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ABSTRACT
Studying how natural phytoplankton adjust their photosynthetic properties to the
quantity and quality of underwater light (i.e. light climate) is essential to understand
primary production. A wavelength-dependent photoacclimation strategy was
assessed using a multi-color pulse-amplitude-modulation chlorophyll fluorometer
for phytoplankton samples collected in the spring at 19 locations across the English
Channel. The functional absorption cross section of photosystem II, photosynthetic
electron transport (PETλ) parameters and non-photochemical quenching were
analyzed using an original approach with a sequence of three statistical analyses.
Linear mixed-effects models using wavelength as a longitudinal variable were first
applied to distinguish the fixed effect of the population from the random effect of
individuals. Population and individual trends of wavelength-dependent PETλ

parameters were consistent with photosynthesis and photoacclimation theories.
The natural phytoplankton communities studied were in a photoprotective state for
blue wavelengths (440 and 480 nm), but not for other wavelengths (green (540 nm),
amber (590 nm) and light red (625 nm)). Population-detrended PETλ values were
then used in multivariate analyses (partial triadic analysis and redundancy analysis)
to study ecological implications of PETλ dynamics among water masses.
Two wavelength ratios based on the microalgae saturation parameter Ek (in relative
and absolute units), related to the hydrodynamic regime and underwater light
climate, clearly confirmed the physiological state of microalgae. They also illustrate
more accurately that natural phytoplankton communities can implement
photoacclimation processes that are influenced by in situ light quality during the
daylight cycle in temporarily and weakly stratified water. Ecological implications and
consequences of PETλ are discussed in the context of turbulent coastal ecosystems.

Subjects Ecosystem Science, Marine Biology, Ecohydrology, Biological Oceanography
Keywords Phytoplankton, Photosynthesis, Photosynthetic parameter, Light absorption,
Photoregulation, Photoacclimation, Wavelength-dependency, Coastal sea, Hydrodynamic,
Underwater light climate

How to cite this article Michel-Rodriguez M, Lefebvre S, Crouvoisier M, Mériaux X, Lizon F. 2021. Underwater light climate and
wavelength dependence of microalgae photosynthetic parameters in a temperate sea. PeerJ 9:e12101 DOI 10.7717/peerj.12101

Submitted 9 January 2021
Accepted 11 August 2021
Published 4 October 2021

Corresponding authors
Monica Michel-Rodriguez,
monica.michel-rodriguez@univ-lille.fr
Fabrice Lizon,
fabrice.lizon@univ-lille.fr

Academic editor
Susana Agusti

Additional Information and
Declarations can be found on
page 31

DOI 10.7717/peerj.12101

Copyright
2021 Michel-Rodriguez et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.12101
mailto:monica.michel-rodriguez@�univ-lille.fr
mailto:fabrice.lizon@�univ-lille.fr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.12101
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


INTRODUCTION
In nature, phytoplankton must respond to multiple variations in the quantity and quality
of light (i.e. light climate) at different temporal (from day to year) and spatial (from
environmental coastal gradients to large hydrological structures) scales (MacIntyre, Kana
& Geider, 2000; Dubinsky & Schofield, 2010). It is well known that microalgae have a
strong ability to photoregulate, photoacclimate and photoadapt to these variations, as
demonstrated by many articles and reviews (e.g. Anning et al., 2000; Dubinsky & Stambler,
2009). Kirk (2011) reviewed these photobiological processes and defined them as ecological
strategies, highlighting the role of the light climate. Microalgae adapt to variability in
the light climate through phylogenetic adaptations and ontogenetic acclimation. Evidence
of phylogenetic adaptation has existed since Engelmann (1883) developed chromatic
adaptation theory and has experienced some controversy (e.g. Bidigare et al., 1990;
Falkowski & LaRoche, 1991). Pigment composition and thus cell absorption spectra, which
determine light-use efficiency, have evolved to match the spectral characteristics of the
prevailing light in a water mass. Ontogenetic acclimation in response to light conditions at
the time of cell growth and development may modify a species’ pigment composition and
photosynthetic functioning, thus significantly influencing wavelength-dependent light
absorption. Physiological state and photosynthetic properties of phytoplankton can be
studied by using photosynthetic light-response (PE) curves to estimate photosynthetic
activity as light levels increase (Platt & Jassby, 1976). Light-use efficiency (initial slope, a,
see Table 1 for symbols, abbreviations and definitions related to photosynthetic parameters
and variable fluorescence measures) and maximum photosynthetic rate (ρmax) parameters
of PE curves are the two main parameters traditionally used to investigate biophysical,
biochemical and metabolic processes that influence photosynthesis (MacIntyre et al.,
2002; Falkowski & Raven, 2007) in response to variations in the light climate.
Understanding better the response of cells to potential light stress in surface water also
requires studying the distribution of light energy between the photochemical and
non-photochemical pathways, which includes thermal dissipation of excess absorbed light
energy (Lavaud, 2007). These processes are well documented for diatoms (Brunet &
Lavaud, 2010) and can be studied easily by quantifying the light response (E from light
Energy) of non-photochemical quenching (NPQ, Serôdio & Lavaud, 2011).

Measuring the light absorption capacity of microalgae is essential to estimate the
survival and production capacity of cells, and for ecologists to assess photosynthetic
activity and primary production. To this end, a new generation of commercial
fluorometers (e.g. multi-color pulse-amplitude-modulation (PAM) chlorophyll
fluorometer (Heinz Walz GmbH, Germany), mini-FIRe (Gorbunov et al., 2020)) has been
designed to study wavelength dependence of photosynthetic electron transport (PETλ)
in relation to the light absorption capacity and/or to focus on general photosynthetic
activity of phytoplankton groups in a given ecosystem (e.g. a fast repetition rate
fluorometer or FRRf (Chelsea Technologies Group Ltd., United Kingdom), FFL-40
(Photon Systems Instruments, Czech Republic). In limnology and oceanography, nearly all
studies that included in vivo chlorophyll a (Chla) variable fluorescence have measured
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direct light absorption capacity and photosynthesis for only one color of light. In most
PAM techniques blue and red wavelengths (±470 and 650 nm) were typically used for
measuring lights. In most recent FRRf studies, blue wavelength (±450 nm) was generally
used because it is one of the main spectral bands absorbed by Chla (400–500 nm), the most
common and abundant photosynthetic pigment, and the dominant color in the marine
environment (Schreiber, Klughammer & Kolbowski, 2012). One exception is the recent
study of Houliez et al. (2017), who performed the first in situ measurements of light

Table 1 Abbreviations and definitions.

Abbreviation Definition Unit

r.a Maximum light-use efficiency Electrons quanta−1

a(II) a related to absolute absorption of PSII Electrons quanta−1

CCA Complementary Chromatic Adaptation (Kehoe & Gutu, 2006) unitless

CDOM Colored Disolved Organic Matter not reported here

DIN Dissolved Inorganic Nitrogen µmol L−1

EC English Channel unitless

Ek Light saturation coefficient quanta m−2 s−1

Ek(II) Ek related to absolute absorption of PSII quanta (PS II s)−1

Eop PAR at ETRmax µmol quanta m−2 s−1

Eop(II) PAR at ETRmax(II) quanta (PS II s)−1

Eavg Vertically averaged light intensity µmol quanta m−2 s−1

ETR(II) ETR related to absolute absorption of PSII electrons (PS II s)−1

ETRmax(II) ETRmax related to absoluted absorption of PSII electrons (PS II s)−1

FCP Fucoxanthin-chlorophyll a/c-binding antenna pigment-protein complex of diatoms unitless

Fv/Fm Maximum quantum yield of PSII determined after 2.5 h of dark acclimation unitless

Kd(PAR) PAR extinction coefficient also known as diffuse attenuation coefficient m−1

O-I1 Photochemical phase of fast fluorescence rise (Schreiber, 2004) unitless

NPQ Non-photochemical fluorescence quenching unitless

NPQ1200 NPQ calculated from fitted NPQ vs. PAR curves at PAR = 1,200 µmol quanta m−2 s−1 unitless

NPQ300 NPQ calculated from fitted NPQ vs. PAR curves at PAR = 300 µmol quanta m−2 s−1 unitless

PAR Photosynthetically active radiation µmol quanta m−2 s−1

PE curve Production vs. Irradiance (Energy) curve unitless

PET Photosynthetic electron transport unitless

ρmax General acronym for light-saturated maximum rate from PE curve Not reported here

PSII Photosystem II unitless

r.ETR Relative electron transport rate µmol electrons m−2 s−1

r.ETRmax Maximum electron transport rate µmol electrons m−2 s−1

Sigma(II)λ Wavelength-dependent cross section of PSII nm2

TSS Time since sunrise h

Y(II) Effective quantum yield of PSII unitless

Zeu Depth of the euphotic layer m

Zumixl Depth of the upper mixed layer m

Note:
Abbreviations and definitions of variable fluorescence measurements and photosynthetic parameters (in relative and absolute units) used in the study.
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absorption capacity and photosynthetic yield with blue (458 nm) and amber (593 nm)
lights in the Baltic Sea. However, since it focused on the specific problem of measuring
fluorescence rise in cyanobacteria, its results cannot be generalized to other phytoplankton
groups.

Many studies have shown that pigment absorbance by microalgae is strongly correlated
with the spectral transmittance of water and its components (Hickman et al., 2010;
Lawrenz & Richardson, 2017). Colored dissolved organic matter (CDOM) and suspended
particle concentrations can dramatically change the quantity and, especially, quality of
light in coastal water (Kirk, 2011). To help Chla absorb light energy at different
wavelengths, microalgae have a variety of accessory pigments. For example, the ecological
success of diatoms is due to their pigment signature (Falkowski & Knoll, 2007), which
includes Chla, Chlc and fucoxanthin (which expand the spectral absorption band to 580
nm), along with β-carotene and the xanthophylls involved in photoprotection (Brunet &
Lavaud, 2010; Jeffrey, Wright & Zapata, 2011). This diversity of pigments enables brown
algae, such as diatoms, to be more effective than green or red algae (Lavaud, 2007) in
turbulent systems or in the mixed layer of the coastal ocean. However, the photosynthetic
apparatus can acclimate to variations in light climate by changing cell pigment
concentrations and/or ratios (MacIntyre et al., 2002). This can change the shape of the
light-absorption spectrum and influence the efficiency of photosynthesis (Barlow et al.,
2013, 2017). When light decreases, pigment concentrations usually increase in cells during
growth, with or without wavelength-dependent changes in light absorption (Falkowski &
LaRoche, 1991). In addition, pigment concentration can also increase due to an increase in
the size and/or number of photosynthetic units (i.e. antennas containing light-harvesting
pigments) (Dubinsky & Stambler, 2009) depending on the phytoplankton group and
ecosystem. Under high light conditions, cells increase the reaction center number with a
smaller antenna size, inducing higher values of ρmax. On the opposite, under low light
conditions, cells increase their antenna size, inducing higher values of a. However, light
harvesting by cells is not always correlated with pigment concentration due to mutual
shading of the increasing density of pigment molecules (i.e. the “package effect” (Bidigare
et al., 1990)).

In response to changes in light color, an effective photoacclimation mechanism was
observed in cyanobacteria that involves regulating “complementary chromatic adaptation”
(CCA) (Kehoe & Gutu, 2006). CCA involves strong restructuring of photosynthetic
antennas through pigment concentrations, including pigment-binding antenna proteins.
Diatoms have fewer flexible binding proteins, such as fucoxanthin-chlorophyll a/c-binding
antenna pigment-proteins complexe (FCPs), than cyanobacteria with which to perform
classic CCA; however, diatom fucoxanthin may have different positions in the
light-harvesting complex proteins of the antenna, which provide different levels of energy
transfer as a function of light quality (Premvardhan et al., 2008). Through pigment
analyses, Brunet et al. (2014) showed that spectral composition strongly influences the
balance between light harvesting and photoprotective capacity of diatoms. Valle et al.
(2014) and Schellenberger Costa et al. (2013a) observed that the energy transfer efficiency of
light-harvesting pigments is wavelength-dependent and that diatoms’ ability to activate
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photoprotection and repair a photodamaged photosystem II (PSII) effectively depends on
light quality. Orefice et al. (2016) observed that variations in the light spectrum change the
photophysiology and biochemistry of diatom cells. Many other wavelength-dependent
responses of cyanobacteria and eukaryotic phytoplankton have been observed, especially
in laboratory studies of cultures (Schreiber & Klughammer, 2013; Szabó et al., 2014a,
2014b; Herbstová et al., 2015; Lawrenz & Richardson, 2017; Luimstra et al., 2018, 2020).
Most field studies of wavelength-dependent acclimation focused on relationships between
accessory pigments, the shape of phytoplankton absorption spectra and the underwater
light climate (Hickman et al., 2009; Barlow et al., 2017), but few measured photosynthetic
parameters at different wavelengths. Some early studies used the carbon absorption
technique and determined a (in multispectral incubators), whose spectral correction
through the water column and/or between different water masses has been studied
intensively (Lewis et al., 1985; Lewis, Warnock & Platt, 1985; Kyewalyanga, Platt &
Sathyendranath, 1992, 1997; Kyewalyanga, Sathyendranath & Platt, 2002).

In the present study, we focused on wavelength-dependent parameters: a, ETRmax, Ek,
non-photochemical quenching (NPQ) and high light absorption capacity from 440–625
nm for different natural phytoplankton communities sampled across environmental
gradients of a coastal sea. A specifically dedicated device—the multiple excitation
wavelength chlorophyll fluorescence analyzer (MULTI-COLOR-PAM) (Heinz Walz,
Germany)—was used in its full capacity for the first time in a field study. a, ETRmax, Ek and
Eop were determined from PE measurements at five wavelengths as a function of the
functional absorption cross section of PSII and NPQ for 19 locations sampled across the
English Channel (EC). The EC is an epicontinental sea, particularly suitable for studying
photoacclimation strategies of microalgae. This ecosystem has many environmental
gradients between coastal and offshore water due to freshwater runoff and high tidal
currents (Brylinski et al., 1991). This area is dominated by diatoms and the Haptophyceae
Phaeocystis globosa during the spring bloom (Houliez et al., 2013a). Since (i) the
wavelength dependence of light absorption capacity is related to the pigment composition
of PSII antenna, and (ii) this composition changes in natural samples depending on
phytoplankton community structure and specific photoacclimation processes in a given
light climate, we tested the hypothesis that phytoplankton PETλ change in shape and level
along environmental gradients of light quantity and/or quality, and phytoplankton
community structure. The ecological implications of wavelength dependence and plasticity
of PETλ parameters are then discussed in the context of turbulent coastal ecosystems.
To address these issues, an original analytical approach was developed that used three
sequential statistical analyses: linear mixed-effects models, partial triadic analysis and
redundancy analysis.

MATERIALS & METHODS
Sampling area and strategy
Data were collected during a combined sampling campaign of the JERICO-NEXT program
and the 2018 ECOPEL cruise in the EC, from the Strait of Dover (50�58.7′N, 1�36.64′ E) to
Brest (48�20.59′ N, 5�25.03′W) from 18 April to 2 May 2018 (Fig. 1). Water was sampled
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at 19 locations at a depth of 2 m from inshore to offshore water (using a 20 L Niskin bottle)
at different times of day. This zigzag sampling strategy was chosen to consider
hydrobiological gradients between coastal/offshore and east/west waters (Vantrepotte
et al., 2007). To characterize the sampling hour, which can influence phytoplankton
physiology, we calculated the number of hours that had elapsed since sunrise (i.e. time
since sunrise (TSS) in h). The EC is an epicontinental macrotidal temperate system with
strong hydrodynamics and substantial river inputs, which provide contrasting light
climates that are useful for testing the wavelength-dependence hypothesis of
photosynthesis in natural phytoplankton communities. The water bodies sampled were
thus used to experiment with different light climates along environmental gradients and
with changes in phytoplankton community structure.

Controlling variables of photosynthesis
Two types of variables that could control photosynthesis were analyzed as ex-situ
experimental conditions under which the communities grew: (i) abiotic variables and (ii)
biotic variables that describe the phytoplankton community structure.

Abiotic variables: hydrological and light measurements

At each location, conductivity-temperature-depth (CTD) casts were conducted using a
SBE25 CTD (Sea-Bird Scientific, USA). Water samples were filtered through a microfiber
filter (Whatman GF/C or GF/F), and aliquots were then stored at −20 �C until further
processing for dissolved inorganic nutrient concentrations. Concentrations of dissolved
inorganic nitrogen (DIN i.e. NO3

-+NO2
-), phosphate (PO4

3-), and silicate (Si(OH)4) were
measured with a SEAL analytical AutoAnalyzer 3 according to the method of Aminot &
Kérouel (2004).

Underwater spectra were measured with a spectroradiometer RAMSES ACC-VIS
hyperspectral radiometer (TriOS GmbH, Germany) throughout the euphotic layer, but the
present study considered only spectroradiometer measurements from the surface to 2.5 m

Figure 1 Sampling locations. Sampling locations (n = 19 among 55 locations sampled) for the study of
phytoplankton wavelength dependence in the English Channel during the ECOPEL campaign in April
2018. The framed station numbers refer to thermal and haline stratified water columns.

Full-size DOI: 10.7717/peerj.12101/fig-1
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depth. Spectroradiometer measurements were made in triplicate (on all spectrum) in the
water column, every 50 cm, from the depth where the sensor was not uncovered by the
waves. The photon fluence rate was measured every 3 nm from 400–700 nm. Three
spectrum bands of interest for photosynthesis (i.e. blue (B), green (G) and red (R)) were
obtained via quantum integration of spectral bands (410–490, 480–580 and 600–700 nm,
respectively). These spectral bands, expressed in µmol quanta m−2 s−1, were chosen
according to the study of Brunet et al. (2014). Intensity ratios for three pairs of spectral
bands were then calculated (i.e. R/B, G/B and G/R) and used as light-quality ratios that
depended on the overall chemical and biological characteristics of the waters sampled
(Jaubert et al., 2017). Finally, averages of these ratios were calculated for replicates of the
same depth and over a depth interval ranging between the first depth where it was possible
to perform a measurement and the depth of 2.5 m. Depth profiles of photosynthetically
active radiation (PAR; 400–700 nm) were obtained using a PAR quantameter (LI-193 4pi
from LICOR, USA) connected to the CTD. Vertical diffuse attenuation coefficients for
PAR were calculated as follows:

KdðPARÞ ¼ ½lnðI0Þ–lnðIzÞ�Þ=Z (1)

where Kd(PAR) (m
−1) is the downwelling diffuse attenuation coefficient of underwater light,

and I0 and Iz are photon fluence rates (µmol quanta m-2 s-1) at the surface and depth z
(m), respectively (Kirk, 2011).

The depth of the euphotic layer (Zeu in m) was then calculated (Eq. (2)) for each location
according to Kirk (2011):

Zeu ¼ 4:6=KdðPARÞ (2)

Vertically averaged light intensity (Eavg in µmol quanta m−2 s−1) in the mixed layer was
calculated (Eq. (3)) according to Riley (1957):

Eavg ¼ I0 � ½1−eð−KdðPARÞ�ZumixlÞ�=ðKdðPARÞ � ZumixlÞ (3)

The depth of the upper mixed layer (Zumixl in m) was defined from the CTD profiles using
vertical density gradients, caused by vertical temperature and salinity gradients, according to
van Leeuwen et al. (2015). The water column was considered to be stratified if the difference
in density between the surface layer (0–1.5 m below the surface) and the bottom layer
exceeded 0.086 kg·m−3 following (Lowe et al., 2009). Thus, Zumixl is the depth of the water
column without stratification. This approach allowed us to consider that water columns in
the EC, which are usually considered to be mixed, may be occasionally stratified and thus
influence phytoplankton physiology (van Leeuwen et al., 2015). Finally, we calculated the
ratio Zeu/Zumixl for each sampling location as a measure of light availability in water, one of
the key factors in phytoplankton photoacclimation (Jensen et al., 1994).

Biotic variables: phytoplankton groups, biomass and sample preparation

The FluoroProbe sensor (a multi-wavelength fluorometer, bbe Moldaenke GmbH,
Germany) was used to estimate the composition of natural phytoplankton communities, as
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in several other studies (Houliez et al., 2013a, 2013b, 2015). The FluoroProbe distinguished
four groups of microalgae in vivo and instantaneously: diatoms plus dinoflagellates
(i.e. “brown microalgae”), Haptophyceae (Phaeocystis globosa in the eastern EC (Houliez
et al., 2012)), Cryptophyceae and Cyanophyceae. The biomass of each group was estimated
as an equivalent concentration of Chla (µg L−1). See Beutler et al. (2002) for more
details about the FluoroProbe. For all photosynthetic parameters, phytoplankton samples
were concentrated using a nylon phytoplankton net with a 20 µm mesh and 30 cm
diameter (Aquatic Research Instrument, Hope, ID, USA), and then kept in the dark under
temperature-controlled conditions close to the water sampled and in air-conditioned
laboratory conditions before measuring photosynthesis. To measure photosynthesis
accurately, the phytoplankton were concentrated to ensure that all samples had the same
range of Chla concentration (ca. 100 µg L−1). Phytoplankton biomass in each group was
estimated with the FluoroProbe before and after concentrating it.

Wavelength-dependent photosynthesis parameters and functional
absorption cross section of PSII
Wavelength-dependent PETλ was studied using the MULTI-COLOR-PAM, which is
particularly suitable for studying the PETλ of phytoplankton (Schreiber, Klughammer &
Kolbowski, 2012). It provides pulse-modulated measuring light, continuous actinic light,
single-turnover light pulses and multiple-turnover or saturation pulses with peak
wavelengths at 440 (bright blue), 480 (light blue), 540 (green), 590 (amber) and 625 nm
(red light). See Schreiber, Klughammer & Kolbowski (2012) for a full description.

Before measuring PETλ, samples were first dark-acclimated for 2.5 h (a compromise
between the analyses and sampling strategy), without far red exposure (that would have
locked the device for too long with respect to the many measurements required). The time
of dark acclimation aims to optimize the maximum quantum yield of PSII measurements
and neutralize the recent light history of cells (sampled in water columns of different
depths and optical properties). It has been shown that there is not an universal protocol
and the time required can exceed the classically considered time of 30 minutes and, in
certain circumstances, durations of more than 2 hours are necessary (From et al., 2014).
First, each dark acclimated sample was homogenized within an optical quartz cuvette with
a magnetic stirrer then the light sensor US-SQS/WB Spherical Micro Quantum Sensor
(Heinz Walz, Germany) was placed into the center of the cuvette to measure the photon
flux density at each wavelength. This step provided the “PAR-list” file for each sample,
which was used for all later measurements of that sample. Water samples filtered at 0.2 µm
were used to determine the zero offset (i.e. the background signal to subtract from the
total fluorescence signal at each wavelength). Next, a subsample of each dark acclimated
sample was placed in a 2.5 mL cuvette with a 1 cm path length to adjust the measuring
light and gain settings to it in order to obtain the same current fluorescence (Ft) level of
0.5 ± 0.05 (relative units) for all wavelengths and to get a good signal-noise ratio. This last
step was used to compare fluorescence-rise kinetics (Szabó et al., 2014a).

Then, fast kinetic photosynthesis was measured to determine the wavelength-dependent
functional absorption cross section of PSII (i.e. Sigma(II)λ) by measuring O-I1
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fluorescence-rise kinetics repeatedly, as described by Schreiber, Klughammer & Kolbowski
(2012). Sigma(II)λ was estimated using the pre-programmed fast kinetic trigger file
“Sigma1000.FTM”, in the same way as Szabó et al. (2014a, 2014b) and Schreiber &
Klughammer (2013) did. In this phase of fast fluorescence, “O” was minimal fluorescence
yield corresponding to all PSII reaction centers open. The full closure of PSII reaction
centers τ (i.e. that of light-driven QA reduction during the O-I1 rise) was obtained during a
standard one ms long actinic illumination. Sigma(II)λ was calculated according to
Schreiber, Klughammer & Kolbowski (2012) as:

SigmaðIIÞλ ¼ l=ðτ� L� PARÞ (4)

where τ is the time constant (expressed here in seconds) of light driven QA reduction
determined from the fast fluorescence kinetics measurements, L the Avogadro’s constant
(6.022.1023mol−1), and PAR is the quantum flux density (that must be expressed here in
mol quanta m−2s−1) of the light driving the O–I1 fluorescence rise.

Sigma(II)λ was calculated by the user software interface (PAM-Win-3, Heinz Walz)
based on the fitted value of the time constant τ obtained from three consecutive
measurements separated by 10 s dark intervals, according to (Klughammer & Schreiber,
2015). Following this method, the estimate of Sigma(II)λ is independent of Chla
concentration. Sigma(II)λ was determined from six subsamples to estimate the mean and
variance of each natural community accurately (Supplementary Material, Fig. S1).

Next, automated rapid light curves (RLC) of the PETλ were determined in triplicate (i.e.
three independent samples) at each of the five wavelengths. For each RLC, samples were
exposed to 14 actinic increasing light intensity levels, each 20 s long, as defined in the
PAR-list file for each wavelength and sample. Hereafter, “PAR” refers to the photon flux
measured at each wavelength, and the same wavelength was always used for the measuring
light and actinic light. Saturation pulse settings were defined at a width of 300 µs.
The effective quantum yield of PSII (Y(II)) was calculated at each step (Eq. 5). An initial
step at 0 µmol quanta m−2 s−1 was used to determine Fv/Fm for samples acclimated to the
dark for a long period (2.5 h) (Eq. 6). The relative electron transport rate (r.ETR) was then
determined using Y(II), the PAR intensity of the corresponding wavelength (from the
PAR-list file) and an arbitrary factor of 0.5 to indicate that PSI and PSII absorb light
equally (Eq. (7)). The wavelength-dependent absolute electron transport rate of PSII
(ETR(II)) reported in electrons (PSII s)−1) was then calculated from Sigma(II)λ (nm

−2), the
Avogadro’s constant (L, 6.022.1023 mol−1) and PAR(II) which is the rate of quantum
absorption in PS II, in units of quanta (PS II s)−1 according to Schreiber, Klughammer &
Kolbowski (2012) at each of the five wavelengths (Eqs. (8) and (9)).

YðIIÞ ¼ ðF0m � FÞ=F0m (5)

Fv=Fm ¼ ðFm–F0Þ=Fm (6)

r:ETR ¼ YðIIÞ � PAR � 0:5 (7)
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PARðIIÞ ¼ SigmaðIIÞ � L� PAR (8)

ETRðIIÞ ¼ PARðIIÞ � ½YðIIÞ=Fv=Fm� (9)

NPQ (Bilger & Björkman, 1990) was calculated as the normalized Stern-Volmer
quenching coefficient (Eq. (10)), according to Lavaud (2007):

NPQ ¼ Fm=F
0
m−1 (10)

All photosynthetic parameters were obtained in triplicate for the five wavelengths of
MULTI-COLOR-PAM for each sample.

The Eilers & Peeters (1988)model was used to fit r.ETR vs. PAR and ETR(II) vs. PAR(II)
curves to estimate three photosynthetic parameters for each wavelength: light-use
efficiency (i.e. a, the initial slope of the ETR vs. PAR curve), the maximum electron
transport rate (ETRmax) and the optimum light parameter (Eop) in relative (r) and absolute
(II) units. The light saturation parameter (Ek) was also calculated in the two units as
Ek = ETRmax/a (Talling, 1957). To estimate the degree of photoacclimation of the
phytoplankton communities, the Ek,440/Eavg ratio in Zumixl at sampling was calculated for
each location. The Ek ratios (in relative and absolute units) of three pairs of wavelengths
(625/440, 540/440 and 540/625 nm) were calculated in the same way as the three pairs
of in situ spectral bands (i.e. R/B, G/B and G/R measured in a water layer of 2.5 m in
surface waters).

The Michaelis–Menten model was used to fit NPQ vs. PAR curves. A linear regression
that forced the intercept to zero was used when the kinetics of these curves differed from
the Michaelis–Menten model. Since two models were used, NPQ values were
back-calculated using the calibrated models at two irradiances (of PE curves) for each
wavelength: low PAR (300 µmol quanta m−2 s−1) and, for saturating conditions, high PAR
(1,200 µmol quanta m−2 s−1), according to Szabó et al. (2014a).

All PE curves were fitted using the “fitEP” function of the “phytotools” package of R
software R Core Team (2020) specifically designed to fit phytoplankton photosynthesis
curves using simulated annealing (Silsbe & Malkin, 2015). The curves for r.ETR vs. PAR,
ETR(II) vs. PAR(II) and NPQ vs. PAR were fitted for the three aggregated replicates, and
all photosynthetic parameters were obtained at each of the five wavelengths.

Statistical analysis
All statistical analyses were performed with R version 3.6.0. For abiotic variables, the
expectation-maximization with bootstrapping algorithm of Amelia II (Honaker, King &
Blackwell, 2011) was used to determine missing values (n = 2) of light quality data. Principal
component analysis (PCA) (Legendre & Legendre, 2012) of abiotic and biotic variables was
performed using the “PCA” function of the “FactoMineR” package (Lê, Josse & Husson,
2007) to determine the internal structure of locations that best explained the variance in each
datasets. All data were centered and reduced before performing the PCA analysis.

Statistical analysis of photosynthetic parameters followed a three-step approach (Fig. 2).
First, wavelength dependence of each parameter was analyzed using a linear mixed-effects
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Figure 2 Original methodological approach diagram. Diagram of the three-step numerical method
used after fitting the electron transport rate (ETR) vs. photosynthetically active radiation (PAR) curve:
linear mixed-effects models, partial triadic analysis and redundancy analysis.

Full-size DOI: 10.7717/peerj.12101/fig-2
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model (LMEM). Mixed-Effects Models are commonly used to fit regressions to repeated
(i.e. longitudinal) measures (over time and/or space) by separating the variance explained by
the main effects from that explained by random sampling, while considering the wavelength
dependence of individuals. The most parsimonious model was linear, and higher-degree
polynomials were not significant. LMEMs (Bates et al., 2015) were thus used to analyze the
population trend across wavelengths for each parameter. LMEMs were fitted using the
“lmer” function of the “lmer4” package (Bates et al., 2015). Random effects, defined as
differences of the locations from the population trend (intercepts and slopes), were used to
study individual photoacclimation processes. Wavelengths from 440–625 nm were
transposed to 0–185 nm to decrease uncertainty in the model intercept. Hypothesis tests
were based on t-tests (for the intercept and slope of fixed effects) and likelihood-ratio tests
based on the χ2 null hypothesis (for random effects) (Pinheiro & Bates, 2000).

Second, each wavelength-dependent photosynthetic parameter was detrended by
calculating individual differences from the population trend (from LMEMs) and then used
in partial triadic analysis (PTA) (Thioulouse & Chessel, 1987). PTA analyzes several
two-way tables simultaneously (i.e. K-tables method). Five tables (one per wavelength) that
contained eight photosynthetic parameters (in columns) and 18 locations (in rows) were
analyzed (location no. 8 was not considered on PTA analysis due to missing values at
590 nm). Before analysis, all parameter values were centered and reduced based on their
overall ranges from all tables. PTA identifies structures that are the same in all tables
and assesses their stability among wavelengths. PTA was performed using the “pta” function
of the “ade4” package (Dray & Dufour, 2007), and related graphics were created with
the “adegraphics” package (Siberchicot et al., 2017). PTA was applied in three steps—
interstructure, compromise and intrastructure analysis—which correspond to co-variance,
mean and variance structure analysis, respectively (Lavit et al., 1994; Mendes et al., 2010).

Third, redundancy analysis (RDA) of the same five wavelength-detrended tables as for
the PTA was performed to test for relationships between wavelength-dependent
photosynthetic parameters and explanatory abiotic and biotic variables. Data were
centered and reduced before analysis. Explanatory variables were selected for the model
using an automatic stepwise model (the “ordiR2step” function of the “vegan” package
(Oksanen et al., 2019)) that performs forward selection based solely on the adjusted R2 and
p-value (199 permutations). At each step, the variable with the highest additional fit was
added to the model.

RESULTS
Abiotic and biotic variables
The experimental conditions determined by the abiotic PCA showed contrasting results.
For abiotic variables, the first two axes of the PCA explained 66.1% of total inertia (49.5%
and 16.6%, respectively) (Fig. 3A). The first axis distinguished samples based on their
light-quality ratios (R/B, G/B and G/R), vertical light attenuation coefficient (Kd(PAR)), Zeu,
Zumixl, salinity and PO4

3- concentration (Fig. 3A). The second axis distinguished samples
based on their DIN concentration, temperature, Si(OH)4 concentration and light intensity
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at a depth of 2 m (PAR2m) (Fig. 3A). Three groups of samples were distinguished. Group 1
(samples 12, 18, 22, 31, 33, 38 and 49) had intermediate-to-high DIN (>2 µmol L−1,
up to 30 µmol L−1 near Seine Bay) and temperatures (9.5–12.0 �C), low-to-intermediate
salinity (<34 PSU) and PAR2m (20–182 µmol quanta m−2 s−1), the highest R/B and G/B
ratios (mean of 0.9 and 1.9, respectively), the highest Kd(PAR) (0.2–0.5 m

−1), the shallowest
Zeu (9–23 m) and Zumixl (6.5–21.0 m), and the lowest G/R ratio (±2). On the opposite side
of the factorial map, group 2 (samples 28, 37, 43, 45, 46 and 53) had the highest PO4

3-

and Si(OH)4 concentrations (>1 and 0.5–2.0 µmol L−1, respectively) and salinity (mean
of 35 PSU), the lowest R/B and G/B ratios, the highest G/R ratios, the lowest Kd(PAR)

(0.07–0.17 m−1), and the deepest Zeu (26–63 m) and Zumixl (17–78 m). Group 3 (samples 8,
10, 13, 25, 35 and 41) had intermediate salinity (33.–35.0 PSU), the lowest temperatures
(<10 �C) and DIN concentration, intermediate light-quality ratios, and the highest PAR2m,
but with high variability (116–930 µmol quanta m−2·s−1). Thus, PAR in the abiotic PCA
did not distinguish sampling locations well, nor did TSS. Samples had TSS less than 2 h
(samples 10, 18, 28, 33, 38, 46, 49 and 53), greater than 10 h (samples 22, 31, 37 and 45) or
values between the two (samples 8, 10, 13, 25, 35, 41 and 43). Group 1 had locations near the
coast, while group 2 had locations offshore. Detailed information on abiotic variables is
shown in the Supplementary Material, Figs. S2 and S3.

The biotic PCA based on FluoroProbe measurements of the biomass of main
phytoplankton groups (Fig. 3B) distinguished samples mainly based on the biomass of
P. globosa; however, the range of variation was low (±25%). The first axis distinguished
P. globosa from brown microalgae and cryptophytes, while the second axis distinguished
Cyanobacteria. The results indicate that P. globosa co-dominated with diatoms at several

Figure 3 Principal component analysis (PCA) of abiotic and biotic variables. The first two axes of the
Principal Component Analyses (PCA) performed on: (A) abiotic variables and (B) biotic variables
(biomass of the four phytoplankton groups determinated by the bbe fluoroprobe), considering the 19
sampling stations. The % of explained variance for each axes is specified. The contribution (contrib) of
each variable is indicated by a gray color scaling. Full-size DOI: 10.7717/peerj.12101/fig-3
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locations, and P. globosa dominated only samples from locations 10, 12, 13, 18 and 22.
Samples from three locations (41, 43 and 46) contained the most cyanobacteria. Details of
phytoplankton groups by location are shown in the Supplementary Material, Fig. S4.

Wavelength-dependent photosynthetic parameters from Linear
Mixed-Effects Models
Fixed effects of the LMEMs represented the population trend of each photosynthetic
parameter once the spatial nature of the data sampling was considered (Fig. 4).

Figure 4 Raw data of each photosynthetic parameters. Raw data of each photosynthetic parameter (see
Table 1 for definitions) of the 19 samples by wavelength and the fixed effect (red line) of linear mix-
ed-effect models (i.e. wavelength dependence at the population level).

Full-size DOI: 10.7717/peerj.12101/fig-4
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All intercepts were significant, indicating that all parameters differed from zero in the
bright blue wavelength (440 nm) (Table 2). Wavelength dependence led to a significant
slope of the fixed effect for all parameters except ETRmax(II) and Eop(II), but the sign of
each slope varied among parameters. While the slope of Fv/Fm was significant, its small
decrease across wavelengths was considered null for simplicity (Fig. 4A).

Sigma(II)λ is a key parameter since it connects relative and absolute parameters such as
a, ETRmax, Ek and Eop. Population trend of Sigma(II)λ decreased by a factor of 3 across
wavelengths (from 6 to 2 nm2, Fig. 4B). Conversely, r.ETRmax trend increased by a factor
of three (from 50 to 150, Fig. 5C), which may have counteracted the decrease in Sigma(II)λ
trend and led to the null slope of ETRmax(II) trend (Fig. 4D). Trends of r.a and a(II)
increased as wavelength increased (Figs. 4E and 4F), and sharply for the latter, which
increased by a factor of two. Since Ek is the ratio of ETRmax to a, r.Ek increased and Ek(II)
decreased as wavelength increased (Figs. 4G and 4H). Since Eop values were highly
scattered, they were not considered in later analyses (Figs. 4I and 4J). The decreasing trend
in NPQs was higher at 1,200 than at 300 µmol quanta m−2 s−1 (Figs. 4K and 4L). Since
NPQ was estimated at low and high PAR from the PE curves, it is interesting to note that
the NPQ trends were opposite to those in r.ETRmax and r.a (Figs. 4C and 4E respectively),
meaning that NPQs could have more influence on the values of these parameters under
the blue wavelengths (NPQ440 and NPQ480 ranged from 1–2) than under the light red
wavelength (NPQ625 reached 0.2 at PAR = 300 µmol quanta m−2 s−1). The increasing trend
in a(II) across spectrum could thus correspond to a strong decrease in a(II) under the blue
wavelengths and not to an optimization under the light red wavelength.

For the random effects, intercepts of all parameters were highly significant, but their
slopes were not, except for ETRmax and Ek in relative (r) and absolute (II) values (Table 2).

Table 2 Statistical outputs of the linear mixed-effects models.

Fixed effects Random effects

Parameters Intercept Std. Errors Slope Std. Error Intercept Slope

FV/Fm 0.61*** 0.01 −0.00012*** 0.00002 *** ns

Sigma(II)λ 6.08 *** 0.03 −0.0241*** 0.0011 ** ns

r.ETRmax 41.19*** 5.26 0.44*** 0.04 *** ***

ETRmax(II) 527.42*** 35.84 −0.09 ns 0.20 *** *

r.a 0.21*** 0.007 0.00029*** 0.00004 *** ns

a(II) 0.57*** 0.03 0.0015*** 0.0001 *** ns

r.Ek 200.94*** 21.78 1.39*** 0.12 *** **

Ek(II) 905.92*** 43.81 −1.72*** 0.32 *** **

r.Eop 1,998.90*** 141.01 −1.69ns 0.90 *** ns

Eop(II) 5,737.18*** 405.36 −18.43*** 2.44 *** ns

NPQ300 0.90*** 0.06 −0.004*** 0.0003 *** ns

NPQ1200 1.94*** 0.111 −0.006*** 0.0004 *** ns

Notes:
Results of the linear mixed-effects models for photosynthetic parameters (see Table 1 for definitions): best estimates of
standard error and significance (for fixed effects) and the significance of individual variation (for random effects).
Hypothesis tests were based on t-tests (for the intercept and slope of fixed effects), likelihood-ratio tests and the p-value
based on χ2 statistics (for random effects). Significance codes: ***p < 0.00, **p < 0.01, *p < 0.05, ns: non-significant.
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Thus, parameter values differed among samples but, except for ETRmax and Ek, had the
same trend across wavelengths. This resulted in spatial differences in the spectral balance
between bright blue and light red wavelengths for ETRmax and the photoacclimation
parameters Ek (in relative and absolute units for the both).

When examining detrended values of absolute parameters among locations (Fig. 5),
those of ETRmax(II) and Ek(II) tended to differ among the five wavelengths by sampling
location (Figs. 5C and 5E), unlike those of the other parameters, which were generally
more similar among the five wavelengths by sampling location. This was especially true for
detrended values of a(II) and Fv/Fm, which differed little and almost not at all, respectively,
among the five wavelengths by location (Figs. 5A and 5B). Because values of Sigma(II)λ
under the light red wavelength were not always the lowest across wavelengths (i.e. a slightly

Figure 5 Detrended spectral photosynthetic parameters. Detrended spectral photosynthetic para-
meters (Table 1 for definitions) resulted by calculating individual differences from the population trend
(the linear mixed-effect models) among sampling locations. Point colors indicate each of the five
wavelengths analyzed: 440, 480, 50, 590 and 625 nm. Full-size DOI: 10.7717/peerj.12101/fig-5
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non-linear distribution) (Fig. 4B), its detrended values under the light red wavelength were
higher than the population trend (Fig. 5A). According to the statistical analyses, however, a
linear model fit best to Sigma(II)λ values.

Sample wavelength dependence of samples from the PTA
The first two axes of the PTA interstructure explained 85.38% of total inertia
(Supplementary Material, Fig. S5), and the five wavelength tables had similar weights
(0.38–0.47; Table 3) and a significant representation (cos2 close to 1; Table 3). The PTA
was thus adequate overall and highlighted similarities among the wavelengths. All five
wavelengths were positively correlated and positively projected on the first axis (ca. 71.24%
of the total inertia; Supplementary Material, Fig. S5). The second axis separated the bright
blue and green wavelengths from the amber and light red wavelengths. The amber
wavelength differed the most from the others and had the same correlation with the first
and second axes.

When projecting the wavelength-dependent photosynthetic parameters on the
compromise coordinates it explained 66.49% of total inertia (Table 4, Fig. 6A), the relative
positions of polygons indicated that PTA results generally met our expectations:
opposition between the group of Fv/Fm, a(II) and ETRmax(II) vs. the group of Sigma(II)λ
and NPQ300–1,200, with parameters related to photoacclimation (Ek and Eop) between these
two groups. We observed the well-known relationships between variables related to energy
flows (Fv/Fm and NPQ300–1,200), related to Sigma(II)λ, and the major parameters that
control PE relations in absolute units—a(II) and ETRmax(II)—which had a positive overall
correlation.

The intrastructure of the PTA showed differences between photosynthetic parameter
patterns among the five wavelengths (Figs. 6A to 6E). Patterns for the main parameters,
such as ETRmax(II), a(II), Sigma(II)λ and NPQ300–1,200, changed from the bright blue
wavelength (440 nm) to light red wavelength (625 nm). The most evident change was the
rotation of a(II) and NPQ300–1,200 respected to the spectral pattern of Sigma(II)λ.
At blue wavelengths Sigma(II)λ and NPQ300–1,200 were inversely correlated to a(II)
(Fig. 6A) but at amber and light red wavelengths there were any correlation (Figs. 6D and
6E). Sigma(II)λ was incorrectly represented in the main plane at 625 nm (Fig. 6E).
The PTA intrastructure analysis also showed patterns for the locations among the five

Table 3 Statistical outputs of each K-tables in partial triadic analysis (PTA).

Wavelength 440 480 540 590 625 Weight cos2

440 1.00 0.88 0.74 0.50 0.59 0.47 0.91

480 1.00 0.77 0.43 0.60 0.47 0.90

540 1.00 0.54 0.69 0.47 0.89

590 1.00 0.61 0.38 0.69

624 1.00 0.44 0.80

Note:
Vector correlation coefficients between the submatrix of photosynthetic parameters at each wavelength (nm), their
weights in partial triadic analysis and cos2.
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wavelengths (Fig. 7). Wavelength dependence differed greatly among locations: polygons
were largest for locations 33, 35, 43, 37 and 45, and smallest for locations 13, 18, 31, 46
and 53 (Fig. 7). In addition, the blue wavelengths (440 and 480 nm) displayed a general
circular change among locations, moving from the right of the polygon for location 53 to
the left for location 45 (Fig. 7).

Figure 6 Intrastructure results of detrended photosynthetic parameters of Partial Triadic Analysis.
Results of intrastructure of the partial triadic analysis of detrended photosynthetic parameters ETR-

max(II), Ek, Alpha(II), Eop(II), Sigma(II)λ, Fv/Fm and NPQ (see Table 1 for definitions at 300 and 1,200
µmol quanta m−2s−1) projected on compromise coordinates (A). Each photosynthetic parameters
coordinate is represented separately for each wavelength at 440 (B), 480 nm (C), 540 (D), 590 (E) and 625
(F) nm. See Table 3 for compromise contribution to total inertia and Table 4 for weight and cos2 of each
of the wavelengths colors in PTA analysis. Full-size DOI: 10.7717/peerj.12101/fig-6
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Explanatory variables of wavelength dependence from RDA and linear
regression
The RDA results showed that abiotic variables related to light emerged first as explanatory
variables (Table 5). Euphotic depth (Zeu) was selected the most often, for three of the five
wavelengths (Table 5), from 440–540 nm. TSS, which represents the recent light history of
cells, was selected twice, for the light blue wavelength (480 nm) and the amber wavelength
(590 nm). The G/R light ratios were selected for the amber wavelength (590 nm). DIN
concentration was the only non-light parameter selected, for the light blue wavelength.
No variables were selected for the light red wavelength (625 nm), and PAR2m did not seem
to influence the parameters.

To further explore the influence of Zeu and the difference in control of photosynthetic
parameters under bright blue and light red wavelengths, we sought specific connections
between the photoacclimation parameter Ek and Zeu (in ratios with Eavg and Zumixl,
respectively), and between the ratio of Ek (in relative and absolute units) measured at 625
and 440 nm and the corresponding R/B light ratio (E625/440) in water masses.
Two significant linear trends were found between the Ek,440/Eavg ratio (in relative and
absolute units) and the Zeu/Zumixl ratio for stratified water columns (Fig. 8A for graphs and
correlation coefficients). Correlations were non-significant for non-stratified water
columns for r.Ek,440 and Ek(II)440, as well as under the other wavelengths. Considering all

Table 4 Total inertia of partial triadic analysis (PTA) compromise analyses.

Axe Inertia Cum Cum (%)

1 10.56 10.56 37.76

2 8.54 19.10 66.49

3 4.51 23.61 82.18

4 2.42 26.03 90.61

Note:
Total inertia of partial triadic analysis (PTA) compromise analyses, cumulative inertia of each PTA axis (Cum) and
percentage of cumulative total inertia (Cum %).

Table 5 Results of redundancy analysis (RDA) of detrended photosynthetic parameters at each
wavelength.

Wavelength Model Variance Residual variance Abiotic Biotic

adj R2 p adj R2 p

440 Zeu 1.60 6.40 0.15 ** 0.023 ns

480 Zeu+TSS+Kd(PAR)+DIN 4.16 3.82 0.38 *** −0.001 ns

540 Zeu 2.35 5.65 0.20 ** 0.010 ns

590 TSS+G/R 2.57 5.42 0.23 ** 0.05 ns

625 None 6.00 1.99 0.10 ns −0.111 ns

Notes:
Forward-selected explanatory variables of RDA model, explained and residual variances, the adjusted R2 and associated
p-value for abiotic (Zeu (euphotic layer), TSS (Time since sunrise), Kd(PAR) (downwelling diffuse attenuation coefficient of
underwater light), DIN (of dissolved inorganic nitrogen, i.e. NO3+NO2) and G/R (Green/Red light quality ratio)) and
biotic variables. No biotic variable was selected, and the model for the red wavelength (625 nm) was not significant.
Significance codes: ***p < 0.00, **p < 0.01, ns: non-significant.
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sampling locations revealed other significant correlations between the absolute ratio
Ek(II)625/440 and (1) the red/blue light ratios in surface waters E625/440 (see Fig. 8B for
correlation coefficients) and (2) the TSS factor (r = −0.65, n = 19, p < 0.05, Supplementary
Material, Fig. S6).

Figure 7 Intrastructure results of partial triadic analysis (PTA) for each location. Partial triadic
analysis intrastructure (first and second dimension) projected on compromise coordinates of photo-
synthetic parameters for each of the 18 locations: factorial map of spectral responses projected on
compromise coordinates for each sample. The dotted line in the first figure represents the coordinates
used to represent samples 12, 13, 18, 38, 41 and 49 separately to improve visualization of this part of the
factorial map. Full-size DOI: 10.7717/peerj.12101/fig-7
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DISCUSSION
Our results provide new insights into the wavelength dependence of photosynthetic
parameters and PSII functional absorption cross section of coastal water phytoplankton
communities. To date, the literature has focused on one or two species under a few growth
conditions in the laboratory (Schreiber & Klughammer, 2013; Brunet et al., 2014; Szabó
et al., 2014a; Luimstra et al., 2018) or older in situ studies that focused on the wavelength
dependence of a in the water column (Lewis, Warnock & Platt, 1985; Lewis, Ulloa &
Platt, 1988; Kyewalyangaa, Platt & Sathyendranath, 1992). Studying the present dataset
including all photosynthetic parameters was complex due to environmental gradients and
changes in community structure but made possible by the use of three powerful statistical
methods. The wavelength dependence of photosynthetic parameters that was characterized

Figure 8 Relationships between photoacclimation indexes and physical parameters. Relationships
between (A) the Ek,440/Eavg ratio (the photoacclimation index measured at 440 nm to the vertically
averaged PAR light intensity) (in relative (r) and absolute (II) units) and the Zeu/Zuml ratio (depth of the
euphotic layer to that of the upper mixed layer) and (B) between Ek(II)(625/440) (ratio of photoacclimation
index measured at red and blue wavelengths) and the corresponding red/blue wavelength ratios of light
(E(625/440)) in water masses for the 19 locations. The regression equation in B is y = 0.5789 x + 0.2516
(F = 5.62; p = 0.0298). Pearson correlation coefficients, level of significance (�p < 0.05) and the number of
considered data are also reported on each graph. Full-size DOI: 10.7717/peerj.12101/fig-8
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at the population level and the sample level, will be discussed first in relation to the theories
on photosynthesis and photoacclimation, and then from an ecological point of view.

Physiological meaning of wavelength dependence of photosynthetic
parameters
Light absorption capacity
Since light absorption was measured according to the method of Schreiber, Klughammer &
Kolbowski (2012), Sigma(II)λ can be considered an intrinsic property of the PSII units
for each sample. Thus, the recent light history at sampling did not change the light
absorption capacity of the 19 samples studied. Cell light absorption was thus a function of
only pigment composition of photosynthetic units (Schreiber, Klughammer & Kolbowski,
2012), even though the packaging effect may slightly skew the relation between Sigma(II)λ
measurements and pigment concentration (Gorbunov et al., 2020). Since the slopes of
the fixed (population level) and random (individual level) effects were significant and
non-significant, respectively, all of the phytoplankton communities absorbed more light in
the blue spectral range and with the same wavelength dependence, regardless of the sample.

Given the sampling area, we expected the decreasing population trend in Sigma(II)λ
across wavelengths. This is a typical result for cell communities dominated by brown
microalgae such as diatoms with Chla as the main light-absorbing pigment (Kuczynska,
Jemiola-Rzeminska & Strzalka, 2015). The small increase under the light red wavelength
(625 nm) is also consistent with this result (since Chla also absorbs red light), and with
other Sigma(II)λ measurements for diatoms using the same method (Goessling et al.,
2018b). This is consistent with our group-based community-structure measurements,
which show that the diatom-dinoflagellate and haptophyte groups dominated all 19
samples. Consequently, the phytoplankton communities may not have been composed of
species with completely opposite strategies for light absorption, as is common in
experimental and theoretical modeling studies (Luimstra et al., 2019; Burson et al., 2019).
Thus, the following discussion focuses on the plasticity of typical brown microalgae
communities to the wavelength dependence of light climates in coastal water depending on
their physiological state.

Conversely, the absence of significant individual wavelength dependence for Sigma(II)λ
among the 19 samples was unexpected; however, the light absorption capacity differed
among samples regardless of the wavelength. Signature changes over the spectrum were
expected because the spectral quality of light is crucial for microalgae to achieve optimal
photoacclimation in the face of variable light quality and intensity during growth (Valle
et al., 2014). Light quality can influence gene expression that adjusts pigment and protein
compositions of specific antenna complexes (e.g. fucoxanthin-chlorophyll a/c-binding
antenna pigment-protein complex of diatoms called FCP), which changes spectral
absorption by cells. Conversely, light quantity can influence only pigment concentrations
(Valle et al., 2014). In the present study, the changes in light quality may have been too
small to induce significant changes in spectral absorption capacity among the 19 samples
due to hydrodynamic conditions and the daylight cycle, which agrees with the results
of Gorbunov et al. (2020). Cells could have managed variations in incident light quality
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via their photosynthetic apparatus without having to change their pigment composition.
However, changes in light intensity were sufficient to produce significantly different
spectral absorption capacities among samples.

The relatively high light absorption capacity of cells under the green wavelength
(540 nm) agrees with results of Goessling et al. (2018b) for a planktonic diatom and for
microphytobenthic diatoms (Goessling et al., 2018a), but does not agree with those of a
brown-gold microalga Nannocloropsis oculata (Eustigmqtophyceae) (Szabó et al., 2014a)
using the same method as in the present study. This could be because some or all cells
in the communities of the present study were acclimated to green wavelengths in the water
column. The green light ratios (G/B and G/R) measured always exceeded one, indicating
that green wavelengths dominated in all sampling conditions. It is well known that
green light dominates coastal water during the algal blooms because the high chlorophyll
concentration absorbs blue wavelengths (Kirk, 2011). This absorption capacity in the green
spectral band could be due to an increase in the “green” absorption capacity of
fucoxanthin, which absorbs more energy from 390–580 nm due to the basic structural and
functional properties of fucoxanthin and its location in the light-harvesting complex
proteins of the antenna (Premvardhan et al., 2008; Kuczynska, Jemiola-Rzeminska &
Strzalka, 2015). Burson et al. (2018) also showed continuous light absorption spectra, with
better green light absorption capacity for a fucoxanthin diatom than for green and
blue-green phytoplankton, in agreement with Valle et al. (2014).

General physiological state
The population trend across wavelengths and Fv/Fm values indicate that cells were in a
good physiological state, considering the community composition based on diatoms
and Phaeocystis globosa, regardless of the wavelength and thus were not under high
nutrient stress. The population trend of Fv/Fm was centered on 0.6, and Fv/Fm values were
never less than 0.4. Generally, the theoretical maximum of Fv/Fm is 0.7 (in a dark-adapted
state, as in this study), and its critical value is 0.3 (Painter et al., 2010) for communities
dominated by brown microalgae (diatoms and dinoflagellates). We will not discuss
here the complex links between nutrients and photosynthetic parameters, this is not our
topic and this was done specifically in other works for the same ecosystem (Napoléon,
Raimbault & Claquin, 2013). In addition, the good nutrient status of water is confirmed
by comparing nutrient concentration measurements in the present study to the seasonal
nutrient cycle established for the EC (Gentilhomme & Lizon, 1998). Using a similar
measurement method, Szabó et al. (2014b) observed similar values of Fv/Fm across
wavelengths (which approached 0.7) for cultures in nutrient-replete conditions. Gorai
et al. (2014) observed spectral independence of Fv/Fm when comparing physiological
properties of a culture under blue and white lights.

Spectral trends and photoacclimation processes
In this context of samples with the same wavelength dependence of light absorption and
good physiological state, wavelength photoacclimation can be investigated through trends
in ETRmax(II), a(II), NPQ and Ek. Although r.ETRmax and r.a had a significant trend

Michel-Rodriguez et al. (2021), PeerJ, DOI 10.7717/peerj.12101 23/39

http://dx.doi.org/10.7717/peerj.12101
https://peerj.com/


across wavelengths, they do not provide enough information to understand the spectral
dependence of photosynthesis in detail, which is a function of light absorption, given here
by Sigma(II)λ (Schreiber, Klughammer & Kolbowski, 2012). These relative parameters
are useful only to compare and better understand the influence of Sigma(II)λ on spectral
photosynthetic processes in absolute units. Both parameters had a positive slope across
wavelengths, indicating that r.ETRmax and r.a spectra were the inverse of the Sigma(II)λ
spectrum; conversely, in absolute units, the slope of ETRmax(II) disappeared, while the
positive slope of a(II) was maintained. These results were unexpected since water was
sampled at different times of the day, and cells were kept in the dark for 2.5 h before being
analyzed. An explanation could be that cells in the samples were in a
wavelength-dependent photoprotective state due to the underwater light climate.

We expected the trend of ETRmax(II) to decrease over the spectrum because the cells
grew in a natural environment in which blue and green light dominated, since red light
is quickly absorbed in the water column (the R/B ratios were usually less than one). Several
studies involving phytoplankton and microphytobenthos observed increasing values of
ETRmax(II) in the blue wavelength (Mercado et al., 2004; Szabó et al., 2014a; Goessling,
Cartaxana & Kühl, 2016; Goessling et al., 2018a) related to changing light conditions.
Opposite results have also been found. Schreiber, Klughammer & Kolbowski (2012)
indicated that photoinhibition could explain the decrease in ETRmax(II) under blue light,
that the time needed to recover the starting values is much longer under bright blue
than light red wavelengths, and that the recovery under blue light remains only partial
after several hours. Correa-Reyes et al. (2001) observed that growth rates of eight
microphytobenthic species decreased more under blue light than light of other colors.
In the present study, given the higher light absorption in blue (440 and 480 nm) than light
red wavelengths (625 nm), and since the high energy of blue wavelengths can cause
photodamage (Dougher & Bugbee, 2001), the lack of slope for ETRmax(II) likely reflects a
photoinhibition or photoprotective state of the communities towards blue wavelengths,
which initially decreased r.ETRmax values under blue light. For ETRmax(II), significant
wavelength dependence among the 19 samples is superimposed on the non-significant
population trend. Thus, some samples had different degrees of photoinhibition/
photoprotection under blue light independent of other light colors. We can thus speculate
about wavelength dependence of photoinhibition/photoprotection mechanisms.

We expected high r.a and especially a(II) under blue wavelengths and thus a decreasing
trend from 440–590 nm, with a small increase at 625 nm. The variation in a as a function
of light quality is the best known photosynthetic parameter because it was closely studied
from the mid-1980s to the early 2000s by carbon-14 incorporation, for calculations of
primary production rate (Lewis et al., 1985; Lewis, Warnock & Platt, 1985; Lewis, Ulloa &
Platt, 1988; Kyewalyangaa, Platt & Sathyendranath, 1992; 1997; Kyewalyanga,
Sathyendranath & Platt, 2002). At worst, a null slope of a(II) over the spectrum, like for
ETRmax(II), was expected, but the consistently lower values in the blue wavelengths were
unexpected given the Sigma(II)λ variations observed and previous studies of natural
communities (Lewis et al., 1985) or brown microalgae cultures of a red tide dinoflagellate
(Schofield, Prezelin & Johnsen (1996) talking about Pyrrophyta). This result does not reflect
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an improvement in red light-use efficiency, since brown microalgae requires 24–48 h to
photoacclimate to changes in red light (Valle et al. (2014) about the marine diatom
Phaeodactylum tricornutum), which is consistent with properties of the underwater light
climate. Unlike red light, high-intensity blue light can cause rapid changes in cells, such as
energy allocation between photosynthetic and photoprotective pathways in coastal species
(Lavaud, 2007; Brunet & Lavaud, 2010). As many experimental studies show, the cycle of
xanthophyll (a photoprotective pigment) and NPQ are fundamental photoprotective
processes that are activated within seconds to minutes to dissipate excess absorbed light
energy (Dimier et al., 2009). Energy dissipation by carotenoids can reduce photosynthetic
rates under blue light, which increases NPQ (Brunet et al., 2014). Many other studies have
used NPQ to measure the overall photoprotective capacity of the photosynthetic apparatus
(e.g. Dimier et al., 2007; Lavaud, 2007). The xanthophyll cycle photoprotective mechanism
has been observed in the coastal sea of the EC for the same locations the phytoplankton
communities in this study have been collected (Brunet, Brylinski & Lemoine, 1993; Brunet
& Lizon, 2003) and in permanently well-mixed ecosystems (Alderkamp et al., 2011).
Therefore, like for ETRmax(II), the decrease in the trend of a(II) observed over the
spectrum could be due to photoinhibition and, more likely, photoprotection.
Photoinhibition of a has been experimentally verified (Björkman & Demmig, 1987; Baker
& Bowyer, 1994).

The hypothesis of a photoprotective influence on a (in relative and absolute units)
requires that photoprotection occur early and at low light intensities. Consistent with this
hypothesis, NPQ population trends were significant and values were always higher under
blue than red light at low intensities. These results are confirmed by those of Goessling et al.
(2018a) for suspensions of phytobenthic diatoms and those of Tamburic et al. (2014) for a
brown-gold microalgaeNannocloropsis occulata (Eustigmqtophyceae). In the present
study, NPQ was 1 and 2 under low- and high-intensity blue light, respectively. According
to Lefebvre, Mouget & Lavaud (2011), NPQ usually exceeds 1 for cells that face the sun and
are not well adapted to high-intensity light.

Thus, since communities in the present study had adequate photoprotective capacity
against blue light, maximum quantum efficiency Fv/Fm was always high regardless of the
wavelength, while effective quantum efficiency, which influences a and ETRmax, decreased
early under blue light (and probably green light). This created slightly different spectral
signatures for a(II), which is determined under low light intensity, among the samples
depending on the in situ light intensity, which thus likely decreased wavelength effects.
Conversely, ETRmax(II) is determined under higher light intensity, in which individual
spectral effects were efficient. To support this hypothesis, blue light is expected to be less
prone to cause photoinhibition such as photodamage than red light (Brunet et al., 2014),
and cells have greater PSII repair capacity under blue light than red light, since
photoprotection and PSII repair are induced by protein-encoding genes under blue light,
but are lacking under red light (Valle et al., 2014).

In this context, Ek varied across wavelengths due to relative variations in ETRmax and a,
since Ek = ETRmax/a. Values of r.Ek were indeed lower in the blue wavelengths, while those
of Ek(II) were higher. These results are fairly consistent with our hypothesis for
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communities in the photoprotective state rather than the photoinhibition state, as are the
high Fv/Fm values under blue wavelengths. This is supported by the two significant
correlations observed between the Ek,400/Eavg ratio (in relative and absolute units) and the
Zeu/Zumixl ratio, indicating that the communities were in good agreement with the high
light availability in the mixed layer (Jensen et al., 1994; Wang et al., 2011). This is
particularly true for the rEk,400/Eavg ratio, which tended towards the reference value of 1 at
four locations that had stratified water columns. Values close to one indicate optimization
of absorbed light by photosynthetic metabolism (Anning et al., 2000; Anning, Harris &
Geider, 2001). To our knowledge, these two correlations are new results for an ecosystem
known for its high hydrodynamic regime. Most studies in dynamic coastal ecosystems
observed cells in a photoacclimation state and r.Ek values less than or greater than one
(Claquin et al., 2010; Houliez et al., 2013a). One exception is Jouenne et al. (2005) in the
Baie des Veys (French coast), who used carbon-14 measurements rather than active
fluorescence measurements. The photoprotective state, based on NPQ under in situ
irradiance, includes well-known processes that can operate continuously to protect
microalgae from potential photoinhibition and, after photodamage, correspond well to
photoacclimation processes (Alderkamp et al., 2013). The physiological plasticity of
phytoplankton in limiting photodamage usually explains much of the diurnal variation in
photosynthetic processes (Schuback et al., 2016). These include many processes of the
photosynthetic apparatus that influence r.Ek and Ek(II) to match the in situ light intensity
(Dubinsky & Stambler, 2009; Schofield et al., 2013).

The advantage of measuring photosynthesis at several wavelengths using the functional
light absorption capacity of natural phytoplankton is revealed by the differing trends of the
photosynthetic parameters observed over the spectrum. Comparing the spectral trends and
estimating the absolute photosynthetic parameter were necessary to identify the
photoacclimation state of the 19 samples.

Ecological meaning of sample spectral variability and controlling
factors
To investigate the ecological meaning of our results for wavelength dependence, we
addressed the variability in photosynthetic parameters outside of the population trends.
This approach was based on the detrended measurements of the PTA and RDA by
wavelength, and the relationships between the Ek(II) ratios and their controlling factors.

According to the PTA, the covariations observed among detrended values of
photosynthetic parameters and their change over the spectrum are consistent with
wavelength dependence at the population level of the parameters studied with the LMEMs.
The PTA showed that the pattern of the parameters changed gradually and consistently
between blue and red wavelengths, concretely for light absorption and photochemical
quenching. Using the PTA to scan the intrastructure of the 19 samples revealed also that
spectral variation patterns of the parameters of each sample differed from each other in
size, shape and position on the factorial map. Sizes and shapes of these spectral polygons
were not related to water column stratification (e.g. the polygon of the most stratified
location (no. 33) was the same size as that of location 43, which was not stratified).
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According to the RDA, photosynthetic parameters measured by wavelength were
influenced mainly by euphotic depth. The forward selection of the RDA first retained the
most correlated variable in a group of abiotic variables that covaried with biotic variables.
Consequently, since the euphotic depth (Zeu), the light extinction coefficient (Kd(PAR)) and
the three light-quality ratios were collinear or correlated variables (in the abiotic PCA),
individual photosynthetic parameters could also be controlled by the underwater light
quality and turbidity, since the RDA also selected Kd(PAR) and a wavelength ratio.
Considering all photosynthetic parameters, the main RDA result is thus consistent with
the significant relationship observed between the light saturation ratio (Ek(II)625/440) and
R/B light ratio (E625/440). The RDA also selected the TSS variable discussed later. Mixing
depth (Zumixl) was another interesting ecological parameter selected by the RDA. The RDA
confirms the hydrodynamic regime’s control of the photoacclimation index Ek previously
displayed by the relationship between Ek (r and II) and Zeu/Zumixl. Since physical forcing in
a given upper mixed layer controls certainly the level reached by Ek, wavelength
dependency of photosynthetic parameters is generally a trade-off between the light quality
of the different encountered water masses and changes in light quantity throughout the
upper mixed layer due to the hydrodynamic regime. The RDA results and singular
correlations with Ek (r and II) are consistent, but the correlations of Ek(II)625/440 with
critical environmental parameters provide better understanding of the ecological
mechanisms that influence phytoplankton photoacclimation. The results are interesting
because they were obtained from the field, where light-quality ratios (between red and blue
wavelengths for instance) are known to change with depth (Supplementary Material,
Fig. S7), as also described by Brunet et al. (2014) and Jaubert et al. (2017). It is likely that the
influence of vertical changes in light-quality ratios on microalgae acclimation was small in
the present study, especially because most upper mixed layers were shallow (6.5–14 m) and
the residence times of the cells at a given depth were low. The spectral light saturation
ratios Ek(II)625/440 were therefore not correlated with the Zeu/Zumixl index.

The significant correlations between Ek(II)625/440 and E625/440 or TSS clearly highlight
that natural phytoplankton communities can implement photoacclimation processes that
are driven by the in situ light quality that also change during the daylight cycle. Most water
masses had E625/440 ratios less than one, which indicates water in which blue wavelengths
dominate red wavelengths, and displayed higher Ek(II) phytoplankton photoacclimation
index in blue wavelengths than in red wavelengths. This original result is valid only for
absolute Ek(II)λ parameters related to Sigma(II)λ, not for relative parameters r.Ek. Since
Sigma(II)λ measured with the MULTI-COLOR-PAM is an intrinsic property of
microalgae (Schreiber, Klughammer & Kolbowski, 2012), and since microalgae can increase
pigment concentration to absorb more light (Lawrenz & Richardson, 2017), differences in
pigment concentrations may change the level of Sigma(II)λ measured during the day.
Due to the differing variations in r.Ek between blue and red wavelengths, Ek(II)625/440 ratios
are therefore correlated with E625/440 ratios in the water masses and with TSS, the time
elapsed since sunrise. These relationships provide new information about the natural
environment and are consistent with many experiments under controlled conditions.
As several studies of monospecific cultures subjected to contrasting R/B ratios show
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(Schellenberger Costa et al., 2013a; Brunet et al., 2014), variations in the light spectrum and
in blue vs. red wavelengths influence photoprotective capacity and the pigment
composition of phytoplankton. Schellenberger Costa et al. (2013a) conclude that
photoprotection is regulated more by light quality (especially blue wavelengths) than by
the overall light intensity. Kirk (2011) stated that phytoplankton detect not so much the
spectra of light, but rather differences between wavelength ratios received by PSI and PSII,
using blue and red wavelength photoreceptors (Jaubert et al., 2017) that regulate
photosynthesis and promote photoacclimation (Schellenberger Costa et al., 2013b;
Petroutsos et al., 2016). This explains why the Ek(II) for the green wavelength did not
correlate significantly with the in situ light-quality ratios of the green wavelengths.
Photoacclimation mediation by in situ blue wavelengths, as discussed by Schellenberger
Costa et al. (2013a), is thus consistent with our field study.

The Ek(II)625/440 vs. E625/440 correlation, like the abiotic PCA, indicates indirectly that
variables such as temperature, PAR2m, and DIN and Si(OH)4 concentrations do not
influence wavelength photoacclimation greatly. Previous studies in the EC showed that
abiotic variables were the main variables that controlled spatial and/or temporal variations
in relative photosynthetic parameters (Jouenne et al., 2007; Napoléon et al., 2013; Houliez
et al., 2015). However, the variables that control these photosynthetic parameters may vary
among geographic areas and/or seasons. In the present study, this correlation was
determined over a large spatial scale.

Ecological implications and consequences
It is the general question of the absorption capacity of light in relation to the quality of light
and its impact on primary production that is discussed here.

The precise examination of the Ek(II)625/440 versus E625/440 relationship in link with the
reference values of 1 indicates that the two ratios matched each other well. For example, at
location 38, the Ek(II)625/440 and E625/440 ratios equaled one, which could be because the
water there was sampled before sunrise. However, other communities sampled before
sunrise (e.g. at locations 28, 46 and 53) showed imbalances in their Ek(II)625/440 ratios
related to the E625/440 ratios of water masses. The regression model indicates that to
observe an Ek(II)625/440 ratio of 1, a theoretical E625/440 ratio of 1.29 would be required
(which is close to our measurements). In this case, the blue wavelengths would decrease to
77 µmol quanta m−2 s−1 given a red light of 100 µmol quanta m−2 s−1. Thus, the E625/440
ratio cited above indicates no strong imbalance in available energy and thus no stressful
ecological situation for phytoplankton. In spring in temperate water, blue wavelengths are
absorbed due to CDOM, in link with terrestrial discharge near estuaries and/or
phytoplankton blooms themselves (Vantrepotte et al., 2007; Astoreca, Rousseau &
Lancelot, 2009). Lawrenz & Richardson (2017) studied photoacclimation under extreme
conditions, with a total absence of blue light (i.e. black water with high CDOM
concentrations). They showed that, depending on the taxon, microalgae retain or lose their
initial light absorption capacity on the spectrum, and their absorption capacity adapts to
the light quality to which they were exposed, even with red wavelengths. Some species can
survive under red light in the short term, but in the long term, cytoplasmic structures and
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chloroplast membranes degrade (Humphrey, 1983) and Chla concentrations decline
(Forster & Dring, 1992). Rivkin (1989) showed the strong influence of blue light on carbon
fixation and incorporation into amino acids and proteins. The Ek(II)625/440 vs. E625/440
relationship in the present study cannot be extrapolated beyond the measurement limits (i.
e. to the completely unbalanced light ratios of Lawrenz & Richardson (2017)), but includes
representative conditions generally found in the EC or temperate systems.

In comparison, Ek(II)625/440 ratios near 0 would indicate that blue wavelengths are
ultra-dominant in the water mass and could activate strong photoprotection mechanisms
or even cause photodamage, which would decrease ETRmax(II) greatly under blue
wavelengths. Under these conditions, given the intercept of the linear model, Ek(II) values
under blue wavelengths would be only 25% of those under the red wavelength, which
suggests that primary production would decrease greatly. However, electron flows under
green, amber and light red wavelengths remained high, and NPQ was not as strong as
under blue wavelengths. These results were consistent with the low light absorption (Sigma
(II)λ) under these wavelengths, as was the NPQ. However, this raises the issue of using the
spectral approach to calculate primary production based on the photosynthetic parameters
of RLC relationships.

Previous studies of the wavelength dependence of photosynthesis specified the
systematic error produced by measuring a under white-light incubators when comparing
incubation light climates (Laws et al., 1990) or primary production models (Kyewalyanga,
Platt & Sathyendranath, 1992). Most classic incubators do not reproduce light spectra
at the low intensities that phytoplankton encounter in the water column because of the
high variability in light quality with depth, but also with time, due to vertical mixing in the
upper part of the water column. Schofield, Prezelin & Johnsen (1996) examined the
error caused by using the same or different a from cultures grown under different light
qualities when calculating primary production in a theoretical and simplified water
column. Depending on the species and growing conditions, differences between vertical
primary production rates estimated by the two calculation methods ranged from 12–49%.
Other studies showed that a values measured on board under artificial light (Irwin et al.,
1990) could be corrected from the shape of the phytoplankton absorption spectrum
(Kyewalyanga, Platt & Sathyendranath, 1997; Sathyendranath et al., 1999). This approach
involves the field of remote sensing in particular and includes “optical” and “full spectral”
models (Platt & Sathyendranath, 1988; Sathyendranath & Platt, 1993; Behrenfeld &
Falkowski, 1997). Recent studies (Kovač et al., 2017; Sathyendranath et al., 2020) combined
a spectral model of underwater light with a model of the integrated spectral response of
algal photosynthesis consistent with photoacclimation processes. These studies
recommend using the photosynthesis action spectrum or spectral correction of a in the
water column, especially when differences in the shape of the action spectrum of a are
larger than those in its magnitude at each wavelength (Sathyendranath & Platt, 1993).
However, these studies did not consider that light-quality ratios in surface water can also
greatly influence photoacclimation of microalgae. This was revealed in the present study by
some individual wavelength-dependence phenomenon that differed significantly among
the samples, and the Ek(II)625/440 ratios, which involve ETRmax(II) and a(II) (i.e. the
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photosynthetic apparatus), especially the functional absorption cross section of PSII and
the maximum rate of PETλ, according to the optical definition of Ek (Falkowski & Raven,
2007). Parameters a(II) and Sigma(II)λ showed no significant individual wavelength
dependence among water masses, unlike ETRmax(II) and Ek(II), which are involved in
primary production at high light intensities. The central issue is thus how photosynthetic
activity induced by wavelengths beyond 480 nm can compensate for the decrease in
photosynthesis under strong blue light when estimating primary production in different
water masses. Sensitivity analysis of physicochemical properties of water would pave the
way for future research on wavelength dependence of phytoplankton photosynthesis, as
well as spectral dependence at the seasonal scale, using current active fluorescence
measurement technologies.

CONCLUSION
Our results indicate that natural phytoplankton communities can photoacclimate to light
quality dynamically under contrasting environmental conditions in temperate coastal seas
in response to the available energy balance between red and blue wavelengths.
The wavelength dependence of photosynthetic parameters was here characterized at the
population level (in a consistent way with the photosynthesis theory) and at the sample
level where a high spatio-temporal variability was observed. The photosynthetic
parameters Ek, ETRmax (both in relative and absolute units) and NPQ proved to be here the
most important ones for understanding the photoacclimation dynamics of natural
microalgae communities. With a general model of photoprotection against blue light based
on NPQ of photosynthesis, the present study shows that natural phytoplankton
communities were most adapted to high-intensity light when a large amount of light was
absorbed (e.g. blue wavelengths) but appeared “shade” adapted when low-intensity light
was absorbed (e.g. green, amber and light red wavelengths), to paraphrase Nielsen &
Sakshaug (1993).

The results for dynamic photoacclimation processes showed a general trade-off between
light quality and intensity, and also all related light factors (e.g. Kd(PAR), Zeu, Zumixl), which
is difficult to find in experimental studies, through which photoacclimation has been
discussed for many years (Schofield, Prezelin & Johnsen, 1996; Brunet et al., 2014; Gorai
et al., 2014). Experimental studies are generally performed with monocultures growing in
the comfort of laboratories for generations and rarely with natural communities using
conventional photosynthetic parameters. These cultures are subjected to photon flux of
different wavelengths and/or intensities, with different frequencies of variation, different
daylight cycles, etc. Experiments often consider the controlling variables separately but
combining them simultaneously seems relevant for understanding processes of
photoacclimation to light variations in the field, as discussed by Combe et al. (2015) in a
modeling study.
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