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ABSTRACT
Although null hypothesis testing (NHT) is the primary method for analyzing data in
many natural sciences, it has been increasingly criticized. Recently, approaches based
on information theory (IT) have become popular and were held by many to be
superior because it enables researchers to properly assess the strength of the evidence
that data provide for competing hypotheses. Many studies have compared IT and
NHT in the context of model selection and stepwise regression, but a systematic
comparison of the most basic uses of statistics by ecologists is still lacking. We used
computer simulations to compare how both approaches perform in four basic
test designs (t-test, ANOVA, correlation tests, and multiple linear regression).
Performance was measured by the proportion of simulated samples for which each
method provided the correct conclusion (power), the proportion of detected effects
with a wrong sign (S-error), and the mean ratio of the estimated effect to the true
effect (M-error). We also checked if the p-value from significance tests correlated to a
measure of strength of evidence, the Akaike weight. In general both methods
performed equally well. The concordance is explained by the monotonic relationship
between p-values and evidence weights in simple designs, which agree with
analytic results. Our results show that researchers can agree on the conclusions
drawn from a data set even when they are using different statistical approaches.
By focusing on the practical consequences of inferences, such a pragmatic view of
statistics can promote insightful dialogue among researchers on how to find a
common ground from different pieces of evidence. A less dogmatic view of statistical
inference can also help to broaden the debate about the role of statistics in science to
the entire path that leads from a research hypothesis to a statistical hypothesis.

Subjects Ecology, Statistics
Keywords AIC, Likelihood, M-error, Model-based inference, Null hypothesis testing, Power,
p-Value, S-error, Statistical inference, Statistical misuse

INTRODUCTION
Null hypothesis testing (NHT) has been the primary statistical method for drawing
conclusions from data in natural sciences since the mid-1920s (Huberty, 1993).
The purpose of NHT was originally to protect researchers from taking noise as a true
effect (Mayo & Spanos, 2011; Gelman & Carlin, 2014). The probability of making such a
mistake is gauged by the p-value calculated from a model of absence of effects (the null
hypothesis). Accordingly, a model-driven definition of p-values was recently provided by
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the American Statistical Society: “the probability under a specified statistical model that a
statistical summary of the data (…) would be equal to or more extreme than its observed
value” (Wasserstein & Lazar, 2016). However, p-values are frequently misinterpreted as
evidence about the models themselves (Cohen, 1994; Royall, 2000). The most common
misunderstandings are taking p-values as the probability that the null hypothesis is true, as
how improbable the alternative hypothesis is, or as a measure of the effect strength
(Cohen, 1994; Greenland et al., 2016; Wasserstein & Lazar, 2016). Thus, in a broad sense,
NHT is an error-control procedure that has been widely misused to express the support
data provides for a given hypothesis or model. Although this criticism is not new
(see Cohen, 1994), it has been recently used to challenge not only NHT, but the body of
scientific knowledge that has been acquired using NHT (Ioannidis, 2005; Nuzzo, 2014).

More recently the information theoretic (IT) approach has been vigorously championed
as a response to these problems. Recent reviews have presented IT as the proper approach
to assess the support data gives to competing models, and popularized the criticisms to
the NHT among biologists (Burnham & Anderson, 2002; Johnson & Omland, 2004).
Within the IT framework, one elaborates multiple hypotheses about the problem at
hand and proposes a statistical model to express each one. A measure of the relative
information loss resulting of each model is then used to identify which models are the best
approximations of the data. The central concept is likelihood, which is any function
proportional to the probability that a model assigns to the data. The likelihood function
expresses the degree to which the data supports each model, and inference in IT is
used to find the best supported model (Edwards, 1972; Burnham & Anderson, 2002).
Although this approach is more used in the framework of model selection, Burnham &
Anderson (2002) advocate that it has a much broader range of uses, encompassing all
types of NHT analyses done today. The authors state that NHT is a poor method of
analyzing data and strongly emphasize the use of the IT approach for every type of analysis
in ecology.

These ideas elicited an intense discussion on the advantages of substituting NHT by the
IT approach in recent years. Many authors have compared both methods using real
and simulated data (Whittingham et al., 2006; Glatting et al., 2007; Murtaugh, 2009;
Freckleton, 2011; Lukacs, Burnham & Anderson, 2010), and raised philosophical and
theoretical issues (Johnson & Omland, 2004; Steidl, 2006; Garamszegi et al., 2009);
some have also identified theoretical or usage problems arising from the IT approach
(Anderson & Burnham, 2002; Guthery et al., 2005; Lukacs et al., 2007; Mundry, 2011;
Galipaud et al., 2014), while others highlighted the importance of maintaining both
approaches in practice (Richards, 2005; Stephens et al., 2005; Stephens et al., 2007).

Most of these works, however, have focused on comparing the IT approach to stepwise
regression, a traditional technique for model selection in the NHT approach. Nevertheless,
there is a long history of studies on the shortcomings of stepwise regression (Quinn &
Keough, 2002), and many traditional problems in NHT, particularly in stepwise regression,
also appear when using the IT approach (Hegyi & Garamszegi, 2011; Mundry, 2011).
Proponents of the new framework based on the IT approach, however, do not advocate the
use of the method only as a substitute for traditional stepwise regression, or for more
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complex modeling situations. Instead, they view NHT as a whole as a poor method with
much less inferential power than the IT approach (Anderson, 2008). To compare the
IT approach to a technique already shown to be poor, as has been done for stepwise
regression, is not a productive way to evaluate the advantages of the proposed new
framework, if there are any. Furthermore, model selection is the home territory of IT
approaches, while a less appreciated topic is the use of the p-value to reject null hypotheses
in standard NHT designs such as t-tests, ANOVA or linear regression. In these
paradigmatic cases, p-values are functions of the IT measures of evidence (Edwards, 1972;
Murtaugh, 2014), suggesting that both approaches would lead to the same conclusions.
However, as both approaches rely on asymptotic theories (Aho, Derryberry & Peterson,
2017), we need to check their congruence with the sample sizes usual for each knowledge
area. The analytic correspondence of the IT and NHT approaches reveal important
differences in asymptotic convergence in some simple cases (Fig. S1). For more
complicated designs and realistic situations and also to estimate type-S and type-M
errors (Gelman & Carlin, 2014, see below), computer simulations offer a straightforward
way to make such comparisons.

Meanwhile, despite all the criticisms, NHT is still widely used and taught in many
research disciplines, including ecology (Stanton-Geddes, De Freitas & De Sales Dambros,
2014; Touchon & McCoy, 2016; Wasserstein & Lazar, 2016). By progressing while using a
technique that is the subject of many criticisms, researchers might be demonstrating
that they can achieve their goals without worrying too much about philosophical
controversies (Mayo & Cox, 2006). Practicing scientists might therefore feel they can agree
on the conclusions drawn from a data set even if they use different statistical approaches
(e.g. Silberzahn et al., 2018). One obvious reason for such a pragmatic agreement is the
equivalence of the conclusions using the NHT and IT approaches. The aim of this study is
to test such agreement using computer simulations to run pragmatic comparisons of the
NHT and the IT methodologies in standard, realistic designs for ecological studies.
Pragmatic criteria assign equivalence to any outcome of equal practical consequence,
despite differences in the causes (Hookway, 2016). As with any phenomenological
approach, pragmatic conclusions are context-dependent and so the context must be clearly
stated. Therefore, our main question is whether statistical approaches that differ in theory
can lead to the same conclusion under the realistic conditions often seen in the field or
in the laboratory and in cases in which both approaches are possible. Specifically, we asked
if there is any difference in the conclusions drawn from data traditionally analyzed with
t-tests, ANOVA, correlation tests, or linear regression when analyzed with the IT
approach. We also assessed whether the use of p-values to express the strength of evidence
of the conclusions led to incorrect evaluations of the support provided by the data.

Hereafter we will call a rightful or correct conclusion a result from a statistical analysis
that accords with the true model. The probability of detecting such effects (power) is
the usual means of gauging how frequently significance tests produce accurate conclusions.
Nevertheless, a significant effect can still lead to a wrong conclusion because the estimated
effect can have the opposite sign or an inflated magnitude in the sample. Gelman &
Carlin (2014) defined these errors as type-S and type-M and showed that their rates
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increase as the test power decreases. These two types of errors have recently gained more
attention in ecology (Lemoine et al., 2016; Cleasby et al., 2021). We thus combined test
power, type-S and type-M errors to evaluate the performance of the IT and NHT
approaches in providing accurate conclusions regarding statistical effects.

METHODS
We compared NHT and IT approaches for four standard analysis designs in ecology:
(i) unpaired t-test design; (ii) single-factor ANOVA design; (iii) correlation design; and
(iv) multiple linear regression design. For each of these designs, we sampled values from
the distributions assumed by each design (univariate Gaussian for t-tests and ANOVA,
and bi-variate Gaussian for correlation tests and multiple linear regressions, details below).
We then performed NHT and IT procedures with the simulated samples and compared
the results of each with regard to the probability of achieving a correct conclusion, and
the magnitude of M-errors and S-errors (sensu Gelman & Carlin, 2014, details below).

In all cases the simulated samples were defined by three parameters: the standard
deviation of the sampled Gaussian distributions, the size of the samples, and the true
effect size. The true effect is the value of the statistic of interest (e.g., the t-value or the
correlation coefficient) that would be observed in an infinitely large sample (Gelman &
Carlin, 2014). In our simulations the true effect was defined by the parameters of the
sampled Gaussian distributions (e.g., the difference between the means of the two sampled
Gaussian for t-test). We standardized the true effects on sample standard errors to make
effects comparable across designs (Lipsey & Wilson, 2001). The expressions for these
standardized true effect size (henceforth used interchangeably with “effect size” or simply
“effect”) for each analysis design are provided below in the descriptions of the simulations
of each design.

We used Latin hypercube sampling to build 2,000 combinations of parameters
and sample sizes from uncorrelated uniform distributions (Chalom & Prado, 2016).
The sample sizes ranged from 10 to 100 and effect sizes and standard deviations ranged
from 0.1 to 8. Thus, our combinations are hypercube samplings of parameter spaces
that cover typical sample sizes of studies in ecology, and small to large effect sizes
within a wide range of variation of data distributions. For each of these combinations we
repeated the simulation 10,000 times. We also repeated the same procedures to run 10,000
simulations with 2,000 unique combinations of standard deviations and sample sizes
for the case of zero effect size, in order to simulate a situation when the null hypothesis was
true.

For every analysis simulation, we extracted the proportion of the simulations that
yielded a correct conclusion. In the NHT approach, such measurements were the
proportion of analyses that resulted in a p value lower than 0.05 if H0 was false, and
higher than 0.05 otherwise. For the IT approach, we fit by maximum likelihood (i.e. by
minimizing the sum of squares of residuals) the Gaussian models that express the null and
alternative hypothesis for each design, as detailed below. We then considered a correct
conclusion if the model that expressed the correct hypothesis was selected. To decide
which model to select, however, we took into consideration the bias of AIC to select models
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with uninformative parameters (Teräsvirta & Mellin, 1986). This problem arises when the
true model is included in the selection procedure, along with models that provide the same
fit but have additional uninformative parameters (Aho, Derryberry & Peterson, 2014).
As this is the case in our simulations for ANOVA and linear regression (see below and in
Appendices), we identified the model with fewer parameters that was among the models
with ΔAIC < 2 chosen using the IT approach (Arnold, 2010).

To estimate the S-error rate and M-error size (Gelman & Carlin, 2014) from each
approach, we used the subset of simulations in which some effect was detected by NHT
or IT. We estimated type-S error rate as the proportion of this subset in which the detected
effect had the opposite sign of the true effect. The expected type-M error was estimated as
the mean ratio between the estimated effects and the true effect value in the subset of
simulations defined above.

In the appendices we have provided the functions in R (R Development Core Team,
2016) that we created to run the simulations and the R scripts of all simulations and
analyses.

t-test designs
We simulated an unpaired t-test design by drawing samples from two Gaussian
distributions that differed in their means, but had the same standard deviation. One of the
distributions had a mean of zero. The standardized effect size was the true t-value, which in
this case is:

Et ¼ l

r
ffiffiffi
2
N

q (1)

where µ is the distribution mean which is allowed to be different from zero, and σ and N
are the common standard deviations of both distributions and common samples sizes,
respectively.

For the NHT approach, we calculated the t-value estimated from the samples and its
corresponding p-value. For the IT approach, we calculated the Akaike Information
Criterion corrected for small samples (AICc, Burnham & Anderson, 2002) of the two
Gaussian linear models that express the null hypothesis and the alternative hypothesis.
We recorded as correct conclusions of NHT the simulations in which p < 0.05 when Et ≠ 0
and the simulations in which p > 0.05 when Et = 0. Accordingly, we recorded as
correct conclusions of IT the simulations in which the model that expressed the correct
statistical hypothesis was selected.

ANOVA designs
We simulated three samples from Gaussian distributions to represent measures obtained
from three experimental groups. All distributions had the same standard deviations, but
the true mean of one of the distributions differed by a certain amount from the mean of
the other two distributions, which was set to zero. We expressed the true standardized
effect size in this case as an extension of the true t-value:
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EANOVA ¼ l

r
ffiffiffi
3
N

q (2)

For the NHT approach, we used the F-test to test the null hypothesis. If the null
hypothesis was rejected, a post-hoc Tukey’s test was used. For the simulations when the
true difference was not zero, the conclusion was considered correct only if the three
p-values of the Tukey’s test agreed with the simulation. No Tukey’s test was used when the
difference between means was set to zero. In those situations, a non-significant F-test
was considered a correct conclusion and a significant one was considered a wrong
conclusion.

For the IT approach we fit five linear Gaussian models to express all possible statistical
hypotheses regarding the differences among the three experimental groups. Of these
models, one had a single parameter representing the means of all the groups expressing the
null hypothesis; three had two parameters for means, which allowed one group mean
to be different from the other two; and one had a parameter for each group mean
expressing the hypothesis that all group means differed. The values of AICc for each model
were then calculated and we took as a correct conclusion the simulations in which the
selected model agreed with the simulated situation.

Correlation designs
For the correlation design, samples of paired variables were taken from a bivariate normal
distribution with correlation parameter ranging from zero to positive values. The true
standardized effect expression in this case was the correlation parameter expressed as a
t-value (Lipsey & Wilson, 2001):

Er ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 2
1� q2

s
(3)

where ρ is the correlation of the bivariate Gaussian distribution from which the samples
were drawn.

For the NHT approach, the p-value of the Pearson correlation coefficient of the two
variables were calculated. For the IT approach, two models were fit. The first corresponded
to the null hypothesis that the paired values come from a bivariate normal distribution
with correlation parameter set to zero. The alternative hypothesis was represented by a
model of a bivariate normal distribution with the correlation as a free parameter.

Multiple linear regression designs
The multiple linear model designs had three variables: the response variable (Y), and two
uncorrelated predictor variables (X1 and X2). The response variable was a linear function of
X1 plus an error sampled from a Gaussian distribution with zero mean and standard
deviation σ:
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Y ¼ b0 þ b1X1 þ e; e�Nð0;rÞ
The standardized true effect size can thus be expressed as the standardized linear

coefficient of X1:

Eb ¼ b1
r

ffiffiffiffi
N

p
(4)

For the NHT approach we fitted a multiple linear regression including the additive
effect of X1 and X2 and calculated the p-values of the Walt statistics to test the effect of each
predictor. The probability of correct conclusions was estimated by the proportion of
simulations that yielded a p-value for the X1 corresponding to the correct hypothesis and a
non-significant p-value for the X2 variable. For the IT approach, four models were fit.
The first was an intercept-only model where the expected value of the response Y is
constant. The other models included only the effect of X1, only the effect of X2, or the
effects of both variables. The values of AICc for each model were then calculated and
we took as a correct conclusion the simulations in which the selected model was in
accordance with the simulated situation. To check the effect of collinearity, we repeated
the simulations above forcing a correlation of 0.5 between X1 and X2. As the results did
not show any important difference, we included this additional analysis in the appendices
(See Section S2).

Measuring evidence through p-values
We also explored the relationship between the p-value and the Akaike weight (w), which is
proposed as a true measure of strength of evidence (Burnham & Anderson, 2002).
Ultimately, we wanted to check if there is a pragmatic disadvantage in considering lower
p-values as “less evidence of the null hypothesis”. A monotonic positive relationship
between the p-values and the evidence weights for the model that express the null
hypothesis (wH0) would imply no pragmatic disadvantage. To check the relationship
between the p-value and wH0, we recorded both values for each simulation, for all four
designs. It is important to emphasize that interpreting p-values as strength of evidence is
conceptually wrong (Anderson & Burnham, 2002; Dennis et al., 2019). However, our main
interest here is to understand if interpreting p-values as such, although conceptually
wrong, has any pragmatic disadvantage.

RESULTS
Significance, power, S-errors and M-errors
When the null hypothesis was correct, the NHT approach achieved the nominal
probability of type-I error (a = 0.05) for the t-test, ANOVA, and correlation designs and a
value close to a = 0.1 for linear regression. The IT approach performed slightly better in
the t-tests, correlation and linear regression (Table 1).

When the null hypothesis was wrong, the average proportion of correct conclusions in
the simulations was used to estimate the test power β. For all cases where the NHT
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approach was used, the power was less than β = 0.2 for effect sizes below one, and achieved
β = 0.8 for effect sizes of about 2.8 (Fig. 1), as expected for the Gaussian distribution
(Gelman & Carlin, 2014). The IT approach produced larger estimated power for small
effect sizes in the t-test and ANOVA designs, but in all cases the power of both approaches
converged to β ≈ 1 as the effect size approaches 4.0 (Fig. 1). The IT approach only achieved
this convergence with the additional parsimony criteria to discard models with
uninformative parameters (see Supplemental Information S2).

The exaggeration rate or type-M error was at least 2.0 when effect sizes were about
1.5 standard error units for all test designs and approaches (Fig. 2), and M-errors increased

Table 1 Proportions of type-I error in the simulations, for the Null Hypothesis Tests (NHT) and
information-based model selection (IT).

NHT IT

t-test 0.050 0.044

Correlation 0.050 0.012

ANOVA 0.050 0.112

Regression 0.097 0.091
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Figure 1 The power of null hypothesis tests (NHT, black) and the information-based model selection
(IT, grey) for each testing design, as a function of effect size. Each point is the proportion of the 10,000
simulations of a test instance from which the effect was detected. Each test instance used a different
combination of effect size, standard deviation of the values and sample size.

Full-size DOI: 10.7717/peerj.12090/fig-1
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steeply as the effect size decreased. Thus when an effect below 1.5 was detected, the true
value was exaggerated at least twofold. The IT approach had a slightly lower type-M error
than NHT for the t-test and ANOVA designs for effect sizes below 2. Type-S error
decreased more abruptly than the M-error with the increase of effect size (Fig. 3). In our
simulations the probability that the detected effect is of the wrong sign was of some
concern (larger than 0.1) for effect sizes well below unit, but the IT approach had slightly
larger S-errors at this range than the NHT for the t-test and ANOVA designs (Fig. 3).
In all test designs and both approaches, S and M errors vanished for effect sizes greater
than 1.5 and 2.0, respectively. Collinearity in the linear regression design did not change
none of the patterns described above (Supplemental Information S2).

p-value as a measure of strength of evidence
The relationship between p and evidence weight w was positive and monotonic as
expected. Simulations with larger effect sizes resulted in a small p-value and small evidence
weight for the null hypothesis. Within the range of 0 < p < 0.1, there was little variation
around the trend, despite the wide range of parameters sampled by the hypercube and
used in the simulations (Fig. 4).
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Figure 2 The mean type-M error (exaggeration rate) of null hypothesis tests (NHT, black) and
information-based model selection (IT, grey) for each testing design, as a function of effect size.
Each point represents the simulations of a test instance from which an effect was detected. Each test
instance used a different combination of effect size, standard deviation of the values and sample size and
was simulated 10,000 times. The M-error is the absolute ratio between the estimated effect size and the
true effect size (Gelman & Carlin, 2014), which was estimated from the mean of this ratio for each test
instance. Full-size DOI: 10.7717/peerj.12090/fig-2
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Figure 4 Relationship between the Akaike weight of the null model and the p-value of the null
hypothesis found in simulations of each analysis design. Full-size DOI: 10.7717/peerj.12090/fig-4
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Figure 3 Mean type-S error of Null Hypothesis Tests (NHT, black) and information-based model
selection (IT, grey) for each testing design, in function of effect size. Each point represents the
simulations of a test instance from which an effect was detected. Each test instance used a different
combination of effect size, standard deviation of the values and sample size and was simulated 10,000
times. The S-error is the probability of detecting an effect of an opposite sign of the true effect (Gelman &
Carlin, 2014). For each test instance we estimated S-errors from the proportion of simulations that
detected an effect of the opposite sign. Full-size DOI: 10.7717/peerj.12090/fig-3
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DISCUSSION
Comparing the performance of the two approaches
For all designs we have simulated, the response of the power, the S-error and M-error to
the standard effect size were very similar in the NHT and IT approaches. The increase in
power with effect size for NHT is well known and expected from the consistency of
estimators of the Gaussian distribution (e.g. Edwards, 1972) behind these tests. It had been
also demonstrated using likelihood-ratio tests approximations (Aho, Derryberry &
Peterson, 2017, see also Supplemental Section S1). The lack of consistency of AIC when
alternative models with uninformative parameters are considered has been highlighted
recently (Aho, Derryberry & Peterson, 2014, 2017; Dennis et al., 2019; Leroux, 2019;
Tredennick et al., 2021). This characteristic is due to AIC being created mostly with
prediction in mind (Dennis et al., 2019). This, however, was easily circumvented with the
additional parsimony criteria proposed by Arnold (2010). The relationship between S and
M errors to test power (and thus to effect size) has, to date, received far less attention.
We have shown that this relationship for all four of the Gaussian designs simulated agrees
with those predicted by approximating the distribution of effects to a t-distribution
(Gelman & Carlin, 2014). As the standard effect size (and power) increases, both S and M
errors decrease steeply, but S errors are a concern for effect sizes below one standard error,
which in our simulations correspond to a test power between 0.05 (ANOVA, NHT) to
0.34 (t-test, IT). Accordingly, the exaggeration rate (M error) of twice or more occurred
when the effect size is below 1.5 standard error units, which corresponds to a power value
between 0.16 (ANOVA, NHT) and 0.53 (t-test, IT). These results also showed that the
greater power and lower M-error mean rate of IT at small effect sizes for the t-test and
ANOVA come at the cost of an increased ratio of S-error.

In summary, the performance of IT and NHT were very similar and converged quickly
as standard effect sizes increased, which is caused by an increase in raw effect sizes, sample
sizes or a decrease in standard errors. All these factors increase power, and is largely
recognized that different inference criteria lead to the same conclusions as power increases
(Gelman & Carlin, 2014; Ioannidis, 2005; Button et al., 2013). Focusing on how to obtain
the best estimates of the effects can thus be a more effective contribution to scientific
advancement than to dispute the value of weak inferences obtained with different
statistical approaches (e.g. Gelman & Loken, 2014).. Effect estimates can be improved by
increasing sample sizes or controlling error sources. Our results suggest that test designs
should target a standard effect size of 2.8, which correspond to a test power above 0.8.

Moreover, statistical inference relies on the full sequence of events and decisions that led
to the conclusions presented, which is not just the statistics used nor their power in a given
sampling or experimental design (Gelman & Loken, 2014; Greenland et al., 2016).
The choice of different inference approaches is only a part of this problem but it has
dominated the debate. It might be the time to broaden our concerns to address the whole
path that leads from a research hypothesis to a statistical hypothesis to be evaluated
(Gelman, 2013). Finally, we did not address the issue of the biological relevance of an effect
that was correctly detected, because we assume this task is beyond the purpose of statistics

Castilho and Prado (2021), PeerJ, DOI 10.7717/peerj.12090 11/17

http://dx.doi.org/10.7717/peerj.12090/supp-1
http://dx.doi.org/10.7717/peerj.12090
https://peerj.com/


and should be left to researchers. In many situations, procedures such as model
averaging and effect size statistics can also be used to enhance the predictive power of
models and to support the process of drawing conclusions, and also help reduce type
S-error and type M-error rates. However, assessing how such post hoc procedures could
improve a statistical method is beyond the scope of this article. Here, we deal with the
initial values guiding drawing conclusions (i.e.: p-values and AICcs), as any statistical
procedure done at a later stage would be conditional on those values. Those interested in
how model averaging can enhance predictive power and how this relates to more
traditional techniques are directed to Freckleton (2011).

p-value as a measure of strength of evidence
One of the strongest arguments recently given by the major proponents of the IT approach
against the traditional NHT is that the p-value is not a measure of strength of evidence
in favor of the null hypothesis. Nevertheless, there is a widespread interpretation of
p-values as “more significant” (i.e. less supportive of the null hypothesis) the lower they get.
Furthermore, although an ecologist would hardly discard the null hypothesis based on a
p-value higher than 0.1, values between 0.1 and 0.05 are usually interpreted as moderate
evidence against the null hypothesis (Murtaugh, 2014). The relationship between the
p-value and other statistics taken from the IT approach has been demonstrated before
for the case of nested models in which the sample size is large enough to apply the
log-likelihood ratio test (LRT) (Murtaugh, 2014; Greenland et al., 2016). We extended this
conclusion for the simple designs we evaluated without the assumptions of LRT.
The relationship between p-value and Akaike weights is monotonic positive and was
poorly affected by variations of the simulations, specially at the borderline of significance.

Other authors have already pointed out that for many simple cases there is a monotonic
relationship between p-values and likelihood ratios and thus to evidence weights
(Edwards, 1972; Royall, 2000), by translating standard significance tests into alternative
models with different parameter values (e.g. Fig. S2). Therefore we argue that the
interpretation of p-values as measures of evidence, although conceptually wrong (Edwards,
1972; Cohen, 1994; Royall, 2000), can be empirically useful at least for the standard
significance test designs.

Concluding Remarks
We compared null hypothesis testing and information-theoretic approaches in situations
commonly found by ecologists, considering sample sizes and correlation degrees often
reported in ecological studies and only focusing on the important practical issues of
both methods. The few differences between IT and NHT showed a trade-off between M
and S errors and vanished as the effect size increases. We also showed that, at the
borderline of significance in standard procedures with Gaussian errors, p-values can be
used as a very good approximation of a measure of evidence to the null hypothesis when
compared to the alternative.

The recent statement that NHT is an outdated method for analyzing data is not
supported by our findings. The basic NHT designs we analyzed have been the basis of data
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analyses for generations of ecologists, and still prove to be valuable in the context they were
created (Gelman, 2013; Stanton-Geddes, De Freitas & De Sales Dambros, 2014). Many
criticisms to NHT are valid, but the IT approach has also been correctly criticized and
some of those criticisms are even the same as the ones used to justify NHT as an outdated
technique (Arnold, 2010; Freckleton, 2011; Hegyi & Garamszegi, 2011; Richards,
Whittingham & Stephens, 2011). Besides, for those uncomfortable with the NHT
technique, the IT technique is not the only alternative. Several alternative methods, all
with their own pros and cons, have been proposed (Hobbs & Hilborn, 2006; Garamszegi
et al., 2009), including other indexes derived from the information theory, like the well
known Bayesinan Information Criterion (BIC), which has a different assyntotic behavior
than AIC, being statistically consistent, rather than efficient (Dennis et al., 2019).

As in any simulation study, the generality of the differences found in the performance of
NHT and IT cannot be afforded beyond the parameter space that we have explored.
Nevertheless, the simulations show that insisting on the absolute supremacy of a given
approach is pointless, at least from a pragmatic perspective that seeks agreements in the
findings despite the statistics used. We have shown a simple instance of agreement in
which two statistical approaches in many situations lead to the same conclusions.
In this case we elucidated the causes of the few divergences found, as well as the simple
mathematical relationships that explain the concordances. Whether agreements are
also possible by other means and in more complex designs remains to be evaluated.
Nevertheless, by focusing on the consequences of a given result, a pragmatic view of
statistics has a greater potential to find a common ground from different pieces of evidence
and to promote a more insightful dialogue between researchers.

ACKNOWLEDGEMENTS
Our thanks to Eduardo S. A. Santos and Tadeu Siqueira for their keen suggestions to
previous versions of this paper.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Paulo Inácio Prado has a research grant 2013/19250-7 of São Paulo Research Foundation
(FAPESP) and a scientific productivity grant from CNPq. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Paulo Inácio Prado: 2013/19250-7.
CNPq.

Competing Interests
The authors declare that they have no competing interests.

Castilho and Prado (2021), PeerJ, DOI 10.7717/peerj.12090 13/17

http://dx.doi.org/10.7717/peerj.12090
https://peerj.com/


Author Contributions
� Leonardo Braga Castilho conceived and designed the experiments, performed the
experiments, analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.

� Paulo Inácio Prado conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The R codes are available in GitHub: https://github.com/piklprado/NHTxIT.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.12090#supplemental-information.

REFERENCES
Aho K, Derryberry D, Peterson T. 2014.Model selection for ecologists: the worldviews of AIC and

BIC. Ecology 95(3):631–636 DOI 10.1890/13-1452.1.

Aho K, Derryberry D, Peterson T. 2017. A graphical framework for model selection criteria and
significance tests: refutation, confirmation and ecology. Methods in Ecology and Evolution
8(1):47–56 DOI 10.1111/2041-210X.12648.

Anderson DR. 2008. Information theory and entropy. New York: Springer.

Anderson DR, Burnham KP. 2002. Avoiding pitfalls when using information-theoretic methods.
The Journal of Wildlife Management 66(3):912–918 DOI 10.2307/3803155.

Arnold TW. 2010. Uninformative parameters and model selection using Akaike’s information
criterion. The Journal of Wildlife Management 74(6):1175–1178
DOI 10.1111/j.1937-2817.2010.tb01236.x.

Burnham KP, Anderson DR. 2002. Model selection and multimodel inference—a
practical-theoretic approach. Berlin: Springer.

Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR. 2013. Power
failure: why small sample size undermines the reliability of neuroscience. Nature Reviews
Neuroscience 14(5):365–376 DOI 10.1038/nrn3475.

Chalom A, Prado PI. 2016. pse: parameter space exploration with Latin Hypercubes. R package
version 0.4.6. . Available at https://cran.r-project.org/package=pse.

Cleasby IR, Morrissey BJ, Bolton M, Owen E, Wilson L, Wischnewski S, Nakagawa S. 2021.
What is our power to detect device effects in animal tracking studies? Methods in Ecology and
Evolution 12(7):1174–1185.

Cohen J. 1994. The earth is round (p < .05). American Psychologist 49(12):997–1003.

Dennis B, Ponciano JM, Taper ML, Lele SR. 2019. Errors in statistical inference under model
misspecification: evidence, hypothesis testing, and aic. Frontiers in Ecology and Evolution 7:372.

Edwards AWF. 1972. Likelihood: an account of the statistical concept of likelihood and its
application to scientific inference. Cambridge: Cambridge University Press.

Freckleton RP. 2011.Dealing with collinearity in behavioural and ecological data: model averaging
and the problems of measurement error. Behavioral Ecology and Sociobiology 65(1):91–101.

Castilho and Prado (2021), PeerJ, DOI 10.7717/peerj.12090 14/17

https://github.com/piklprado/NHTxIT
http://dx.doi.org/10.7717/peerj.12090#supplemental-information
http://dx.doi.org/10.7717/peerj.12090#supplemental-information
http://dx.doi.org/10.1890/13-1452.1
http://dx.doi.org/10.1111/2041-210X.12648
http://dx.doi.org/10.2307/3803155
http://dx.doi.org/10.1111/j.1937-2817.2010.tb01236.x
http://dx.doi.org/10.1038/nrn3475
https://cran.r-project.org/package=pse
http://dx.doi.org/10.7717/peerj.12090
https://peerj.com/


Galipaud M, Gillingham MA, David M, Dechaume-Moncharmont F-X. 2014. Ecologists
overestimate the importance of predictor variables in model averaging: a plea for cautious
interpretations. Methods in Ecology and Evolution 5(10):983–991.

Garamszegi LZ, Calhim S, Dochtermann N, Hegyi G, Hurd PL, Jørgensen C, Kutsukake N,
Lajeunesse MJ, Pollard KA, Schielzeth H, Symonds MRE, Nakagawa S. 2009. Changing
philosophies and tools for statistical inferences in behavioral ecology. Behavioral Ecology
20(6):1363–1375.

Gelman A. 2013. Commentary: P values and statistical practice. Epidemiology 24(1):69–72
DOI 10.1097/EDE.0b013e31827886f7.

Gelman A, Carlin J. 2014. Beyond power calculations: assessing type S (sign) and type M
(magnitude) errors. Perspectives on Psychological Science 9(6):641–651
DOI 10.1177/1745691614551642.

Gelman A, Loken E. 2014. The statistical Crisis in science. American Scientist 102(6):460–465
DOI 10.1511/2014.111.460.

Glatting G, Kletting P, Reske SN, Hohl K, Ring C. 2007. Choosing the optimal fit function:
comparison of the Akaike information criterion and the f-test. Medical Physics
34(11):4285–4292 DOI 10.1118/1.2794176.

Greenland S, Senn SJ, Rothman KJ, Carlin JB, Poole C, Goodman SN, Altman DG. 2016.
Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations.
European Journal of Epidemiology 31(4):337–350 DOI 10.1007/s10654-016-0149-3.

Guthery FS, Brennan LA, Peterson MJ, Lusk JJ. 2005. Information theory in wildlife science:
critique and viewpoint. Journal of Wildlife Management 69(2):457–465
DOI 10.2193/0022-541X(2005)069[0457:ITIWSC]2.0.CO;2.

Hegyi G, Garamszegi LZ. 2011. Using information theory as a substitute for stepwise regression in
ecology and behavior. Behavioral Ecology and Sociobiology 65(1):69–76
DOI 10.1007/s00265-010-1036-7.

Hobbs NT, Hilborn R. 2006. Alternatives to statistical hypothesis testing in ecology: a guide to self
teaching. Ecological Applications 16(1):5–19 DOI 10.1890/04-0645.

Hookway C. 2016. Pragmatism. In: Zalta EN, ed. The Stanford Encyclopedia of Philosophy.
Stanford: Metaphysics Research Lab, Stanford University.

Huberty CJ. 1993. Historical origins of statistical testing practices: the treatment of fisher versus
neyman-pearson views in textbooks. The Journal of Experimental Education 61(4):317–333
DOI 10.1080/00220973.1993.10806593.

Ioannidis JP. 2005. Why most published research findings are false. PLOS Medicine 2(8):e124
DOI 10.1371/journal.pmed.0020124.

Johnson J, Omland K. 2004. Model selection in ecology and evolution. Trends in Ecology and
Evolution 19(2):101–108 DOI 10.1016/j.tree.2003.10.013.

Lemoine NP, Hoffman A, Felton AJ, Baur L, Chaves F, Gray J, Yu Q, Smith MD. 2016.
Underappreciated problems of low replication in ecological field studies. Ecology
97(10):2554–2561 DOI 10.1002/ecy.1506.

Leroux S. 2019. On the prevalence of uninformative parameters in statistical models applying
model selection in applied ecology. PLOS ONE 14(2):e0206711
DOI 10.1371/journal.pone.0206711.

Lipsey MW, Wilson DB. 2001. Practical meta-analysis, Applied Social Research Methods
SeriesVol. 49. Thousand Oaks, CA: Sage publications.

Castilho and Prado (2021), PeerJ, DOI 10.7717/peerj.12090 15/17

http://dx.doi.org/10.1097/EDE.0b013e31827886f7
http://dx.doi.org/10.1177/1745691614551642
http://dx.doi.org/10.1511/2014.111.460
http://dx.doi.org/10.1118/1.2794176
http://dx.doi.org/10.1007/s10654-016-0149-3
http://dx.doi.org/10.2193/0022-541X(2005)069[0457:ITIWSC]2.0.CO;2
http://dx.doi.org/10.1007/s00265-010-1036-7
http://dx.doi.org/10.1890/04-0645
http://dx.doi.org/10.1080/00220973.1993.10806593
http://dx.doi.org/10.1371/journal.pmed.0020124
http://dx.doi.org/10.1016/j.tree.2003.10.013
http://dx.doi.org/10.1002/ecy.1506
http://dx.doi.org/10.1371/journal.pone.0206711
http://dx.doi.org/10.7717/peerj.12090
https://peerj.com/


Lukacs PM, Burnham KP, Anderson DR. 2010. Model selection bias and freedman’s paradox.
Annals of the Institute of Statistical Mathematics 62(1):117–125
DOI 10.1007/s10463-009-0234-4.

Lukacs PM, ThompsonWL, Kendall WL, Gould WR, Doherty PF, Burnham KP, Anderson DR.
2007. Concerns regarding a call for pluralism of information theory and hypothesis testing.
Journal of Applied Ecology 44(2):456–460 DOI 10.1111/j.1365-2664.2006.01267.x.

Mayo DG, Cox DR. 2006. Frequentist statistics as a theory of inductive inference. In: Rojo J, ed.
Optimality: The Second Erich L. Lehmann Symposium. Beachwood, Ohio: Institute of
Mathematical Statistics, 77–97.

Mayo D, Spanos A. 2011. Error statistics. In: Prasanta S, Bandyopadhyay MRF, eds. Philosophy of
Statistics, Number 7 in Handbook of Philosophy of Science. Amsterdam: Elsevier, 152–198.

Mundry R. 2011. Issues in information theory-based statistical inference—a commentary from a
frequentist’s perspective. Behavioral Ecology and Sociobiology 65(1):57–68
DOI 10.1007/s00265-010-1040-y.

Murtaugh PA. 2009. Performance of several variable-selection methods applied to real ecological
data. Ecology Letters 12(10):1061–1068 DOI 10.1111/j.1461-0248.2009.01361.x.

Murtaugh PA. 2014. In defense of P values. Ecology 95(3):611–617 DOI 10.1890/13-0590.1.

Nuzzo R. 2014. Statistical errors: P values, the “gold standard” of statistical validity, are not as
reliable as many scientists assume. Nature 506(7487):150–152 DOI 10.1038/506150a.

Quinn GP, Keough MJ. 2002. Multiple and complex regression. In: Quinn GP, Keough MJ, eds.
Experimental Design and Data Analysis for Biologists. First Edition. Cambridge: Cambridge
University Press, 111–154.

R Development Core Team. 2016. R: a language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing. Available at http://www.R-project.org/.

Richards SA. 2005. Testing ecological theory using the information-theoretic approach: examples
and cautionary results. Ecology 86(10):2805–2814 DOI 10.1890/05-0074.

Richards SA, Whittingham MJ, Stephens PA. 2011. Model selection and model averaging in
behavioural ecology: the utility of the IT-AIC framework. Behavioral Ecology and Sociobiology
65(1):77–89 DOI 10.1007/s00265-010-1035-8.

Royall R. 2000. Statistical evidence: a likelihood paradigm. London: Chapman & Hall.

Silberzahn R, Uhlmann EL, Martin DP, Anselmi P, Aust F, Awtrey E, Bahník Š, Bai F,
Bannard C, Bonnier E, Carlsson R, Cheung F, Christensen G, Clay R, Craig MA, Dalla RA,
Dam L, Evans MH, Flores CI, Fong N, Gamez-Djokic M, Glenz A, Gordon-McKeon S,
Heaton TJ, Hederos K, Heene M, Hofelich MAJ, Högden F, Hui K, Johannesson M,
Kalodimos J, Kaszubowski E, Kennedy DM, Lei R, Lindsay TA, Liverani S, Madan CR,
Molden D, Molleman E, Morey RD, Mulder LB, Nijstad BR, Pope NG, Pope B,
Prenoveau JM, Rink F, Robusto E, Roderique H, Sandberg A, Schlüter E, Schönbrodt FD,
Sherman MF, Sommer SA, Sotak K, Spain S, Spörlein C, Stafford T, Stefanutti L, Tauber S,
Ullrich J, Vianello M, Wagenmakers E-J, Witkowiak M, Yoon S, Nosek BA. 2018. Many
analysts, one data set: Making transparent how variations in analytic choices affect results.
Advances in Methods and Practices in Psychological Science 1(3):337–356.

Stanton-Geddes J, De Freitas CG, De Sales Dambros C. 2014. In defense of P values: comment on
the statistical methods actually used by ecologists. Ecology 95(3):637–642
DOI 10.1890/13-1156.1.

Steidl RJ. 2006. Model selection, hypothesis testing, and risks of condemning analytical tools.
Journal of Wildlife Management 70(6):1497–1498
DOI 10.2193/0022-541X(2006)70[1497:MSHTAR]2.0.CO;2.

Castilho and Prado (2021), PeerJ, DOI 10.7717/peerj.12090 16/17

http://dx.doi.org/10.1007/s10463-009-0234-4
http://dx.doi.org/10.1111/j.1365-2664.2006.01267.x
http://dx.doi.org/10.1007/s00265-010-1040-y
http://dx.doi.org/10.1111/j.1461-0248.2009.01361.x
http://dx.doi.org/10.1890/13-0590.1
http://dx.doi.org/10.1038/506150a
http://www.R-project.org/
http://dx.doi.org/10.1890/05-0074
http://dx.doi.org/10.1007/s00265-010-1035-8
http://dx.doi.org/10.1890/13-1156.1
http://dx.doi.org/10.2193/0022-541X(2006)70[1497:MSHTAR]2.0.CO;2
http://dx.doi.org/10.7717/peerj.12090
https://peerj.com/


Stephens PA, Buskirk SW, Hayward GD, Martinez Del Rio C. 2005. Information theory and
hypothesis testing: a call for pluralism. Journal of Applied Ecology 42(1):4–12
DOI 10.1111/j.1365-2664.2005.01002.x.

Stephens PA, Buskirk SW, Hayward GD, Martínez C. 2007. A call for statistical pluralism
answered. Journal of Applied Ecology 44(2):461–463 DOI 10.1111/j.1365-2664.2007.01302.x.

Teräsvirta T, Mellin I. 1986. Model selection criteria and model selection tests in regression
models. Scandinavian Journal of Statistics 13:159–171.

Touchon JC, McCoy MW. 2016. The mismatch between current statistical practice and doctoral
training in ecology. Ecosphere 7(8):e549v1 DOI 10.1002/ecs2.1394.

Tredennick AT, Hooker G, Ellner SP, Adler PB. 2021. A practical guide to selecting models for
exploration, inference, and prediction in ecology. Ecology 102(6):e03336 DOI 10.1002/ecy.3336.

Wasserstein RL, Lazar NA. 2016. The ASA’s statement on p-values: context, process, and purpose.
The American Statistician 70(2):129–133 DOI 10.1080/00031305.2016.1154108.

WhittinghamMJ, Stephens PA, Bradbury RB, Freckleton RP. 2006.Why do we still use stepwise
modelling in ecology and behaviour? Journal of Animal Ecology 75(5):1182–1189
DOI 10.1111/j.1365-2656.2006.01141.x.

Castilho and Prado (2021), PeerJ, DOI 10.7717/peerj.12090 17/17

http://dx.doi.org/10.1111/j.1365-2664.2005.01002.x
http://dx.doi.org/10.1111/j.1365-2664.2007.01302.x
http://dx.doi.org/10.1002/ecs2.1394
http://dx.doi.org/10.1002/ecy.3336
http://dx.doi.org/10.1080/00031305.2016.1154108
http://dx.doi.org/10.1111/j.1365-2656.2006.01141.x
http://dx.doi.org/10.7717/peerj.12090
https://peerj.com/

	Towards a pragmatic use of statistics in ecology
	Introduction
	Methods
	Results
	Discussion
	flink5
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


