadability
rate of top
6 nodes

Sum of SIS
spreadability
rate of
top 6 nodes

1 M 14 0.6
2 S 14 0.2
3 ORF7A 13.33 0.285
4 ORF3A 13.33 0.285
5 ORF8B 1.33 0.2
6 E 0 0.25

1.82

7 ORF8AB 0
8 N 0
9 ORF8A 0

– –

(Zhang et al., 2016) have been applied, and the entire viral infection mediation through
spreadability index is computationally assessed at each threshold. The network statistics of
spreader nodes at each level of threshold are shown in Table 12. It can be observed that
threshold application is only implemented at SARS-CoV level-2 human proteins, not on
others. This is because of the availability of a smaller number of nodes and edges. Therefore,
only nodes and edges having a shallow spreadability index have been discarded at the first
level.

Besides the identification of spreader nodes, spreader edges are also identified. The
ranked edges between SARS-CoV spreaders and its level-1 human spreaders are highlighted
in Table 13. In contrast, the ranked edges between SARS-CoV s level-1 and level-2 human
spreaders at high, medium, and low thresholds are highlighted in the Tables S1–S3,
respectively. The supplementary document is available online here. The complete PPIN
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Figure 5 SARS-CoV-human PPIN (level-1). The PPIN consists of the interaction between SARS-CoV
and human proteins. The blue node represents SARS-CoV spreaders, while the yellow node represents
SARS-CoV s level-1 human spreaders. The thickness of the edges varies with the order of ranking.

Full-size DOI: 10.7717/peerj.12117/fig-5

view of SARS-CoV and human PPIN has been generated online (by using the pyvis module
available in python) under three circumstances:

(1) All the nodes and edges are considered spreader nodes and edges respectively and
ranked accordingly.

https://yu2qkp7gwoinjwsebyw0xw-on.drv.tw/www.graph_all.html/graph_all.html.
(2) Selected Spreader nodes and edges are highlighted for the high threshold.
https://yu2qkp7gwoinjwsebyw0xw-on.drv.tw/www.high_threshold.com/graph_high_

threshold.html.
(3) Selected Spreader nodes and edges are highlighted for the medium threshold.
https://yu2qkp7gwoinjwsebyw0xw-on.drv.tw/www.medium_threshold.com/graph_

medium_threshold.html.
(4) Selected Spreader nodes and edges are highlighted for the low threshold.
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Figure 6 SARS-CoV-human PPIN (level-1 and level-2). The PPIN consists of the interaction between
SARS-CoV and human proteins. The blue node represents SARS-CoV spreaders, while the yellow and
green nodes represent SARS-CoV s level-1 and level-2 human spreaders. The thickness of the edges varies
with the order of ranking.

Full-size DOI: 10.7717/peerj.12117/fig-6

https://yu2qkp7gwoinjwsebyw0xw-on.drv.tw/www.low_threshold.com/graph_low_
threshold.html.

In the above-generated PPIN views, the blue, yellow, and green colors represent SARS-
CoV spreaders, level-1 human spreaders, and its level2 human spreaders. The remaining
nodes are in indigo.

CONCLUSION
The spreadability index is thus proved to be effective in detecting spreader nodes and
edges in SARS-CoV-human PPIN and the cross-validation by the SIS model. Spreader
nodes are the central nodes in the PPIN through which viral infection gets mediated to
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Table 12 Network statistics of spreaders at three levels of thresholds.

Threshold SARS-CoV
spreaders

SARS-CoV-s level
1 human spreaders

SARS-CoV-s level 2
human spreaders

High 6 24 9
Medium 6 24 22
Low 6 24 111

Table 13 Ranked spreader edges between SARS-CoV spreaders and its level-1 human spreaders.

Spreader edges

Rank SARS-CoV
spreaders

SARS-CoV s level
1 human spreaders

Spreading ability of
spreader edges

1 N UBE2I 679697.677
2 ORF3A YWHAE 500684.2755
3 ORF7A SGTA 428397.3206
4 ORF3A PFDN5 273863.194
5 ORF3A CAV1 264566.0653
6 N EEF1A1 241407.2776
7 ORF7A VKORC1 187916.2768
8 M IKBKB 164728.3002
9 S NCL 131643.7345
10 N PPIA 125719.6427
11 S EIF3F 119529.0273
12 ORF7A BCL2 119299.092
13 ORF3A DCTN2 92293.0019
14 E BCL2L1 89404.47117
15 ORF7A BCL2L1 89404.29855
16 ORF7A MCL1 63953.80825
17 S CLEC4G 27477.4133
18 ORF7A BCL2L2 22974.97399
19 ORF7A BCL2A1 22252.28441
20 S ACE2 18775.88601
21 S CEACAM1 14834.82402
22 S CD209 12215.99362
23 ORF7A SMOC1 6068.990602
24 S CLEC4M 3844.528751
25 S SFTPD 119.09278

their successors. Simultaneously, if the spreader nodes are not connected with spreader
edges, that would not have been possible. In a nutshell, it can be said that the proposed
work exploits the possibility of understanding how viral infection gets mediated from
the SARS-CoV PPIN to the human PPIN. It should be borne in mind that SARS-CoV2
is ∼89% genetically similar to its predecessor SARS-CoV (Chan et al., 2020; CIDRAP,
2020). Therefore, it strongly reveals that the human proteins chosen as spreaders of
SARS-CoV might be the potential targets of SARS-CoV2. So, the same concept of the
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Spreadability index is applied along with a unique fuzzy protein–protein interaction model
to form SARS-CoV2-human PPIN in our other research work (Saha et al., 2020a). The
formed PPIN is also compared (Saha et al., 2020b) with that of SARS-CoV2-Human PPIN
generated in the work of Gordon et al. (Gordon et al., 2020). Henceforth, study and analysis
of drug repurposing of COVID-19 are also implemented in the subsequent research work
(Saha et al., 2020b). Thus, it explores a new direction in identifying essential drugs/vaccines
for SARS-CoV2. Recently, the work is limited to only SARS-CoV/SARS-CoV2, which can
be further extended to other viral infectious diseases in our future work.
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