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ABSTRACT

Single-cell RNA-sequencing is a rapidly evolving technology that enables us to
understand biological processes at unprecedented resolution. Single-cell expression
analysis requires a complex data processing pipeline, and the pipeline is divided into
two main parts: The quantification part, which converts the sequence information into
gene-cell matrix data; the analysis part, which analyzes the matrix data using statistics
and/or machine learning techniques. In the analysis part, unsupervised cell clustering
plays an important role in identifying cell types and discovering cell diversity and
subpopulations. Identified cell clusters are also used for subsequent analysis, such as
finding differentially expressed genes and inferring cell trajectories. However, single-
cell clustering using gene expression profiles shows different results depending on the
quantification methods. Clustering results are greatly affected by the quantification
method used in the upstream process. In other words, even if the original RNA-
sequence data is the same, gene expression profiles processed by different quantification
methods will produce different clusters. In this article, we propose a robust and highly
accurate clustering method based on joint non-negative matrix factorization (joint-
NMEF) by utilizing the information from multiple gene expression profiles quantified
using different methods from the same RNA-sequence data. Our joint-NMF can extract
common factors among multiple gene expression profiles by applying each NMF under
the constraint that one of the factorized matrices is shared among multiple NMFs. The
joint-NMF determines more robust and accurate cell clustering results by leveraging
multiple quantification methods compared to conventional clustering methods, which
use only a single gene expression profile. Additionally, we showed the usefulness of
discovering marker genes with the extracted features using our method.

Subjects Bioinformatics, Computational Biology, Genomics, Computational Science
Keywords Single-cell, RNA-seq, Non-negative matrix factorization, Clustering

INTRODUCTION

Advances in technology have made it possible to isolate individual cells from a population
of cells and to sequence their transcriptomes at the single-cell level, known as single-cell
RNA-sequencing (scRNA-seq). This technology has reached a surprising level of resolution
that reveals the regulation of gene expression within cells. sScRNA-seq measures gene
expression on a cell-by-cell basis and allows the analysis of the functions and properties of
cells using this information. Many experimental protocols and computational analyses exist
for scRNA-seq, and they have different goals such as differential expression analysis, cell
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clustering, cell classification, and trajectory reconstruction. Therefore, single-cell analysis
forms a pipeline (a series of procedures) that mainly consists of two parts, quantification
of gene expression and downstream analysis depends on the goals. In the quantification
part of a pipeline, gene expression levels measured for each cell (raw sequence data)
are converted to a matrix called the “gene expression profile”. The quantification part
also forms a pipeline including read quality control, adaptor trimming, demultiplexing,
deduplicating using barcodes, mapping to genome, counting transcripts.

One of the objectives of single-cell analysis is to identify cell types by applying
unsupervised clustering and extract a group of characteristic genes for a specific cell
type as marker genes. Clustering is a useful method for the classification and identification
of unknown cell groups and discovering the diversity and subpopulation of known cell
types, and it is a fundamental step in scRNA-seq data analysis. It is the key to understanding
cell function and constitutes the basis of other advanced analyses. Quantification is a critical
factor for the subsequent clustering of analysis results. Different quantification methods
result in different gene expression values even when the same RNA-seq library is processed.
The greatest difference in the quantification methods is using an alignment-based method
or an alignment-free method. As examples of alignment-based methods, short reads
of the RNA-seq library are aligned to a reference genome using alignment tools, such
as Bowtie2 (Langmead ¢ Salzberg, 2012) and STAR (Dobin et al., 2013). Then, the gene
expression values are obtained from the results using gene expression estimation tools such
as RSEM (Li et al., 2010) and Cufflinks (Trapnell et al., 2010). In contrast, alignment-free
tools such as Salmon(Patro et al., 2017) and kallisto(Bray et al., 2016) estimates mRNA
abundances with k-mer counting approach (pseudo-alignment for transcriptome indices).
Depends on the methods and the property of the RNA-seq library, several units of gene
expression values are used such as RPKM (Reads per Kilobase Million), FPKM (Fragments
per Kilobase Million), TPM (Transcripts per Million), UMI (Unique Molecular Identifiers)
counts, and raw read counts. In addition, there are specialized quantification pipelines
for the platform, such as Cell Ranger (Zheng et al., 2017) for 10X Genomics, and mappa
for the ICELLS system. To date, many methods for quantifying gene expression from
RNA-seq library have been proposed; however, a consensus has not yet been reached on
the best quantification method for all data (Costa-Silva, Domingues & Lopes, 2017; Vieth
et al., 2019; Wu et al., 2018). Moreover, since each quantification method has different
measurable genes, conventional analysis methods for cell clustering using gene expression
quantified via only one method are strongly biased.

After quantification, feature selection or dimension reduction is required to analyze the
gene expression profile because it has a large number of rows and columns (cells and genes).
Additionally, single-cell analysis involves some differences among cells (e.g., different gene
expression values derived from different phases in the cell cycle and errors in measurement,
such as missing values), even if these cells belong to the same cell type. For these reasons,
we need a robust and data-driven clustering method for features that reflect variation
in gene expression within individual cells. To date, many unsupervised feature selection,
dimensionality reduction, and clustering methods have been developed (Surn et al., 2019;
Kiselev, Andrews ¢» Hemberg, 2019; Freytag et al., 2018). In particular, SC3 (Kiselev et al.,

Shiga et al. (2021), PeerdJ, DOI 10.7717/peerj.12087 2/18


https://peerj.com
http://dx.doi.org/10.7717/peerj.12087

Peer

2017) and Seurat (Satija et al., 2015) are useful data-driven analysis tools for single cells. SC3
is a clustering method that uses an ensemble of multiple analysis results using the algorithm
based on k-means. Seurat is a method to analyze single cells, and Louvain clustering is used
in cell clustering. Matrix factorization, as a method of unsupervised learning, is another
efficient method for cell clustering and is excellent in data dimension reduction or the
extraction of latent factors. In particular, non-negative matrix factorization(NMF) (Lee
¢ Seung, 1999) is a suitable method for dimension reduction to extract the features of
gene expression profiles because NMF interprets the data as a superposition of the gene
functions and cell characteristics. NMF factorizes a matrix into multiple matrices (basis
and coefficients) under the constraint that all elements are non-negative. The product of
these matrices includes an approximate matrix of the input matrix. NMF is applied to
various real data because of its non-negative feature and has been adapted to microarray
data for clustering or feature extraction (Brunet et al., 20045 Zheng et al., 2011; Nik-Zainal
et al., 2012; Zhang et al., 2012) and scRNA-seq data (Zhu et al., 2017; Wu et al., 2020).
Especially, Shao ¢ Hifer (2017) used LSNMF, using the projected gradient method to
optimize the objective function (Lin, 2007), for single-cell clustering. By performing NMF,
we can analyze more details of genes and cells (e.g., finding marker genes and performing
unsupervised cell clustering) with the feature matrices extracted.

However, these clustering methods do not consider the differences in quantification
methods that are upstream of this series of procedures. We usually observe that different
quantification pipelines produce similar but also different gene expression profiles even
when we apply them to the same RNA-seq library. Consequently, different clusters are
obtained and misunderstanding might be produced. Our objective is to develop a method
that integrates the gene expression profiles from different quantification methods to extract
reliable feature matrices for clustering. Joint-NMF, which performs multiple NMF with
a shared matrix, is one of the most suitable methods for integrating such different but
potentially similar data. Joint-NMF has also been studied for genomic applications, Wang,
Zheng & Zhao (2015) simultaneously decompose multiple transcriptomics data matrices.
Zhang et al. (2012), Yang & Michailidis (2016), Duren et al. (2018), Jin, Zhang ¢ Nie
(2020) integrated heterogeneous omics multi-modal data (e.g., DNA methylation, miRNA
expression, and gene expression) to detect modules, and Fujita et al. (2018) also integrated
multi-omics data to discover biomarkers with a combination of Joint-NMF and pathway
analysis. These methods decompose the data into a shared matrix of “genes x modules”
and some dedicated matrices of “modules x samples” for each omics data. Genes are
regarded as common variables across data matrices and samples are different. In contrast,
we decompose the data into some matrices of “genes x modules” and a shared matrix of
“modules x cells” because the cells included in the gene expression profiles are perfectly
the same in our problem setting.

In this article, we propose SC-JNMF, a novel unsupervised clustering method using
NMEF to eliminate the differences in quantification methods and extract the common
factors over multiple gene expression profiles. The features of the data can be decomposed
into gene-derived factors that contain bias dependent on each quantification method and
common cell-derived factors, and cell clustering can be performed based on these common
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Figure 1 A workflow of SC-JNMF. (i) Creating multiple gene expression profiles using different quan-

tification methods. (ii) Extracting the common factor among these gene expression profiles from the same

RNA-seq library. (iii) Cell clustering using hierarchical clustering with the extracted common factor.
Full-size & DOI: 10.7717/peerj.12087/fig-1

factors to obtain more essential biological information. To our knowledge, this study is
the first to incorporate multiple quantification methods into the clustering analysis of
scRNA-seq data.

MATERIALS & METHODS

The outline of SC-JNMF

We proposed SC-JNMF, a method that extracts latent factors from different gene expression
profiles at the same time using joint-NMF, which can express matrix data as the product of
lower-dimensional matrices, one of which is shared. SC-JNMF extracted the latent factors
in different gene expression profiles using a similar approach to NMF and used them for
cell clustering and gene analysis.

The outline of our method is showed in Fig. 1. We created two different gene expression
profiles using different quantification methods from the same RNA-seq library. Then, we
extracted the common factor using joint-NMF and extended it to perform multiple NMFs
in parallel with two different basis factors Wi, W, (derived from the different methods)
and shared factors H (derived from the original RNA-seq library). Finally, we performed
cell clustering using these extracted factors and any appropriate clustering methods, such as
hierarchical clustering. Although the conventional NMF clustering methods that perform
clustering directly with the factorized matrix strongly depend on the rank, our method
performs robust clustering by using hierarchical clustering.

Quantification and normalization
As the first step of SC-JNMF, we quantified gene expressions with different quantification
pipelines, and obtained a set of gene expression profiles. Parameters and references could
be set as recommended by each quantification pipeline.

For preprocessing before performing joint matrix factorization, we applied a gene filter
to the input data, similar to the SC3 method (Kiselev et al., 2017), and then log,(x +1)
transformed the data. Finally, we normalized the data so that the sum of each gene L! norm
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was 1 because it should be compared the relative expression values between cells for each
gene to perform the cell clustering. This L; normalization is possible to consider smaller
expression values than using the L, norm and to keep the values non-negative.

Joint-NMF

We considered the given data as a non-negative matrix D € Rf *M Non-negative matrix
factorization found the basis matrix W € R{i *k and coefficient matrix H € R'erM , where
all the elements were non-negative, such that these matrix products approximated the

input data matrix.
D~WH (1)

NMF minimized the distance between matrix D and matrix WH. Here, we considered a

Euclidean norm distance. Thus, the objective function that NMF minimizes was as follows:

min L:=|D—WH|%* 2)
W.H>0

Here, we considered a simultaneous matrix factorization of two matrices using NMF. Given
the two input data as non-negative matrices D; € ]RTXM and D, € R{XZXM, joint-NMF
found the basis matrices W, € ]RIX1 kW, e Rﬁsz corresponding to each approximated
input matrix and the common coefficient matrix H € leer , minimizing the distances
between the given matrices and the approximated matrices. In our proposed method,
we added the L1 norm constraint to this objective function for H so that the factorized
shared matrix was sparse. Thus, SC-JNMF found the matrix Wi, W,, H that minimized
the following objective function:
min  L:=|Dy— WiH|%+1[ID:— WoH |5+ _[IH |y (3)

Wi, Wy, H 3,>0 p
where, A is a balance parameter for the losses of reconstruction matrices and A, is a
parameter for row vector sparsity regularization of shared factorized matrix.

We applied a multiplicative update algorithm to optimize the objective function same
as conventional NMF. By applying Jensen’s inequalities to the first and second terms of the

objective function, the function to be minimized could be rewritten as follows:

. ‘171k 2(1rk.j)2
3 . 1,72 a] i,k k’] ( ) H )
wl,vgzr,lgl,mzoL'_Z. D1 = 2D, ZW H +Z ’J"

1,]

. Wlk 2 Hk]
+a Y [ IDYP? 2D”ZW’kH"J+Z( )]k ’
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+A2|H ||y (4)
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We found each element of W, W5, and H that minimized the objective function by
performing partial differentiation.
ik rk,jy\2
oL ijork.i 2W11 (H ’])
T Z(—ZD1 H ]+—cff”‘ (7)
j
ik rrk,jy2
oL ij7rk.i ZWZZ (H ’])
W = klz(—zDz H ]—I-T (8)
2 j 2
i,k\2 7k,
oL ij1arik 2(Wll ) H*J
TS =Y (—2D'w, +—ci’j’k )
i 1
g - o 2(Wi/’k)2Hk’j
, k
+ay (—2Dy'w; +E,T)+Az 9)
7 2
The objective function are minimized when these are 0. Thus, the variable updates
became:
W, =W D\H ! (10)
T HWHTTTT
MD,HT
W, =W, — (11)
M[H[WH]"]
DI Wi 1T+ 1 [D]W,]T —21,/2
H —g2 IT] +11D; i] 2/ (12)
Wl W1H+)\.1W2 W,H
Applications
Cell clustering

The factorized matrices were used to perform highly accurate clustering. In our proposed
method, we used hierarchical clustering (Ward’s method (Ward, 1963), implemented in
SciPy (Virtanen et al., 2020)). In this study, the adjusted Rand index (ARI, implemented in
scikit-learn (Pedregosa et al., 2011)) was used to evaluate clustering performance.
Given a set of n elements (i.e., cells) S={oy,...,0,}, and supposing that U = {u;,..., ug}
and V = {vy,...,vc} represent two different partitions of S, define the following:
1. a, the number of cell pairs which are assigned to the same class in both U and V
2. b, the number of cell pairs which are assigned to different classes by both U and V
The Rand index was calculated by

a+b
Rl =——
()

In addition, the ARI considered adjusting measures of clustering accuracy for chance.

(13)

The ARI was defined using the following formula:
2i(5) -2 (5) 5 (5)/6)
(5) =2 (5) 25 (3)/6)

where, njj = |U;N V]|, n;. = Zjnij and nj= Z,-n,'j.

ARI = (14)
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Table 1 Dataset and quantification methods in previous studies.

Dataset (citaion) Tissue/process Quantification Reference The number The number
of cells of classes

Treutlein Lung epithelium TopHat v2.0.8, mml0 80 5

(Treutlein et al., 2014) Culfflinks v2.0.2

Pollen Brain TopHat v2.0.4, hg19 259 10

(Pollen et al., 2014) RSEM v1.2.4

Segerstolpe Pancrease STAR v2.3.0e, hgl19 2166 12

(Segerstolpe et al., 2016) rpkmforgenes

Xin Pancrease CLC Bio Genomics GRCh37 1492 4

(Xin et al., 2016) Workbench v7.0

Monaco Immune cells Kallisto v0.43.1, GENCODE 114 10

(Monaco et al., 2019) Tximport v1.6.0 Human 26

CellBench (sc_10x_5cl) Lung adenocarcinoma cell lines scPipe v.1.3.0 GRCh38 3918 5

(Tian et al., 2019)

Gene analysis

Our proposed method was used not only for cell clustering but also for gene analysis using
the extracted factors. The factors in the coefficient matrix that showed higher values in
specific clusters than those in other clusters indicated latent factors of the cluster. Therefore,
the same factors in the basis matrices also showed latent factors of the cluster, and the
genes that showed higher values in the basis matrices reflected characteristic features of the
cluster, in other words, marker genes.

RESULTS

To assess the accuracy of our method, we performed cell clustering using five scRNA-seq
datasets and one bulk RNA-seq dataset. In this clustering, we estimated the optimal
parameters (the ranks in matrix factorization) using the trade-off relationship between
sparseness and loss. We also evaluated the effect of the combinations of quantification
methods and the sample size for the clustering accuracy. Additionally, we analyzed more
details of the factorized matrices by showing their relevance to marker genes.

Dataset

We used six different datasets including RNA-seq library and quantified gene expression
levels measured using each method in previous studies (Table 1). Only Monaco dataset
is a bulk RNA-seq, the others are scRNA-seq libraries. Because Monaco dataset is a set of
sorted cell types, it is suitable for the evaluation of clustering accuracy. CellBench is a set
of datasets designed to benchmark various single-cell data analysis. In this study, we used
the dataset named “sc_10x_5cl”, single cells from the mixture of five cell lines. In advance,
we removed any cell types that were unclear in previous studies.

To perform our method SC-JNMF and compare the accuracy of the clustering methods,
We alternatively quantified gene expression values in each cell from the RNA-seq library
using Salmon(v1.0.0) with GENCODE references and annotations (Mouse Release 21/
Human Release 32). Only CellBench dataset was quantified by Using Salmon with Alevin

Shiga et al. (2021), PeerdJ, DOI 10.7717/peerj.12087 7118


https://peerj.com
http://dx.doi.org/10.7717/peerj.12087

Peer

(Srivastava et al., 2019), kallisto with BUStools and STAR with Cell Ranger to process
barcodes in short reads.

In addition, for the first 4 datasets, we also prepared other gene expression profiles
using kallisto(v0.46.2), STAR(v2.7.3), to evaluate our method for the combinations of
quantification methods and the sample size.

Settings of clustering methods

We compared the accuracy of cell clustering using our proposed method to that obtained
using other major unsupervised clustering methods, including LSNMF (Lin, 2007; Zitnik
& Zupan, 2012), SC3 (Kiselev et al., 2017), and Seurat (Satija et al., 2015).

For our proposed method, each run consisted of ten runs and extracted an ARI
score of the top combined rank in terms of sparseness and loss (the top ranking of
sparseness is maximum and the top ranking of loss is minimum). The rank was determined
according to the results of our experiment described in the Supplemental Information
and Fig. S1 as follows: Treutlein, k = 5; Pollen, k = 8; Segerstolpe, k = 25; Xin, k = 16;
Monaco, k = 8; CellBench, k = 5. In addition, we determined the regularization parameter
A1 = |geneset 1|/|geneset2|. Hierarchical clustering could not determine the number of
clusters; therefore, we set the same number reported in previous studies in advance.

In the LSNMF method, similar to our joint-NMF, classification by hierarchical clustering
was performed using a matrix of factors of the cells, and the rank and the number of clusters
were set to the same values as ours. SC3 method was performed with the default parameters.
For LSNMF and SC3, each run was performed ten times, considering random initial values.
For Seurat, we plotted only the highest ARI score in the runs as the resolution parameter
in the FindClusters function was increased from 0 to 1 in 0.1 steps. The parameters of the
FindNeighbors function were set to the default values (dims = 1:10, k.param = 20).

Accuracy of cell clustering

Figure 2 shows the ARI score of the original (quantified previously) and alternative
(quantified using Salmon) data for each clustering method. We ran a two-way experiment
using A, =1 and X, = 10.

In the Pollen, Xin, and CellBench datasets, our proposed method performed accurate
cell clustering. In contrast, in the Treutlein, Segerstolpe, and Monaco datasets, the ARI
score of the proposed method was higher than that of LINMEF, but it was not the highest
score. Additionally, the resulting clusters of our method were stable compared to the
conventional NMF method (except for the CellBench dataset).

Comparison of quantification methods in SC-JNMF

SC-JNMEF performed cell clustering using one or two gene expression profiles. In this study,
we compared the combinations of quantification methods (kallisto, STAR, Salmon) by
performing cell clustering and calculating ARI using SC-JNMF. To evaluate the impact of
“joint” NMF, we also performed factorization and clustering using a single gene expression
profile with setting to the parameter A; = 0. We ran SC-JNMF repeatedly for ten trials with
random initial values and the parameter 1, = 10.
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Figure 2 The accuracy (ARI) of cell clustering in each method. For comparison methods, we performed
experiments using the original gene expression profile (quantified previously) and alternative gene expres-
sion profile (quantified using Salmon). For our proposed method, we performed the experiment in two

ways with different regularization parameters (A, =1 and 1, = 10).
Full-size Gl DOI: 10.7717/peer;j.12087/fig-2

Figure 3 shows the ARI of the cell clustering using SC-JNMF in each quantification
method and their combination. As a result, for each dataset, the accuracies of kallisto &
STAR and Salmon & STAR combination outperformed using the single quantification
method. The accuracy of Salmon & kallisto combination was lower than that of other
combinations.

Additionally, we counted the frequency of correlation coefficients for each cell and
each gene in each dataset and combination (Fig. 4). In Salmon & kallisto combination, the
correlation coefficients were inclined toward a higher value than the other combinations.
These results indicated that SC-JNMF had a lower accuracy when using similar gene
expression profiles (e.g., Salmon & kallisto combination). Therefore, two gene expression
profiles with different properties, having a lower correlation of cells and genes, were suitable

for SC-JNMF.

Size effect for SC-JNMF and NMF
To further understand the benefit of NMF-based methods, the effect of sample size (the

number of cells in the RNA-seq library) against clustering accuracy was evaluated. We
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randomly subsampled the 25%, 50%, and 75% cells from gene expression profiles, and ran
SC-JNMF (A, =10) and LSNMF. Each trial was performed ten times.

Figure 5 shows the ARI of the cell clustering using LSNMF and SC-JNMEF for each
dataset and subsample rate. As a result, for each dataset, the accuracies of both LSNMF
and SC-JNMF were increased depends on the subsample rate. This result indicated that the
methods based on NMF benefit more from a dataset including a larger number of cells.

Gene analysis using factorized matrix

We found marker genes of the Xin dataset using factorized matrices. The Xin dataset
contained data on 1492 single cells and four classes (alpha, beta, delta, and PP) in the
pancreas. We showed the results in Fig. 6. The factor of the coefficient matrix showed some
characteristic patterns in each cell cluster (e.g., Factor 2 and Factor 5 showed higher values
in delta and PP cells) (Fig. 6A). Next, we calculated the correlation of factors between the
basis matrices in the common genes (Fig. 6B). The factors in the basis matrices showed
a similar tendency. We also showed the loadings of marked factors for delta cells in the
coefficient matrix in Fig. 6C. Almost all genes showed similar factor loadings between basel
and base2; however, we confirmed that some of the genes only observed in either gene
expression profile also had high values. We also showed the marker genes of delta cells
detected using Scanpy Wolf, Angerer ¢~ Theis (2018) in the scatter plot. The factor loadings
of these genes tended to be higher than those of others, regardless of whether the gene was
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Figure 6 Gene analysis of the Xin dataset using SC-JNMF. (A) A heatmap of the common coefficient
matrix generated using SC-JNMF. (B) The correlation of the factor loadings in genes common to the ba-
sis matrix1 and basis matrix2. (C) “factor 2” loadings of each gene in basel and base2 and marker genes
of delta cells in original and alternative gene expression profiles detected using Scanpy (Wolf, Angerer ¢
Theis, 2018).

Full-size Gl DOI: 10.7717/peerj.12087/fig-6

observed in both gene expression profiles or not. All factors of Xin dataset were shown in
Fig. S2.

DISCUSSION

Thus far, we have shown the possibility that our unsupervised clustering method had high
accuracy when using the differences in gene expression quantification methods compared
with previous studies. However, the proposed method showed worse accuracy than SC3
in the original Treutlein dataset, as well as Seurat in the original Segerstolpe dataset, and
showed differences in the accuracy due to the differences in regularization parameters in
the Pollen dataset. Treutlein and Pollen datasets have fewer cells than the others, which
was one of the most important features of our experiments. Dataset size is an important
factor (common to machine learning approaches) for high accuracy, and this characteristic
is also applied to our method.

We showed the effective combinations of quantification methods by comparing the
accuracy of cell clustering for each combination. In particular, we suggested that the
combination of gene expression profiles that have similar properties (e.g., Salmon &
kallisto) had lower accuracy in SC-JNMF. Compared to the combination, including STAR
that maps RNA-seq reads to a reference genome, Salmon and kallisto are similar methods
in the quantification algorithm, as these are alignment-free quantification methods.
Therefore, these gene expression profiles have similar properties. In SC-JNMF using
similar gene expression profiles, it is difficult to separate common factors derived from
cells (H) and factors derived from genes (W7, W;). Meanwhile, although it has been
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reported that the pseudo-alignment method loses many reads, leading to a lower mean
expression (Vieth et al., 2019), it is possible to improve the clustering performance by
incorporating them into our method with the other quantification method.

We presented more details about the characteristics of the factorized matrix and the
relationships of marker genes. The coefficient matrix showed characteristic factors in each
cell cluster, and both basis matrices had similar factors. The marker genes of a cell cluster
showed high factor loadings in the basis matrices that characterized a specific cell cluster
in the coefficient matrix, regardless of including both gene expression profiles or only one.
In other words, factor loadings in basis matrices that characterize a specific cell cluster in
the coefficient matrix are related to the marker genes for that cluster. This result suggested
that genes showing high factor loadings in the basis matrices probably had some important
features in the cluster with high factor loadings in the coefficient matrix. In particular,
we should pay particular attention to those genes observed only in either gene expression
profile because they are not considered in conventional methods.

In summary, our method is effective in the following cases.

e The number of cells is sufficient large.
e Different quantification methods yield gene expression profiles with different
characteristics.

Meanwhile, there are some limitations. As shown in the result of CellBench dataset,
the number of cells is quite large and the nature of the cell type is well defined, jointless
NMEF gives sufficiently good results. In such a case, our joint-NMF may deteriorate the
stability of the solution. Moreover, we also observed cases that the joint-NMF worsened
the accuracy (“salmon & kallisto” combination in Pollen dataset, Fig. 3), although the
effect of the “joint” was either better or unchanged in many cases. It should be avoided to
input expression profiles quantified by similar approaches.

CONCLUSION

We proposed SC-JNMF, which performs cell clustering using common factors extracted
from multiple gene expression profiles quantified using different methods. As a result,

it is possible to perform robust analysis compared with the case in which only a single
quantification method is used because it is unnecessary to consider the differences in gene
expression profiles. The accuracy (ARI) of cell clustering obtained using our method was
higher than that of other major clustering methods. Additionally, we showed that the
combination of different quantification methods increases the accuracy of cell clustering
compared to that of a similar quantification. Moreover, we showed the details of the
extracted factors. The genes characteristic to specific cell groups (marker genes) showed
remarkable factor loadings in terms of the factorized matrices; in other words, these results
suggest a potential for identifying important genes in the dataset. Some genes may not
be counted depending on the quantification methods used; they can be detected using
multiple gene expression profiles generated using different quantification methods and
SC-JNMF if they are potential markers.
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