# Cbl upregulates cysH for hydrogen sulfide production in SmpB deletion to survive under the nutrient deficiency stress of Aeromonas veronii (#59116)

First submission

#### Guidance from your Editor

Please submit by 19 May 2021 for the benefit of the authors (and your \$200 publishing discount).



#### **Structure and Criteria**

Please read the 'Structure and Criteria' page for general guidance.



#### **Custom checks**

Make sure you include the custom checks shown below, in your review.



#### Raw data check

Review the raw data.



#### **Image check**

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

#### **Files**

Download and review all files from the <u>materials page</u>.

- 4 Figure file(s)
- 1 Table file(s)
- 2 Raw data file(s)



#### **DNA** data checks

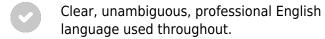
- Have you checked the authors data deposition statement?
- Can you access the deposited data?
- ! Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

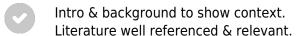
## Structure and Criteria

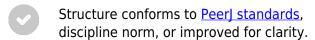


#### Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:


- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

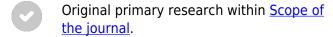

When ready <u>submit online</u>.


#### **Editorial Criteria**

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

#### **BASIC REPORTING**








Figures are relevant, high quality, well labelled & described.

Raw data supplied (see <u>PeerJ policy</u>).

#### **EXPERIMENTAL DESIGN**



Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.

Rigorous investigation performed to a high technical & ethical standard.

Methods described with sufficient detail & information to replicate.

#### **VALIDITY OF THE FINDINGS**

Impact and novelty not assessed.

Meaningful replication encouraged where rationale & benefit to literature is clearly stated.

All underlying data have been provided; they are robust, statistically sound, & controlled.

Speculation is welcome, but should be identified as such.

Conclusions are well stated, linked to original research question & limited to supporting results.



# Standout reviewing tips



The best reviewers use these techniques

|  | n |
|--|---|
|  | N |

# Support criticisms with evidence from the text or from other sources

## Give specific suggestions on how to improve the manuscript

## Comment on language and grammar issues

## Organize by importance of the issues, and number your points

# Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

#### **Example**

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.



# Cbl upregulates cysH for hydrogen sulfide production in SmpB deletion to survive under the nutrient deficiency stress of Aeromonas veronii

Corresponding Author: Zhu Liu Email address: zhuliu@hainu.edu.cn

Endogenous hydrogen sulfide ( $H_2S$ ) is generated in many metabolism pathways, and has been recognized as a second messager against antibiotics and reactive oxygen species (ROS). In *Aeromonas veronii*, Small Protein B (SmpB) plays an important role in resisting stress. The absence of *smpB* could trigger sulfate assimilation pathway to adapt the nutrient deficiency, of which was mediated by up-regulation of *cbl* and *cys* genes and followed with enhancing  $H_2S$  production. To figure out the mutual regulations of *cbl* and *cys* genes, a series of experiments were performed. Compared with the wild type, *cysH* was down-regulated significantly in *cbl* deletion by qRT-PCR. The fluorescence analysis further manifested that Cbl had a positive regulatory effect on the promoter of *cysJIH*. Bacterial one-hybrid analysis and electrophoretic mobility shift assay (EMSA) verified that Cbl bound with the promoter of *cysJIH*. Collectively, the tolerance to adversity could be maintained by the production of  $H_2S$  when SmpB was malfunctioned, of which the activity of *cysJIH* promoter was positively regulated by upstream Cbl protein. The outcomes also suggested the enormous potentials of *Aeromonas veronii* in environmental adaptability.

<sup>&</sup>lt;sup>1</sup> Hainan University, Haikou, China



### Cbl upregulates *cysH* for hydrogen sulfide production

2 in SmpB deletion to survive under the nutrient

deficiency stress of Aeromonas veronii

Yidong Zhang<sup>1</sup>, Zebin Liu<sup>1</sup>, Yanqiong Tang<sup>1</sup>, Xiang Ma<sup>1</sup>, Hongqian Tang<sup>1</sup>, Hong Li<sup>1</sup>, Zhu Liu<sup>1</sup> <sup>1</sup> Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China Corresponding Author: Zhu Liu<sup>1</sup> Hainan University, Haikou, Hainan, 570228, China Email address: zhuliu@hainu.edu.cn 



52

#### **Abstract**

- 38 Endogenous hydrogen sulfide (H<sub>2</sub>S) is generated in many metabolism pathways, and has been
- 39 recognized as a second messager against antibiotics and reactive oxygen species (ROS). In
- 40 Aeromonas veronii, Small Protein B (SmpB) plays an important role in resisting stress. The
- 41 absence of *smpB* could trigger sulfate assimilation pathway to adapt the nutrient deficiency, of
- 42 which was mediated by up-regulation of *cbl* and *cys* genes and followed with enhancing H<sub>2</sub>S
- 43 production. To figure out the mutual regulations of *cbl* and *cys* genes, a series of experiments
- 44 were performed. Compared with the wild type, cysH was down-regulated significantly in cbl
- 45 deletion by qRT-PCR. The fluorescence analysis further manifested that Cbl had a positive
- 46 regulatory effect on the promoter of *cysJIH*. Bacterial one-hybrid analysis and electrophoretic
- 47 mobility shift assay (EMSA) verified that Cbl bound with the promoter of *cysJIH*. Collectively,
- 48 the tolerance to adversity could be maintained by the production of H<sub>2</sub>S when SmpB was
- 49 malfunctioned, of which the activity of *cysJIH* promoter was positively regulated by upstream
- 50 Cbl protein. The outcomes also suggested the enormous potentials of Aeromonas veronii in
- 51 environmental adaptability.

#### Introduction

- 53 Aeromonas veronii is widely present in fresh water, sewage, soil and even sea water (Hickman-
- 54 Brenner et al., 1987), which endows with strong resistance to multiple antibiotics (Liu et al.,
- 55 2018). Small Protein B (SmpB) acts as a small RNA binding protein in the trans-translation
- 56 system to help transfer messenger RNA (tmRNA) to rescue the retained ribosomes in bacteria
- 57 (Wali Karzai, Susskind & Sauer, 1999). Also, SmpB performs many significant functions in
- 58 biological regulation. For example, the expression of ribonuclease R (RNase R), an exonuclease
- 59 molecule that recognizes and degrades RNA, depends on SmpB in Streptococcus pneumoniae
- 60 (Moreira et al., 2012). SmpB protein promotes the binding and degradation of RNase R by
- 61 HslUV and Lon in *Escherichia coli* (Liang & Deutscher, 2012). Moreover, SmpB has similar
- 62 effects with the known RNA chaperone proteins such as CrsA and Hfg. The loss of SmpB affects
- 63 4% transcription changes of genes in *salmonella*, of which involves in biological processes,
- 64 including invasion, bacterial movement, central metabolism, lipopolysaccharide (LPS)
- 65 biosynthesis, two-component regulatory system and fatty acid metabolism (Sittka et al., 2007;
- Ansong et al., 2009). In all, SmpB is essential for intra-macrophage proliferation and the strong
- adaptability to stress (Ansong et al., 2009).
- 68 Hydrogen Sulfide (H<sub>2</sub>S) is an unpleasant smell with toxicity (Lindenmann et al., 2010).
- 69 However, the low concentration of H<sub>2</sub>S participates in bacterial defense against reactive oxygen
- 70 species (ROS) and antibiotics-induced oxidative damage (Lindenmann et al., 2010). One of the
- basic H<sub>2</sub>S synthesis includes sulfate assimilation pathway, which is catalyzed by *cysNDC* and
- 72 cysJIH (Shatalin et al., 2011; Kimura, 2014; Wu et al., 2015). In Salmonella typhimurium, the
- 73 expression of cysJIH is regulated by CysB which has 41% amino acid sequence homology with
- 74 Cbl (Iwanicka-Nowicka et al., 2007; Álvarez et al., 2015). Both CysB and Cbl are LysR-type
- 75 transcriptional activator. In sulfur metabolism, Cbl acts as a sensor of the intracellular sulphate
- 76 level, and activates tau and ssu promoter in vivo and in vitro (Van Der Ploeg et al., 1999; Van



90 91

- 77 Der Ploeg, Eichhorn & Leisinger, 2001; Bykowski et al., 2002). In addition, Cbl activates sulfate
- 78 starvation-induced genes under sulfate starvation(Van Der Ploeg et al., 1999). Taking together,
- 79 there may be a potential connection between Cbl and cys genes in sulfate assimilation pathway.
- 80 In Aeromonas veronii, both SmpB and H<sub>2</sub>S play important roles in adverse stress. The absence of
- 81 SmpB induced the generation of H<sub>2</sub>S helping to survive. The transcriptomic analysis revealed
- 82 that both cbl and cys genes were up-regulated in SmpB deletion strain. To clarify the regulatory
- 83 relationship between *cbl* and *cys* genes in sulfate assimilation pathway, Real-time PCR
- 84 experiment and fluorescence analysis were performed, showing that Cbl positively regulated
- 85 *cysH* gene. Furthermore, bacterial one-hybrid system and EMSA verified that Cbl regulated *cysH*
- by binding to the promoter of cysJIH. In brief, Cbl bound and activated cysJIH promoter directly
- 87 to increase H<sub>2</sub>S production, remedying the survival ability after *smpB* deficiency. Our study
- 88 elucidated the strong vitality and adaptability of Aeromonas veronii.

#### **Materials & Methods**

#### 1. Bacterial strains, plasmids and culture conditions

- 92 The bacterial strains and plasmids used in this study were shown in supplemental Table S1. The
- 93 smpB deletion strain of Aeromonas veronii C4 was constructed previously(Liu et al., 2015). The
- 94 derivative Aeromonas veronii C4 strains were grown in LB/M9 medium supplemented with 50
- 95 mg/mL ampicillin at 30°C, and E. coli strains were grown in LB medium supplemented with 50
- 96 mg/mL kanamycin and 25 mg/mL chloramphenicol at 37°C. And all plasmids were sequenced
- 97 for verification.

#### 98 2. H<sub>2</sub>S Detection

- 99 The Pb(Ac)<sub>2</sub> detection (Shatalin et al., 2011) method and WSP5 fluorescent H<sub>2</sub>S probe (Peng et
- al., 2014) were performed for monitoring H<sub>2</sub>S production. Bacteria were grown in M9 at 30°C
- for 48h with Pb(Ac)<sub>2</sub> paper strips, and 5mg/L Na<sub>2</sub>SO<sub>3</sub> was added as a source of sulfur. Pb(Ac)<sub>2</sub>-
- soaked paper strips showed a PbS brown stain as a result of the reaction with H<sub>2</sub>S. The color
- 103 length of 1mm represented 12 μg/L of H<sub>2</sub>S production. After 10 μM WSP5 was added to liquid
- bacterial culture, the samples were incubated at 37°C for 30 min and then washed in PBS buffer
- to remove excess probe. Synergy H1 (BioTek) was used to take fluorescent readings at excitation
- 106 500 nm and emission 533 nm.

#### 107 3. RNA Extraction and qRT-PCR

- 108 The qPCR reaction was conducted with ABI Prism® 7300 (ABI, New York, NY, USA) for
- 109 fluorescent detection utilizing SYBRR® Green real time PCR Master Mix (Toyonbo, Shanghai,
- 110 China). The cDNA was synthesized by RNA reverse transcription reaction and was used as the
- template for real-time PCR. The primers used to monitor expression of the objective genes were
- summarized in supplemental Table S2. Each reaction was performed at least in triplicate. And
- the data was analyzed by the comparative CT method (Schmittgen & Livak, 2008).

#### 114 4. Fluorescence analysis

- 115 The promoter of *cysJIH* was fused with eGFP and inserted into pUC19 plasmid. The *cbl* gene
- was cloned into pTRG plasmid simultaneously. Both the above plasmids were co-transformed



- into E. coli Reporter strain. In the meanwhile, the recombinant pUC19 plasmid and the empty
- pTRG plasmid were co-transformed as the negative control. After bacteria were grown in LB at
- $37^{\circ}$ C, the total amount of 1 OD<sub>600</sub> cells were harvested at interval time. The samples were
- washed with PBS twice, and placed on Synergy H1 (Biotek) for the fluorescent readings at
- excitation 425 nm and emission 525 nm.

#### 122 5. Bacterial one-hybrid analysis

- 123 To identify whether the transcription factor Cbl interacted with the promoter of *cysJIH*, Cbl was
- inserted into pTRG, and the promoter of *cysJIH* was ligated with pBXcmT, following with both
- the recombinant plasmids were cotransformed into *E. coli* Reporter strain. The transformants
- were placed on a selective NM medium plate containing 5 mM 3-amino-1, 2, 4-triazole (3-AT)
- and 12.5 mg/mL streptomycin for incubation at 37°C for 48 h.

#### 128 6. Protein expression and purification

- The cbl gene was inserted into pET28a plasmid and transformed into E. coli BL21 strain. The
- expression and purification were performed according to previous procedure (Bykowski et al.,
- 131 2002).

#### 132 7.Electrophoretic mobility shift assay (EMSA)

- Double stranded DNA probes were radiolabeled with Fluorophore 6-carboxy-fluorescein (FAM)
- and purified by FastPure Gel DNA Extraction Mini Kit (Vazyme). For the EMSA, DNA probe
- was incubated with Cbl protein samples in reaction buffer (10 mM Tris–HCl, 1 mM MgCl<sub>2</sub>, 1
- 136 mM DTT, 40 mM KCl, 0.1 mg/mL BSA, 5% (w/v) glycerol) at 37°C for 30min. After the
- samples were separated using a native 6% native acrylamide gel (Zhang et al., 2020), the gel was
- then exposed to a phosphorscreen and visualized on Typhoon FLA 9500.

#### 139 8. Transcriptome analysis

- 140 To perform the whole-transcriptome analysis, the wild type and *smpB* deletion of *Aeromonas*
- 141 *veronii* veronii C4 were grown in M9 at 30°C for 20h, and 2 OD<sub>600</sub> of cells were collected.
- 142 Illumina HiSeq-X ten based on the service of RNA-Seq Quantification library at BGI-Shenzhen
- 143 (China) was used to obtain the transcriptome sequencings. And the RNA-seq raw data was
- assembled and analyzed by comparing with the translational region of the annotated DNA
- sequence in reference genome (GCA 001593245.1) using HISAT (Kim, Langmead & Salzberg,
- 146 2015). The DESeq. 2 package in R was used for the estimation of fold changes and other
- 147 analysis (Love, Huber & Anders, 2014).

#### 148 9. Statistical analyses

- 149 Statistical significance was determined by t test (two-tailed distribution with two-sample, equal
- variance) when directly comparing two conditions or a one-way analysis of variance (ANOVA)
- 151 followed by pairwise comparisons.

152153

155

#### 154 **Results**

#### 1. Transcriptomic analysis



- Based on the transcriptomic analysis, the deletion of SmpB mainly caused the changes in 20
- biological pathways, including two-component system, sulfur metabolism, plant pathogenic
- bacteria interaction, and phenylalanine metabolism. Sulfur metabolism was the most influential
- on metabolic pathways (Fig.1A).
- 160 In Aeromonas veronii C4, H<sub>2</sub>S synthesis pathway included the sulfate assimilation pathway, the
- organic pathway, and the 3-MST pathway. But compared with others, Aeromonas veronii C4
- 162 lacked cystathionine β-synthase (CBS) in the transsulfuration pathway and cysteine
- aminotransferase (CAT) in the 3MST pathway. The deletion of SmpB mainly up-regulated the
- transcription levels of cysN, cysD, cysC, cysH, cysJ,cysI and cbl (Fig.1B). And these genes were
- mainly involved in sulfate assimilation pathway (Fig.1C). Therefore, we speculated that SmpB
- 166 deficiency was able to increase H<sub>2</sub>S synthesis.
- 2.SmpB deficiency promotes H<sub>2</sub>S biosynthesis and increases the tolerance to oxidative
- 168 stress under nutritionally deficient conditions
- To figure out how sulfur metabolism was affected by SmpB deficiency, H<sub>2</sub>S production was
- measured in rich and deficient nutrition conditions by Pb(Ac)<sub>2</sub> detection test. There is no
- difference between wild type (WT) and *smpB* deletion in a rich medium (LB medium) (Fig.2A).
- 172 Under the condition of nutritional deficiency (M9 medium), the *smpB* deletion produced less
- amount of H<sub>2</sub>S in the early stage of growth, but it enhanced to synthesize H<sub>2</sub>S in the stationary
- stage (Fig.2B). The final H<sub>2</sub>S yield of *smpB* deletion was significantly higher than that of WT.
- 175 This suggested that the absence of SmpB enhanced the synthesis of H<sub>2</sub>S during auxotrophic
- 176 conditions, especially predominant during the stationary phase of bacterial growth. And previous
- study has proved that *smpB* deletion survives better than WT when treated with appropriate
- 178 concentration of H<sub>2</sub>O<sub>2</sub> (Wang et al., 2019). In view of the function of H<sub>2</sub>S in oxidative resistance,
- we speculated that H<sub>2</sub>S was responsible for the strong viability of *smpB* deletion.
- 180 3. Cbl affects the generation of H<sub>2</sub>S
- Using both the classic Pb(Ac)<sub>2</sub> detection test and a fluorescent-based probe WSP5(Zhang et al.,
- 182 2020), we confirmed that, the production of H<sub>2</sub>S in *cbl* deletion strain was significantly lower
- than that of WT in M9 medium (Fig.3A; Fig.3B). And the difference was offset when Cbl
- protein was complemented (Fig.3A; Fig.3B). All the results were consistent with the
- transcriptome data, implying that Cbl had a positive regulatory effect on the synthesis of H<sub>2</sub>S
- 186 under nutritional deficiency.

#### 187 4. Cbl promotes the transcription of *cysH*

- The amino acid sequence of *cbl* gene was highly homologous to the *cysB* family, and CysB was
- proved to binding with the promoter of sulfur reductase (CysJIH) as a transcription factor for
- 190 regulation. Therefore, it was speculated that *cbl* regulated the transcription of genes such as
- 191 cvsH, cvsJ and cvsI. The relative expression of cvsH decreased significantly compared WT with
- 192 cbl deletion by RT-qPCR, while those of *cvsI*, *cvsJ* revealed no differences (Fig.3C).
- 193 Furthermore, the fusion of the promoter *cysJIH* (P*cysJIH*) and eGFP was constructed as the
- indicator plasmid for the fluorescent measurement. When co-expressed with Cbl, the



- 195 fluorescence value was extremely significantly higher than that of the strain containing only
- 196 PcysJIH (Fig.3D). Collectively, Cbl had a positive regulation on PcysJIH.
- 197 5. Cbl regulates downstream cysH by binding to the PcysJIH
- 198 To confirm whether Cbl bound to PcysJIH, the PcysJIH promoter sequence and Cbl coding
- 199 sequence were cloned into pBXcmT and pTGR plasmids respectively, and then co-transformed
- 200 into E. coli XL 1-Blue MRF' reporter strain for bacterial one-hybrid experiment. Only the co-
- 201 expressed strain and the positive control grew on the minimum medium supplemented with 6mM
- 202 3-AT and streptomycin (Fig.4A), suggesting that the strong interaction between PcysJIH and
- 203 Cbl.
- Next PcysJIH was labelled with Fluorophore 6-carboxy-fluorescein (6-FAM) for electrophoretic
- 205 mobility shift assay (EMSA). The Cbl protein reduced the mobility of the 6-FAM-PcysJIH DNA
- probe corresponding to the increased Cbl concentration with the enhanced Cbl–DNA complex
- 207 (Fig.4B). So Cbl protein was able to bind with PcysJIH following with the regulation of H<sub>2</sub>S
- 208 production.
- 209 6. Determination of the binding region of PcysJIH with Cbl protein
- 210 To confirm the binding region of PcysJIH with Cbl protein, we truncated the full length of
- 211 PcysJIH to 150bp and 50bp upstream of transcriptional initiation which were named as
- 212 PcysJIH<sup>150</sup> and PcysJIH<sup>50</sup>. PcysJIH<sup>150</sup> was able to form a complex with Cbl protein, while
- 213 PcysJIH<sup>50</sup> lost the binding ability (Fig.4C). The result suggested that the regions between 50bp
- and 150bp upstream of transcriptional initiation in PcysJIH were responsible for the binding of
- 215 Cbl.
- 216 **Discussion**
- 217 SmpB protein is involved in the regulation of multiple biological processes such as protein
- 218 invasion, bacterial movement, central metabolism, lipopolysaccharide biosynthesis, two-
- 219 component system, fatty acid metabolism, high temperature tolerance, cell cycle, and stress
- response (Shin & Price, 2007; Ansong et al., 2009; Barends et al., 2010). And the destruction of
- 221 SmpB reduces the tolerance and adaptability of bacteria (Ansong et al., 2009).
- 222 H<sub>2</sub>S is able to resist oxidative stress by reacting with reactive oxygen species (ROS), H<sub>2</sub>O<sub>2</sub>, etc.
- or stimulate catalase and superoxide dismutase to scavenging free radicals (Kimura, 2014;
- 224 Mironov et al., 2017). Besides, the oxidative stress effect of H<sub>2</sub>S is also related to the defense of
- bacteria against antibiotics, because many antibiotics also trigger the production of ROS when
- 226 they targeting inhibit their targets (Kohanski et al., 2007). So, the effect of H<sub>2</sub>S in scavenging
- 227 ROS can make it more resistant to antibiotics.
- 228 In our study, the *smpB* deletion of *Aeromonas veronii* C4 was significantly higher in H<sub>2</sub>S
- production than wild type under M9 culture condition (Fig.2B), implying that SmpB deficiency
- enhanced the H<sub>2</sub>S generation. Indeed, *smpB* deletion up-regulated multiple genes in sulfate
- assimilation pathway, including cysN,cysD, cysC, cysH, cysJ,cysI and cbl (Fig.1B; Fig.1C).
- 232 In Salmonella Typhimurium, the promoter of cysJIH (PcysJIH) is regulated by CysB (Álvarez et
- 233 al., 2015), which is homologous with Cbl (Kertesz, 2000). Therefore, we presumed that Cbl was



250

253

254

- responsible for the regulation of cysH, cysJ and cysI in Aeromonas veronii C4. Really, Cbl bound
- to PcysJIH and positively regulated the transcription of cysH (Fig.3D; Fig.4A; Fig.4B; Fig.4C).
- 236 Previously *smpB* deletion exhibits more tolerance to aminoglycosides antibiotic and oxidative
- 237 stress under M9 culture (Fig.2C) (Liu et al., 2018; Wang et al., 2019). Logical, we proposed that
- 238 Cbl-regulated H<sub>2</sub>S generation compensated for the resistance and survival of SmpB damage
- 239 under nutrient deficiencies, contributing to the adaptation and evolution of *Aeromonas veronii*
- against extreme environment.

#### Conclusions

- 242 This study provided the first demonstration for the regulatory between Cbl and cysJIH, and
- 243 innovatively proposed the mechanism of Cbl-mediated H<sub>2</sub>S synthesis to compensate for
- 244 tolerance defects caused by SmpB deficiency. The results expanded the function of Cbl in
- pathogenic bacteria, and systematically explained the the dynamic role of H<sub>2</sub>S in protecting
- bacteria from oxidative stress. These findings provide potential drug targets for aquatic diseases,
- 247 offers theoretical basis for better understanding of bacterial pathogens resistance to
- 248 environmental stress and supplies new ideas for clinical prevention and control of bacterial
- 249 pathogens.

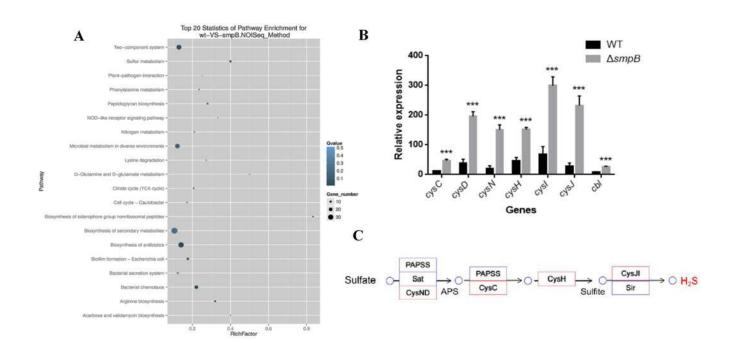
#### Acknowledgements

- 251 This work was supported by the grants from National Natural Science Foundation of China Nos.
- 252 31772887 and 31560021 (to Z.L.)

#### References

- 255 Álvarez R, Neumann G, Frávega J, Díaz F, Tejías C, Collao B, Fuentes JA, Paredes-Sabja D,
- Calderón IL, Gil F. 2015. CysB-dependent upregulation of the Salmonella Typhimurium cysJIH operon in response to antimicrobial compounds that induce oxidative stress.
- 258 Biochemical and Biophysical Research Communications 458:46–51. DOI:
- 259 10.1016/j.bbrc.2015.01.058.
- 260 Ansong C, Yoon H, Porwollik S, Mottaz-Brewer H, Petritis BO, Jaitly N, Adkins JN,
- McClelland M, Heffron F, Smith RD. 2009. Global systems-level analysis of Hfq and
- SmpB deletion mutants in Salmonella: Implications for virulence and global protein translation. *PLoS ONE* 4. DOI: 10.1371/journal.pone.0004809.
- Barends S, Zehl M, Bialek S, De Waal E, Traag BA, Willemse J, Jensen ON, Vijgenboom E,
- Van Wezel GP. 2010. Transfer-messenger RNA controls the translation of cell-cycle and
- stress proteins in Streptomyces. *EMBO Reports* 11:119–125. DOI:
- 267 10.1038/embor.2009.255.
- Bykowski T, Van Der Ploeg JR, Iwanicka-Nowicka R, Hryniewicz MM. 2002. The switch from
- inorganic to organic sulphur assimilation in Escherichia coli: Adenosine 5'-phosphosulphate
- (APS) as a signalling molecule for sulphate excess. *Molecular Microbiology*. DOI:
- 271 10.1046/j.1365-2958.2002.02846.x.

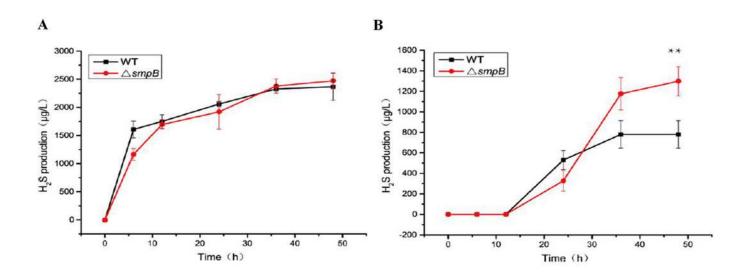
- 272 Hickman-Brenner FW, MacDonald KL, Steigerwalt AG, Fanning GR, Farmer JJ. 1987.
- Aeromonas veronii, a new ornithine decarboxylase-positive species that may cause diarrhea.
- *Journal of Clinical Microbiology* 25:900–906. DOI: 10.1128/jcm.25.5.900-906.1987.
- 275 Iwanicka-Nowicka R, Zielak A, Cook AM, Thomas MS, Hryniewicz MM. 2007. Regulation of
- sulfur assimilation pathways in Burkholderia cenocepacia: Identification of transcription
- factors CysB and SsuR and their role in control of target genes. *Journal of Bacteriology*
- 278 189:1675–1688. DOI: 10.1128/JB.00592-06.
- 279 Kertesz MA. 2000. Riding the sulfur cycle Metabolism of sulfonates and sulfate esters in
- Gram-negative bacteria. FEMS Microbiology Reviews 24:135–175. DOI: 10.1016/S0168-
- 281 6445(99)00033-9.
- 282 Kim D, Langmead B, Salzberg SL. 2015. HISAT: A fast spliced aligner with low memory requirements. *Nature Methods* 12. DOI: 10.1038/nmeth.3317.
- Kimura H. 2014. Production and physiological effects of hydrogen sulfide. *Antioxidants and Redox Signaling* 20:783–793. DOI: 10.1089/ars.2013.5309.
- 286 Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007. A Common Mechanism of
- Cellular Death Induced by Bactericidal Antibiotics. *Cell* 130:797–810. DOI:
- 288 10.1016/j.cell.2007.06.049.
- 289 Liang W, Deutscher MP. 2012. Transfer-messenger RNA-SmpB protein regulates ribonuclease
- R turnover by promoting binding of HslUV and lon proteases. *Journal of Biological*
- 291 *Chemistry* 287:33472–33479. DOI: 10.1074/jbc.M112.375287.
- 292 Lindenmann J, Matzi V, Neuboeck N, Ratzenhofer-Komenda B, Maier A, Smolle-Juettner FM.
- 2010. Severe hydrogen sulphide poisoning treated with 4-dimethylaminophenol and
- hyperbaric oxygen. *Diving and Hyperbaric Medicine* 40:213–217.
- 295 Liu Z, Hu K, Tang Y, Li H, Tang H, Hu X, Ma X, Liu Z. 2018. SmpB down-regulates proton-
- motive force for the persister tolerance to aminoglycosides in Aeromonas veronii.
- Biochemical and Biophysical Research Communications 507:407–413. DOI:
- 298 10.1016/j.bbrc.2018.11.052.
- 299 Liu Z, Liu P, Liu S, Song H, Tang H, Hu X. 2015. Small protein B upregulates sensor kinase
- bvgS expression in Aeromonas veronii. *Frontiers in Microbiology* 6:1–10. DOI:
- 301 10.3389/fmicb.2015.00579.
- 302 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for
- 303 RNA-seq data with DESeq2. *Genome Biology* 15. DOI: 10.1186/s13059-014-0550-8.
- 304 Mironov A, Seregina T, Nagornykh M, Luhachack LG, Korolkova N, Lopes LE, Kotova V,
- Zavilgelsky G, Shakulov R, Shatalin K, Nudler E. 2017. Mechanism of H2S-mediated
- protection against oxidative stress in Escherichia coli. *Proceedings of the National Academy*
- of Sciences of the United States of America 114:6022–6027. DOI:
- 308 10.1073/pnas.1703576114.
- 309 Moreira RN, Domingues S, Viegas SC, Amblar M, Arraiano CM. 2012. Synergies between RNA
- degradation and trans-translation in Streptococcus pneumoniae: Cross regulation and co-




- 311 transcription of RNase R and SmpB. *BMC Microbiology* 12. DOI: 10.1186/1471-2180-12-312 268.
- Peng B, Chen W, Liu C, Rosser EW, Pacheco A, Zhao Y, Aguilar HC, Xian M. 2014.
- 314 Fluorescent probes based on nucleophilic substitution-cyclization for hydrogen sulfide
- detection and bioimaging. *Chemistry A European Journal* 20:1010–1016. DOI:
- 316 10.1002/chem.201303757.
- Van Der Ploeg JR, Eichhorn E, Leisinger T. 2001. Sulfonate-sulfur metabolism and its
- regulation in Escherichia coli. *Archives of Microbiology* 176:1–8. DOI:
- 319 10.1007/s002030100298.
- 320 Van Der Ploeg JR, Iwanicka-Nowicka R, Bykowski T, Hryniewicz MM, Leisinger T. 1999. The
- 321 Escherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from
- aliphatic sulfonates and is regulated by the transcriptional activator Cbl. *Journal of*
- 323 *Biological Chemistry* 274:29358–29365. DOI: 10.1074/jbc.274.41.29358.
- 324 Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method.
- 325 *Nature Protocols* 3:1101–1108. DOI: 10.1038/nprot.2008.73.
- 326 Shatalin K, Shatalina E, Mironov A, Nudler E. 2011. H2S: A universal defense against
- antibiotics in bacteria. *Science* 334:986–990. DOI: 10.1126/science.1209855.
- 328 Shin JH, Price CW. 2007. The SsrA-SmpB ribosome rescue system is important for growth of
- Bacillus subtilis at low and high temperatures. *Journal of Bacteriology* 189:3729–3737.
- 330 DOI: 10.1128/JB.00062-07.
- 331 Sittka A, Pfeiffer V, Tedin K, Vogel J. 2007. The RNA chaperone Hfq is essential for the
- virulence of Salmonella typhimurium. *Molecular Microbiology* 63:193–217. DOI:
- 333 10.1111/j.1365-2958.2006.05489.x.
- Wali Karzai A, Susskind MM, Sauer RT. 1999. SmpB, a unique RNA-binding protein essential
- for the peptide-tagging activity of SsrA (tmRNA). *EMBO Journal*. DOI:
- 336 10.1093/emboj/18.13.3793.
- Wang D, Li H, Ma X, Tang Y, Tang H, Hu X, Liu Z. 2019. Small RNA AvrA regulates IscR to
- increase the stress tolerances in SmpB deficiency of aeromonas veronii. Frontiers in
- 339 *Cellular and Infection Microbiology* 9:1–12. DOI: 10.3389/fcimb.2019.00142.
- Wu G, Li N, Mao Y, Zhou G, Gao H. 2015. Endogenous generation of hydrogen sulfide and its
- regulation in Shewanella oneidensis. Frontiers in Microbiology 6. DOI:
- 342 10.3389/fmicb.2015.00374.
- Zhang F, Li B, Dong H, Chen M, Yao S, Li J, Zhang H, Liu X, Wang H, Song N, Zhang K, Du
- N, Xu S, Gu L. 2020. YdiV regulates Escherichia coli ferric uptake by manipulating the
- DNA-binding ability of Fur in a SlyD-dependent manner. *Nucleic acids research* 48:9571–
- 346 9588. DOI: 10.1093/nar/gkaa696.



Transcriptomic analysis between wild type (WT) and smpB knockout.

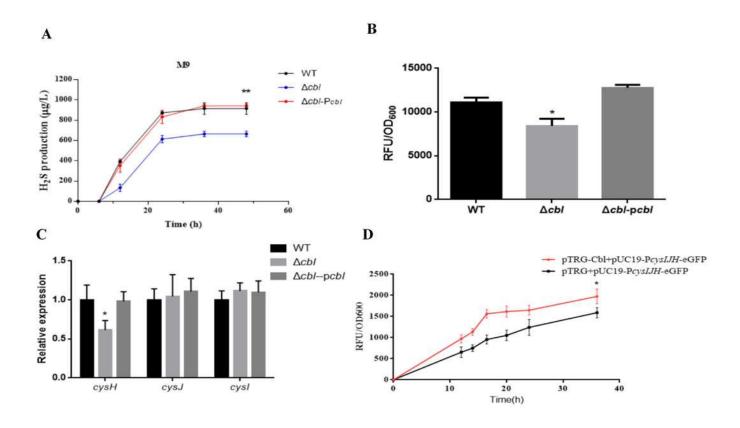

(A) The KEGG pathways for the different metabolites between WT and the smpB deletion ( $\Delta smpB$ ). (B) The relative expression of the correlated H<sub>2</sub>S synthesis genes in WT and  $\Delta smpB$  cells. Values represented means  $\pm$  SD (n = 3). \*\*\*p < 0.001 was determined by one-way ANOVA and Tukey post-test. (C) The deletion of smpB enhanced the expression of genes in sulfate assimilation pathway.





SmpB deficiency promotes H<sub>2</sub>S biosynthesis and increases the tolerance to oxidative stress under nutritionally deficient conditions

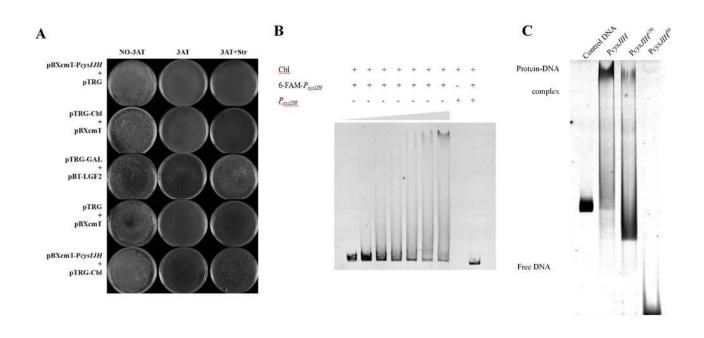
(A)  $H_2S$  production was measured by  $Pb(Ac)_2$ -soaked paper strips in LB medium supplemented with  $5mg/L\ Na_2SO_3$ . No significant differences existed between WT and  $\Delta smpB$  strains. (B)  $H_2S$  production was measured by  $Pb(Ac)_2$ -soaked paper strips in M9 medium supplemented with  $5mg/L\ Na_2SO_3$ . Values represented as means  $\pm\ SD\ (n=3)$ . \*\*p < 0.005 was determined by one-way ANOVA and Tukey post-test.






Cbl affected H<sub>2</sub>S production by promoting the transcription of cysH

(A)  $H_2S$  production was measured by  $Pb(Ac)_2$ -soaked paper strips in M9 medium supplemented with 5mg/L  $Na_2SO_3$ . The tested strains included WT,  $\Delta cbl$  and the complemented strain ( $\Delta cbl$ -Pcbl). Values represented as means  $\pm$  SD (n = 3). \*\*p < 0.005 was determined by one-way ANOVA and Tukey post-test. (B) Fluorescence intensities were detected by Synergy H1 (BioTek) after the tested strains were treated with fluorescent  $H_2S$  probe in M9 medium. Values represented as means  $\pm$  SD (n = 3). \*p < 0.01 was determined by one-way ANOVA and Tukey post-test. (C) The relative expressions of  $H_2S$  synthesis genes were detected by qRT-PCR. Values represented as means  $\pm$  SD (n = 3). \*p < 0.01 was determined by one-way ANOVA and Tukey post-test. (D) Fluorescence intensities were detected by Synergy H1 (BioTek). The tested strains expressed PcysIJH only (pTRG+pUC19-PcysIJH -eGFP), and co-expressed both Cbl and PcysIJH (pTRG-Cbl+pUC19-PcysIJH -eGFP), respectively. Values represented means  $\pm$  SD (n = 3). \*p < 0.01 was determined by one-way ANOVA and Tukey post-test.








Cbl regulated downstream cysH by binding to the PcysJIH.

(A) Results of bacterial one-hybrid. (B) Electrophoretic mobility shift assay (EMSA) for Cbl binding with PcysJIH. The 25 nM FAM-labeled PcysJIH was incubated with the increased amounts of Cbl protein. Cbl protein was titrated to the concentration of  $0\mu$ M,  $10\mu$ M,  $20\mu$ M,  $30\mu$ M,  $40\mu$ M,  $50\mu$ M and  $60\mu$ M. (C) Electrophoretic mobility shift assay (EMSA) for Cbl binding with the varied size of PcysJIH. PcysJIH contained 226 bp upstream of transcriptional initiation site,  $PcysJIH^{150}$  contained 150bp upstream of transcriptional initiation site, and  $PcysJIH^{50}$  contained 50bp upstream of transcriptional initiation site. The 25 nM FAM-labeled probe DNA was incubated with  $60\mu$ M Cbl protein. The experiments were repeated in triplicate.

