# Filamentous mats proliferating at mesophotic depths off Rapa Nui: a new threat to local marine biodiversity? (#59454)

First submission

## Guidance from your Editor

Please submit by 26 Apr 2021 for the benefit of the authors (and your \$200 publishing discount).



#### **Structure and Criteria**

Please read the 'Structure and Criteria' page for general guidance.



#### **Custom checks**

Make sure you include the custom checks shown below, in your review.



#### Raw data check

Review the raw data.



## **Image check**

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

#### **Files**

Download and review all files from the <u>materials page</u>.

- 4 Figure file(s)
- 1 Table file(s)
- 1 Video file(s)



### Field study

- Have you checked the authors field study permits?
- Are the field study permits appropriate?

# Structure and Criteria



## Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

## **Editorial Criteria**

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

#### **BASIC REPORTING**

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
  Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

#### EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

#### **VALIDITY OF THE FINDINGS**

- Impact and novelty not assessed.
  Negative/inconclusive results accepted.
  Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

# Standout reviewing tips



The best reviewers use these techniques

|  | n |
|--|---|
|  | N |

# Support criticisms with evidence from the text or from other sources

# Give specific suggestions on how to improve the manuscript

# Comment on language and grammar issues

# Organize by importance of the issues, and number your points

# Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

## **Example**

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.



## Filamentous mats proliferating at mesophotic depths off Rapa Nui: a new threat to local marine biodiversity?

Corresponding Author: Javier Sellanes Email address: sellanes@ucn.cl

Through the use of a remotely operated vehicle (ROV) previously unexplored habitats (~40 to 350 m depth) around Rapa Nui (Easter Island) have been investigated. We have sighted vast fields of filamentous cyanobacteria-like mats, covering sandy bottoms, as well as over dead corals of mesophotic reefs (mainly composed by *Leptoseris* sp.). The highest coverage of these mats (up to ~100% of total seafloor surface), as well as major mortality of corals occur between 70 and 95 m depth off Hanga Roa, the main village of the island, located on its western side. Healthy *Leptoseris* sp. reefs were documented on the northern and southeastern sites of the island, which are also the least populated. A preliminary morphologic analysis of samples of the mats suggests that the assemblage is composed of at least four filamentous taxa, including two cyanobacteria (*Lyngbya* sp. and *Pseudoanabaena* sp.), a brown (*Ectocarpus* sp.), and a green algae (*Cladophora* sp.). An ongoing eutrophication process off the main town of the island, Hanga Roa village, is suggested as a potential driver of the proliferation of these filamentous mats.

<sup>1</sup> Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Coquimbo, Chile

<sup>&</sup>lt;sup>2</sup> Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Universidad Católica del Norte, Coquimbo, Coquimbo, Chile

Oceana, Santiago, Chile

<sup>4</sup> Programa de Doctorado en Biología y Ecología Aplicada (BEA), Universidad Católica del Norte, Coquimbo, Coquimbo, Chile

<sup>5</sup> Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Coquimbo, Chile

<sup>&</sup>lt;sup>6</sup> Centro de Investigación y Desarrollo Tecnológico en Algas y otros Recursos Biológicos (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Coquimbo, Chile

<sup>&</sup>lt;sup>7</sup> Coastal Socio-Ecological Millennium Institute (SECOS), Coquimbo, Coquimbo, Chile



## 1 Filamentous mats proliferating at mesophotic depths

## off Rapa Nui: a new threat to local marine biodiversity?

- 4 Javier Sellanes<sup>1,2\*</sup>, Matthias Gorny<sup>3</sup>, Germán Zapata-Hernández<sup>1,2,4</sup>, Gonzalo Álvarez<sup>5,6</sup>, Práxedes
- 5 Muñoz¹ & Fadia Tala¹,6,7

6

3

- 7 <sup>1</sup>Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte,
- 8 Coquimbo, Chile.
- 9 <sup>2</sup>Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI),
- 10 Universidad Católica del Norte, Coquimbo, Chile.
- 11 <sup>3</sup>Oceana Chile.
- <sup>4</sup>Programa de Doctorado en Biología y Ecología Aplicada (BEA), Universidad Católica del Norte,
- 13 Coquimbo, Chile.
- <sup>5</sup>Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte,
- 15 Coquimbo, Chile.
- 16 <sup>6</sup>Centro de Investigación y Desarrollo Tecnológico en Algas y otros Recursos Biológicos
- 17 (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.
- <sup>7</sup>Coastal Socio-Ecological Millennium Institute (SECOS), Chile

19

- 20 \*Corresponding author:
- 21 Javier Sellanes
- 22 Larrondo 1281, Coquimbo, 178000 Chile

## **PeerJ**

- 23 Email address: sellanes@ucn.cl
- 24 Keywords: Cyanophyceae, *Lepstoseris*, mesophotic reefs, marine conservation, Easter island,
- 25 Polynesia.



## **Abstract**

Through the use of a remotely operated vehicle (ROV) previously unexplored habitats (~40 to 350 m depth) around Rapa Nui (Easter Island) have been investigated. We have sighted vast fields of filamentous cyanobacteria-like mats, covering sandy bottoms, as well as over dead corals of mesophotic reefs (mainly composed by *Leptoseris* sp.). The highest coverage of these mats (up to ~100% of total seafloor surface), as well as major mortality of corals occur between 70 and 95 m depth off Hanga Roa, the main village of the island, located on its western side. Healthy *Leptoseris* sp. reefs were documented on the northern and southeastern sites of the island, which are also the least populated. A preliminary morphologic analysis of samples of the mats suggests that the assemblage is composed of at least four filamentous taxa, including two cyanobacteria (*Lyngbya* sp. and *Pseudoanabaena* sp.), a brown (*Ectocarpus* sp.), and a green algae (*Cladophora* sp.). An ongoing eutrophication process off the main town of the island, Hanga Roa village, is suggested as a potential driver of the proliferation of these filamentous mats.

## Introduction

Mesophotic coral reef ecosystems typically distribute from 30-40 m to over 150 m depth, they occur in tropical and subtropical waters and are formed mainly by light-dependent corals, but also including other typical reef organisms as sponge and macroalgae species (Baker et al., 2016). Those ecosystems are now recognized as ecologically distinct and independent from shallower counterparts, bearing a significant diversity of unique fauna, which is still unexplored in most parts of the world (Rocha et al., 2018). The insufficient knowledge is a product of the difficult access to those depths, where technical diving (e.g., rebreather system, trimix) or sophisticated submarine equipment (e.g., remotely operated vehicles, autonomous drop-cams and manned submersibles)



are necessary. These ecosystems are vulnerable to a series of anthropogenic stressors, such as 49 fishing, thermal stress, diseases, pollution, invasive species, marine aquarium trade, oil and gas 50 exploration, cables and pipelines (Andradi-Brown et al., 2016). 51 Rapa Nui (Easter Island: 27° 07' S, 109° 22' W) is a remote island, formed ~0.8 Mya, and located 52 at the westernmost side of the large chain of seamounts comprising the Salas y Gómez ridge, 53 54 relatively close to the East Pacific Rise (Rodrigo, Díaz & González-Fernández, 2014). Located in the easternmost apex of the Polynesian triangle, it is recognized for the high overall endemism 55 levels of its coastal marine fishes (~22%; Randal & Cea, 2010) and invertebrate taxa (4 to 34%, 56 see Fernández et al., 2014). However, this unique marine biodiversity is severely threatened by 57 several anthropogenic issues, such as coastal erosion, terrestrial runoff (Mieth & Bork, 2005), 58 plastic pollution (Hidalgo-Ruz et al., 2021), exacerbated tourism (Figueroa & Rotarou, 2016), 59 over-fishing (Zylich et al., 2014), and potential pollution by the percolation of domestic sewage 60 and landfill into aquifers (Rosa 2013), among others issues. 61 62 Recently (2015-2018), through the use of a remotely operated vehicle (ROV) we have been able to access unexplored habitats (~40 to 350 m depth) around the island, as well as at nearby 63 seamounts, allowing for a first approach to the biodiversity of mesophotic coral ecosystems and 64 65 deeper sites (Easton et al., 2019), generating new records of fauna including fishes (e.g., Easton et al., 2017), echinoderms (Mecho et al., 2019) as well as reports of vast fields of the solitary 66 mesophotic mushroom coral Cycloseris vaughani (Hoeksema, Sellanes & Easton, 2019). 67 68 In those surveys, dense and extensive fields of filamentous mats, covering the seafloor and nearby reefs at mesophotic depths, have been also sighted around the island. It is known that cyanobacteria 69 70 are a usual constituent of coral reef ecosystems (Stal, 2000; Bakker et al., 2017; Ford et al., 2017), 71 having an important role in nitrogen fixation and primary production (Charpy et al., 2007).



73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

However, under certain conditions, they can undergo massive proliferation, affecting the health of the ecosystem and these events have been associated with variations in irradiance, nutrient supply and other natural and anthropogenic disturbances (Ford et al., 2018). These proliferation events seem to be increasing at a global scale due to alterations in local biogeochemical cycles related to climate change (Paul, 2008, Paerl & Paul, 2012). Mats could develop into such dense blooms that could even wash ashore and accumulate in mass, as reported for Guam by Nagle and Paul (1999). At this place, benthic marine cyanobacterial blooms often occur in the presence of diverse assemblages of herbivorous fishes and urchins, but the underlying factors causing these proliferations, as well as the interaction mechanisms between grazers and these mats (since cyanobacteria are known to produce feed-deterrent compounds), are still poorly understood (Nagle Paul, 1999, Cruz-Rivera & Paul 2000). Cyanobacteria have been also directly linked with ciguatera fish poisoning (CFP) outbreaks (Laurent et al., 2008), and mats could even generate suitable habitats for other toxic microalgae, including toxin-producing dinoflagellates, generating thus co-occurring blooms (Paerl & Otten, 2013). Although several species are not toxic, their growth could produce low oxygen conditions through organic matter accumulation and subsequent degradation processes in the bottom water, affecting also the benthic communities. In some environments mats form associations with sulfate-reducing bacteria, producing sulfide which is toxic for corals and establishing the black band disease (Charpy et al., 2012; Myers & Richardson, 2009). It has been also reported that in littoral reefs green algae (i.e., Chlorophytes) are one of the most common indicator species of eutrophication (Barile, 2004). Most of the species in this group proliferate due to increased nutrient inputs and tolerate a wide range of environmental conditions, constituting an aggressive competitive species against sensible corals, and having sub-lethal



effects over several biological functions of them (e.g., Koop et al., 2001; Fabricius 2005; Birrel et

- 96 al., 2008).
- 97 In this context, the aims of the present study were: i) to assess the spatial coverage of filamentous
- 98 mats in the benthic ecosystem around Rapa Nui, ii) to evaluate the extension of mesophotic coral
- 99 reefs potentially impacted by these mats, and iii) to preliminary describe the taxonomic
- composition of these mats.

101

102

104

105

106

107

108

109

110

111

115

116

117

## **Materials and methods**

103 A remotely operated vehicle (ROV), model Commander MKII (Mariscope Meerestechnik, Kiel,

Germany), operated from local fishing boats, was deployed in 56 opportunities around the island

(Fig. 1), 18 times each in January 2018 and 2019, and 20 during November/December 2019. The

ROV was equipped with two laser pointers, separated by 10 cm, and a front-pointing at an angle

of 45° HD video camera (Panasonic SD 909), recording with a resolution of 1920 × 1080 pixels

at 30 fps. As mentioned above, some results of these ROV surveys have been presented elsewhere

(e.g., Easton et al., 2017; Easton et al., 2019; Hoeksema, Sellanes & Easton, 2019; Mecho et al.,

2019, for selected biotic components), but for the present study, the only focus was to analyze the

presence of filamentous mats and overall health condition of mesophotic corals. The videos were

analyzed at half their normal speed in GOM Player 2.3.19 (GOM & Company;

113 https://www.gomlab.com/).

114 The presence and coverage of filamentous mats were assessed in a semi-quantitative way by

observing the seafloor stepwise as the ROV advanced over the ground, in general, 10 to 20 min of

video per site. For that, transects were cataloged in four groups: i) no presence of patches of

filamentous mats, ii) low coverage, less than 50 % coverage in at least non-overlapping 5 frames



| 118 | of the video of this transect, iii) high coverage, 50 % to 75 % of coverage in at least 5 frames of         |
|-----|-------------------------------------------------------------------------------------------------------------|
| 119 | the video of this transect, and iv) very high coverage, 100 % coverage in at least 5 frames.                |
| 120 | Using the same methodological approximation, for assessing the health status of corals three                |
| 121 | criteria were considered: i) healthy reef with > 75% of all the corals alive, ii) 25-75% of the corals      |
| 122 | alive, and iii) only dead corals or fragments. Dead corals were easily identified by being in general       |
| 123 | of greenish or darker colors, and sometimes also covered by filaments.                                      |
| 124 | To characterize the taxonomic composition of the filamentous mat assemblage, in May 2019, a                 |
| 125 | small benthic trawl of 30 cm of horizontal aperture was deployed at a site off Hanga Roa, where             |
| 126 | patches with 100 % coverage were frequent. Mat samples were fixed with a 4 % aqueous solution               |
| 127 | of formaldehyde (ACS Reagent, Sigma-Aldrich, Merck Darmstadt, Germany). For morphological                   |
| 128 | characterization, filaments were observed using an Olympus IX71 inverted microscope equipped                |
| 129 | with phase contrast and epifluorescence (Olympus Co, Tokyo, Japan). Micrographs were taken                  |
| 130 | using a camera ProgRes C3 (JENOPTIK Optical Systems GmbH, Germany) and measurements of                      |
| 131 | cells (length, width) were carried out using ProgRes® CapturePro (JENOPTIK Optical Systems                  |
| 132 | GmbH, Germany) analytical software. For taxonomic identification of the algae composing the                 |
| 133 | mats at least to genus, monographic publications, floristic studies and systematics articles were           |
| 134 | used (Santelices, 1989; Loiseaux-de Goër & Noailles, 2008; Cormaci, Furnari & Alongi, 2014;                 |
| 135 | Ramirez et al., 2018). Likewise for cyanobacteria identification taxonomic guides and systematics           |
| 136 | articles were used (Komarek & Anagnostidis, 2007; Yu et al., 2015; Brocke et al., 2018; Zubia et            |
| 137 | al., 2019).                                                                                                 |
| 138 | Sample collection was performed under permissions Res. Ext $N^{\circ}41/2016$ and $N^{\circ}3314/2017$ from |
| 139 | SUBPESCA (National Fishing Authority of Chile) to Universidad Católica del Norte. This project              |
|     |                                                                                                             |



was also presented to the local "Consejo del Mar de Rapa Nui" (Council of the Sea of Rapa Nui),which allowed underwater footage and sampling around the island.

## Results

ROV transects around the island covered a range of 43 to 347 m depth. This allowed us to visualize the spatial and bathymetric distribution of filamentous mats (Fig. 1, 2) and mesophotic reefs around the island (Fig. 3). Mesophotic corals were represented by reef-forming *Porites lobata* and *Pocillopora* sp. at shallower depths (<60m), by *Leptoseris* sp. and *Cycloseris* sp. at depths between 70 and 117m depth, and by sea-whips (*Stichopathes* sp.) and other scleractinians between 127 and 327 m (Fig. 2).

### Spatial distribution of the filamentous mats

In general, filamentous mats were absent or with a low presence in most of the studied sites around Rapa Nui (Fig. 1A), and medium to very high abundances were usually observed shallower than ~130 m and in the western side of the island (Fig. 1B). Indeed, high coverage was observed in the northwest corner (close to Hanga O'teo) at 123 m depth and high and very high coverages were observed mainly off Hanga Roa (Fig. 1B) from 70 to 95 m depth. In this area, mats were also observed covering sediments (Fig. 2A, B) and fringing recently discovered fields of the zooxanthellate mushroom coral *C. vaughani* (Fig. 2C, Fig. 3A; see Hoeksema, Sellanes & Easton, 2019), and nearby reefs of dead *Leptoseris* sp. (~80 m depth) overgrown, apparently by similar mats (Fig. 2D, Fig. 3B). However, healthy *Leptoseris* sp. reefs were documented in other sites around the island (e.g. Anakena) between 68 and 82 m depth (Figs. 2E, 3B).



## 163 Taxonomic characterization of the filamentous mat assemblage

- Morphological analyses of samples of mats collected off Hanga Roa suggest that it is an
- assemblage composed of at least four taxa: one Chlorophyta (Cladophora sp.), one Ochrophyta
- 166 (Ectocarpus sp.) and two Cyanobacteria (Lyngbia sp. and Pseudoanabaena sp.) (Fig. 4) as
- 167 follows:
- 168 Cladophora sp. (Fig. 4A, B): Thallus of green to light green branched uniseriate filaments with 2-
- 3 cm in total length. Basal part of the filaments fixed in the substrate by a primary rhizoid.
- Presence of unilateral branches inserted laterally or obliquely the filament. Principal axis
- constituted by cylindrical cells with measures of 998.9  $\pm$  69.2  $\mu$ m in length and 223.3  $\pm$  9.5  $\mu$ m
- in diameter. The apical cells were cylindrical, round ended with a diameter of  $250.0 \pm 7.6 \mu m$
- and length of 701.8± 76.0 μm. Zoosporangia were not observed.
- 174 Ectocarpus sp. (Fig. 4C, D): Thallus of light brown to olive sparingly branched filament with 0.1 –
- 175 0.5 cm in total length. The cells conform uniseriate filaments that ended in a rounded apical cell.
- 176 Cells were barrel-shaped,  $50.0 \pm 7.3 \, \mu m$  in length and  $14.1 \pm 3.4 \, \mu m$  in diameter. Plurilocular
- sporangia were present, elongated with cylindroconical form with 80-130 µm in length and 20-30
- in diameter.
- 179 Lyngbya sp. (Fig. 4E, F): Thallus caespitose, browning-red, filaments slightly curved, sheet
- colorless, lamellated with apices not attenuated at the end. Trichome not constricted at the cross-
- wall, cylindrical cells very short  $3.5 \pm 0.3$  µm in length and  $7.1 \pm 0.1$  µm in diameter, sheath  $1.6 \pm$
- 182 0.3 μm, end cells rotund, calyptra absent.
- 183 Pseudoanabaena sp. (Fig. 4G, H): Trichomes solitary or crowded in clusters, straight or almost
- straight, pale blue-green, cells. Barrel-shaped,  $2.8 \pm 0.8 \mu m$  in length and  $1.2 \pm 0.1 \mu m$  in diameter,
- intensely constricted at cross walls, not heterocysts or sheath, end cells round.



187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

## Discussion

Although we only have a very preliminary taxonomic characterization of the filamentous mats covering sandy areas and dead-mesophotic reefs off Rapa Nui, based on morphology, it is suggested that they are composed of at least to cyanobacteria. It is known that cyanobacteriadominated microbial mats are typical inhabitants of coral reef systems and often undergo massive proliferation (Stal, 2000). These events have been associated with natural processes (e.g., variations in irradiance), but mostly with anthropogenic disturbances that generate an increase in the nutrient supply to the marine environment (Ford et al., 2017). Highest coverage of mats was observed mainly off Hanga Roa village, which concentrates the largest part of the islands' population (7,750 habitants; www.ine.cl) and where most tourists develop their recreational activities (~150,000 visitants during 2019; www.sernatur.cl). In this sense, the over-tourism, the absence of wastewater treatment (predominant use of cesspools) and the unlined landfill (Rosa, 2013) could be a great threat, due to the potential input of organic matter, nutrients and contaminants to the adjacent marine environment. Pollutants could reach the sea by runoff or through percolation to aquifers that eventually discharge into the sea. At Rapa Nui, submarine groundwater discharges are ubiquitous in intertidal environments around the island (Brosnan, Becker & Lipo, 2018), and hypothetically could also seep through deeper sediments (Montgomery & Associates, 2011), potentially conducting nutrients of anthropogenic origin directly to mesophotic habitats. Additionally, the permanent coastal erosion around the island and terrestrial runoff during rainy seasons could also increase the nutrient concentrations in the coastal environments (e.g., ammonia, nitrate and silicate) and potentially reaching mesophotic depths (P. Muñoz, 2019, unpublished data). However, the volcanic origin of Rapa Nui and their elevated



erosion could also increase the iron concentration in the marine ecosystem, which added to a decrease in the N:P ratio (Ford et al., 2018), could stimulate the proliferation of benthic cyanobacteria in other places around the island.

The damage of mesophotic corals as *Leptoseris* sp. is extensive and evident off Hanga Roa village (also covering the edges of a *C. vaughani* field), in contrast to other sites where healthy corals were documented (e.g. Anakena, La Perouse and Vinapú). Unfortunately, although no previous detailed information about the health condition and community structure of these degraded mesophotic reefs exists, a previous record, obtained in November 1999 during the first ROV survey at the island (Gorny & Retamal, 2000), suggests a healthy status of the *Leptoseris* reef off Hanga Roa (Fig. 2D ) ~20 years ago. At that opportunity, the tourist number reached ~20.000 visitants per year (Figueroa & Rotarou, 2016). Despite this circumstantial indication of the status of the mesophotic reefs at Rapa Nui a few decades ago, the ecological impacts on the biodiversity and ecosystem functions associated with anthropogenic causes are still unknown and need to be further addressed in the short-term.

## Conclusions

We report for the first time filamentous mats covering sandy areas and dead-mesophotic reefs (*Leptoseris* sp.) off Rapa Nui. A preliminary morphological analysis suggests the presence of at least four filamentous taxa, including two cyanobacteria (*Lyngbya* sp. and *Pseudoanabaena* sp.), a brown (*Ectocarpus* sp.), and a green algae (*Cladophora* sp.). Catastrophic damage was observed at mesophotic *Leptoseris* sp. reefs off the main village of the island. Further research should address a more detailed taxonomic characterization of these mats, e.g., through molecular techniques, the assessment of the seasonal, spatial and structural patterns of the assemblage, their



eventual role in reef deterioration, recognition of eutrophication mechanisms, and long-term monitoring of nutrient dynamics. These studies are encouraged to implement effective and integrated sea-land management actions, including the implementation of waste-water treatment. This information should be key to inform the implementation of management strategies (land-sea integrate) of the recently created Marine Protected Area of multiple uses (MPA-MU) of Rapa Nui, currently the largest in Latin America with ~579,000 km² (Paredes et al., 2019) and aiming to protect this unique world biodiversity heritage place. Finally, this study will serve also as a baseline for future studies of changes over the mesophotic ecosystem off Rapa Nui after the island has been closed for tourism, from March 2019 to date, due to the COVID 19 pandemic.

## **Acknowledgments**

We thank to Poky Tane Haoa, Ricardo Hito and Enrique Hey from the Rapa Nui community. To Erin Easton and Ariadna Mecho for their collaboration during field work, and to Maria Valladares and Valentina Hevia for helping in the collection of the samples. To Bert Hoeksema for his valuable comments on an early version of this manuscript.

### References

Andradi-Brown D, Laverick J, Bejarano I, Bridge T, Colin PL, Eyal G, Jones R, Kahng SE, Reed J, Smith TB, Spalding H, Well E, Wood E. 2016. Threats to mesophotic coral ecosystems and management options. In: Baker EK, Puglise, KA and Harris, PT, eds. *Mesophotic coral ecosystems—A lifeboat for coral reefs?* The United Nations Environment Programme and GRID-Arendal, Nairobi and Arendal, pp. 98



Baker E, Puglise KA, Colin PL, Harris PT, Kahng SE, Rooney JJ, Sherman C, Slattery M, Spalding 255 HL. 2016. What are mesophotic coral ecosystems? In: Baker EK, Puglise KA and Harris PT, eds. 256 Mesophotic coral ecosystems—A lifeboat for coral reefs? The United Nations Environment 257 Programme and GRID-Arendal, Nairobi and Arendal, pp. 98 258 259 Bakker D, van Duyl F, Bak R, Nugues MM, Nieuwland G, Meesters E. 2017. 40 Years of benthic 260 community change on the Caribbean reefs of Curacao and Bonaire: the rise of slimy cyanobacterial 261 mats. Coral Reefs DOI: 10.1007/s00338-016-1534-9 262 263 Barile PJ. 2004. Evidence of anthropogenic nitrogen enrichment of the littoral waters of East 264 Central Florida. *Journal of Coastal research* 20:137 –1245 265 266 Birrel C, McCook L, Willis B, Diaz-Pulido G. 2008. Effects of benthic algae on the replenishment 267 of corals and the implications for the resilience of coral reefs. Oceanography and Marine Biology: 268 An Annual Review 46:25-63 269 270 Brocke HJ, Piltz B, Herz N, Abed RMM, Palinska KA, John U, Haan JD, de Beer D, Nugues MM. 271 2018. Nitrogen fixation and diversity of benthic cyanobacterial mats on coral reefs in Curação. 272 273 Coral Reefs 37(3): 861–874 274 Brosnan T, Becker MW, Lipo CP. 2018. Coastal groundwater discharge and the ancient inhabitants 275 of Rapa Nui (Easter Island), Chile. Hydrogeology Journal https://doi.org/10.1007/s10040-018-276 277 1870-7



| 2/8 |                                                                                                      |
|-----|------------------------------------------------------------------------------------------------------|
| 279 | Charpy L, Casareto BE, Langlade MJ, Suzuki Y.2012. Cyanobacteria in coral reef ecosystems: a         |
| 280 | review. Journal of Marine Biology Doi: 10.1155/2012/259571                                           |
| 281 |                                                                                                      |
| 282 | Cormaci M, Furnari G, Alongi G, 2014. Flora marina bentónica del Mediterráneo: Chlorophyta.          |
| 283 | Boll. Accad. Gioenia Sc. Nat., Catania 47:11-436                                                     |
| 284 |                                                                                                      |
| 285 | Cruz-Rivera E, Paul VJ. 2000. Coral reef benthic cyanobacteria as food and refuge: Diversity,        |
| 286 | chemistry and complex interactions. Proceedings 9th International Coral Reef Symposium, Bali,        |
| 287 | Indonesia 23-27 October 2000, Vol. 1                                                                 |
| 288 |                                                                                                      |
| 289 | Easton EE, Sellanes J, Gaymer CF, Morales N, Gorny M, Berkenpass E. 2017. Diversity of deep-         |
| 290 | sea fishes of the Easter Island Ecoregion. Deep Sea Res Part II 137:78-88.                           |
| 291 | https://doi.org/10.1016/j.dsr2.2016.12.006                                                           |
| 292 |                                                                                                      |
| 293 | Easton EE, Gorny, M, Mecho A, Sellanes J, Gaymer CF, Slapding HL, Aburto J. 2019. Chile and          |
| 294 | the Salas y Gómez Ridge. In: Loya Y, Puglise KA, Bridge TCL, eds. Mesophotic Coral                   |
| 295 | Ecosystems. Springer International Publishing, pp 477–490. https://doi.org/10.1007/978-3-319-        |
| 296 | <u>92735-0</u>                                                                                       |
| 297 |                                                                                                      |
| 298 | Fabricius K.2005. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and |
| 299 | synthesis. Marine Pollution Bulletin 50:125–146                                                      |
| 200 |                                                                                                      |





| 301 | Fernandez M, Pappalardo P, Rodriguez Ruiz MC, Castilla JC. 2014. Synthesis of the state of        |
|-----|---------------------------------------------------------------------------------------------------|
| 302 | knowledge about species richness of macroalgae, macroinvertebrates and fishes in coastal and      |
| 303 | oceanic waters of Easter and Salas y Gomez islands. Latin American Journal of Aquatic Research    |
| 304 | 42(4):760–802                                                                                     |
| 305 |                                                                                                   |
| 306 | Figueroa E, Rotarou ES. 2016. Sustainable Development or Eco-Collapse: Lessons for Tourism        |
| 307 | and Development from Easter Island. Sustainability 8:1093; doi:10.3390/su8111093                  |
| 308 |                                                                                                   |
| 309 | Ford A, Van Hoytema N, Moore B, Pandiha L, Wild C, Ferse S. 2017. High sedimentary oxygen         |
| 310 | consumption indicates that sewage input from small islands drives benthic community shifts on     |
| 311 | overfished reefs. Environmental Conservation 44(4):405–414. doi:10.1017/S0376892917000054         |
| 312 |                                                                                                   |
| 313 | Ford AK, Bejarano S, Nugues MM, Visser PM, Albert S, Ferse SCA. 2018. Reefs under siege—          |
| 314 | the rise, putative drivers, and consequences of benthic cyanobacterial mats. Frontiers in Marine  |
| 315 | Science 5:18 Doi:10.3389/fmars.2018.00018                                                         |
| 316 |                                                                                                   |
| 317 | Gorny M, Retamal M. 2000. Estudio sobre la biodiversidad del megabentos de Isla de Pascua y       |
| 318 | Salas y Gómez mediante video subacuático. Libro de Resúmenes. Taller sobre los resultados del     |
| 319 | Crucero Cimar-Fiordo 5. Valparaíso: 119-121                                                       |
| 320 |                                                                                                   |
| 321 | Hidalgo-Ruz V, Luna-Jorquera G, Eriksen M, Frick H, Miranda-Urbina D, Porflitt-Toro M,            |
| 322 | Rivadeneira M, Robertson CJR, Scofield RP, Serratosa J, Suazo CG, Thiel M. 2021. Factors (type,   |
| 323 | colour, density, and shape) determining the removal of marine plastic debris by seabirds from the |
|     |                                                                                                   |





| 324 | South Pacific Ocean: Is there a pattern? Aquatic Conservation: Marine and Freshwater Ecosystem        |
|-----|-------------------------------------------------------------------------------------------------------|
| 325 | 31:389–407                                                                                            |
| 326 |                                                                                                       |
| 327 | Hoeksema BW, Sellanes J, Easton EE. 2019. A high-latitude, mesophotic <i>Cycloseris</i> field at 85 m |
| 328 | depth off Rapa Nui (Easter Island). Bulletin of Marine Science 95:                                    |
| 329 | https://doi.org/10.5343/bms.2018.0053                                                                 |
| 330 |                                                                                                       |
| 331 | Komarek J, Anagnostidis K. 2007. Süßwasserflora von Mitteleuropa, Bd. 19/2: Cyanoprokaryota.          |
| 332 | Bd. 2 / Part 2: Oscillatoriales. Springer Spektrum                                                    |
| 333 |                                                                                                       |
| 334 | Koop K, Booth D, Broadbent A, Drodie J, Bucher D, Capone D, Coll J, Dennison W, Erdmann               |
| 335 | M, Harrison P, Hoegh-Guldberg O, Hutchings P, Jones GB, Larkum AWD, O'Neil J, Steven A,               |
| 336 | Tentori E, Ward S, Williamson J, Yellowless D.2001. ENCORE: The effect of nutrient enrichment         |
| 337 | on coral reefs. Synthesis of results and conclusions. <i>Marine Pollution Bulletin</i> 42:91–120      |
| 338 |                                                                                                       |
| 339 | Laurent D, Kerbrat AS, Darius HT, Girard E, Golubic S, Benoit E, Sauviat MP, Chinain M, Molgo         |
| 340 | J, Pauillac S. 2008. Are cyanobacteria involved in Ciguatera Fish Poisoning-like outbreaks in New     |
| 341 | Caledonia? Harmful Algae 7:827–838                                                                    |
| 342 |                                                                                                       |
| 343 | Loiseaux-de Goër S, Noailles MC. 2008. Algues de Roscoff. Editions de la Station Biologique de        |
| 344 | Roscoff                                                                                               |
| 345 |                                                                                                       |



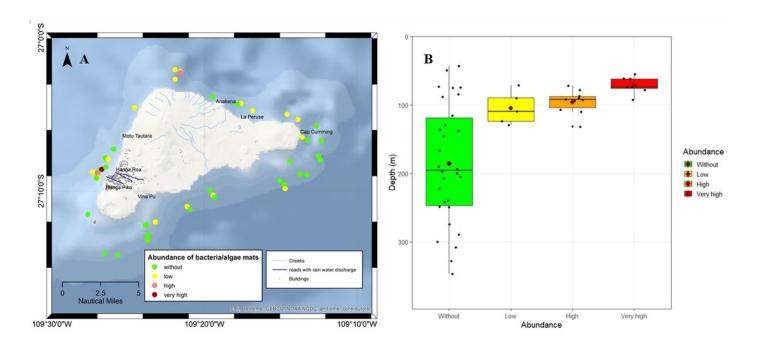


| 346 | Mecho A, Easton EE, Sellanes J, Gorny M. Mah C. 2019. Unexplored diversity of the mesophotic     |
|-----|--------------------------------------------------------------------------------------------------|
| 347 | echinoderm fauna of the Easter Island Ecoregion. Marine Biology Doi.org/10.1007/s00227-o19-      |
| 348 | 3537-x                                                                                           |
| 349 |                                                                                                  |
| 350 | Mieth A, Bork H-R. 2005. History, origin and extent of soil erosion on Easter Island (Rapa Nui). |
| 351 | Catena 63:244–260                                                                                |
| 352 |                                                                                                  |
| 353 | Montgomery EL & Associates INC. 2011. Condiciones hidrogeológicas Isla de Pascua, Chile.         |
| 354 | Dirección general de aguas. Pp. 48                                                               |
| 355 |                                                                                                  |
| 356 | Myers J, Richardson L. 2009. Adaptation of cyanobacteria to the sulfide-rich microenvironment    |
| 357 | of black band disease of coral. FEMS Microbiology Ecology 67:242–251                             |
| 358 |                                                                                                  |
| 359 | Nagle DG, Paul VJ. 1999. Production of secondary metabolites by filamentous tropical marine      |
| 360 | cyanobacteria: ecological functions of the compounds. Journal of Phycology 35:1412-1421          |
| 361 |                                                                                                  |
| 362 | Paerl HW, Otten TG. 2013. Harmful Cyanobacterial Blooms: Causes, Consequences and Controls.      |
| 363 | Microbial Ecology 65:995–1010                                                                    |
| 364 |                                                                                                  |
| 365 | Paerl H, Paul V. 2012. Climate change: Links to global expansion of harmful cyanobacteria. Water |
| 366 | Research 46(5):1349–1363                                                                         |
| 367 |                                                                                                  |



| 868 | Paredes F, Flores D, Figueroa A, Gaymer C, Aburto J. 2019. Science, capacity building and      |
|-----|------------------------------------------------------------------------------------------------|
| 869 | conservation knowledge: The empowerment of the local community for marine conservation in      |
| 370 | Rapa Nui. Aquatic Conservation: Marine and Freshwater Ecosystem 130–137                        |
| 371 | Doi.org/10.1002/aqc.3114                                                                       |
| 372 |                                                                                                |
| 373 | Paul VJ. 2008. Global warming and cyanobacterial harmful algal blooms. In: Hudnell HK, Ed.     |
| 374 | Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Advances in      |
| 375 | Experimental Medicine and Biology, Springer 619:239–257                                        |
| 376 |                                                                                                |
| 377 | Ramirez ME, Bulboa C, Contreras L, Mora AM. 2018. Algas marinas de Quintay. RiL Editores       |
| 378 |                                                                                                |
| 379 | Rocha LA, Pinheiro HT, Shepherd B, Papastamatiou YP, Luiz OJ, Pyle RL, Bongaerts P. 2018.      |
| 880 | Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. |
| 881 | Science 361:281–284. https://doi.org/10.1126/science.aaq1614                                   |
| 882 |                                                                                                |
| 883 | Rodrigo C, Díaz J, González-Fernández. 2014. Origin of the Easter Submarine Alignment:         |
| 884 | morphology and structural lineaments. Latin American Journal of Aquatic Research 42(4):857-    |
| 885 | 870 http://dx.doi.org/10.3856/vol42-issue4-fulltext-12                                         |
| 886 |                                                                                                |
| 887 | Rosa K. 2013. A hydrologic overview and discussion of sources of groundwater pollution on Rapa |
| 888 | Nui. Rapa Nui Journal 27(2): 51–59                                                             |
| 889 |                                                                                                |
| 390 | Santelices B. 1989. Algas Marinas de Chile. Ediciones Universidad Católica de Chile            |

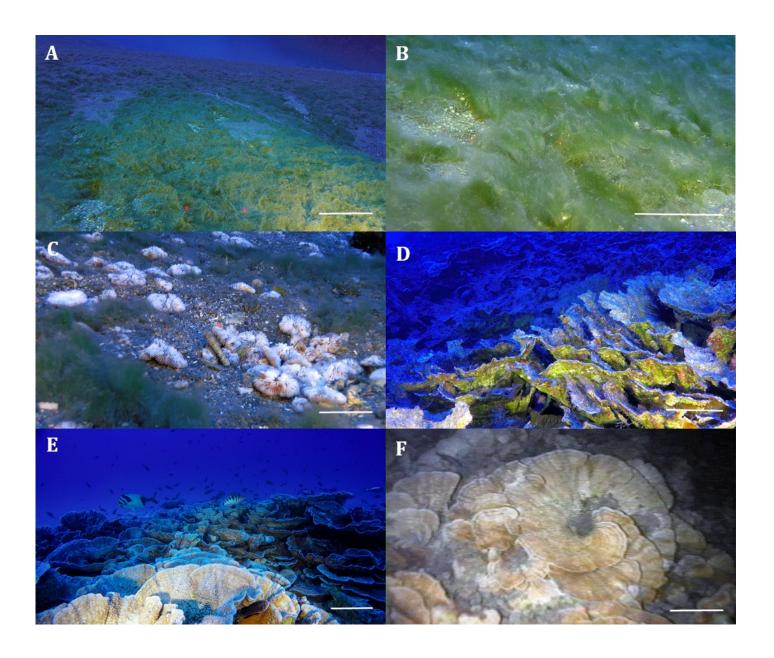





| 391 |                                                                                                 |
|-----|-------------------------------------------------------------------------------------------------|
| 392 | Stal LJ. 2000. Cyanobacterial mats and stromatolites. In: Whitton PA, Potts M, eds. The ecology |
| 393 | of cyanobacteria: their diversity in time and space. Kluwe Academic, Dordrecht, pp 61-120       |
| 394 |                                                                                                 |
| 395 | Yu G, Zhu M, Chen Y, Pan Q, Chai W, Li R. 2015. Polyphasic characterization of four species of  |
| 396 | Pseudanabaena (Oscillatoriales, Cyanobacteria) from China and insights into polyphyletic        |
| 397 | divergence within the <i>Pseudanabaena</i> genus. <i>Phytotaxa</i> 192(1):1–12                  |
| 398 |                                                                                                 |
| 399 | Zubia M, Vieira C, Palinska KA, Roué M, Gaertner J-C, Zloch I, Grellier M, Golubic S. 2019.     |
| 400 | Benthic cyanobacteria on coral reefs of Moorea Island (French Polynesia): diversity response to |
| 401 | habitat quality. <i>Hydrobiologia</i> 843(1):61–78                                              |
| 402 |                                                                                                 |
| 403 | Zylich K, Harper S, Licandeo R, Vega R, Zeller D, Pauly D. 2014. Fishing in Easter Island, a    |
| 404 | recent history (1950-2010). Latin American Journal of Aquatic Research 42(4):845-856            |



Study area showing different ROV dive sites around Rapa Nui and coverage of filamentous mats at them

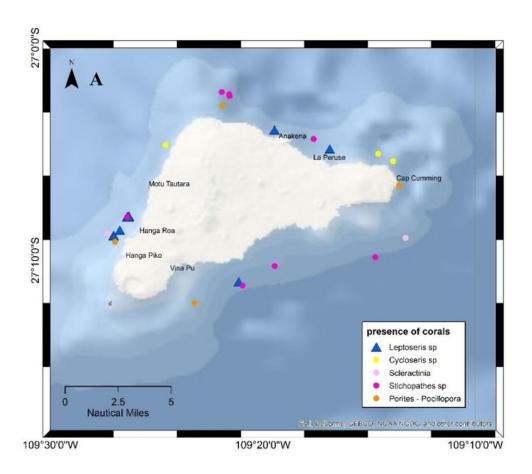

A) Dive sites and levels of coverage of filamentous mats on the benthic ecosystems. B) Depth range of ROV transect for the different categories of filamentous mats coverage used in the study. Green: no mats observed, Yellow: low coverage, Orange: high coverage, and Red: very high coverage. Box plots indicate median and 1 Standard Deviation, whiskers indicate depth range for this category.

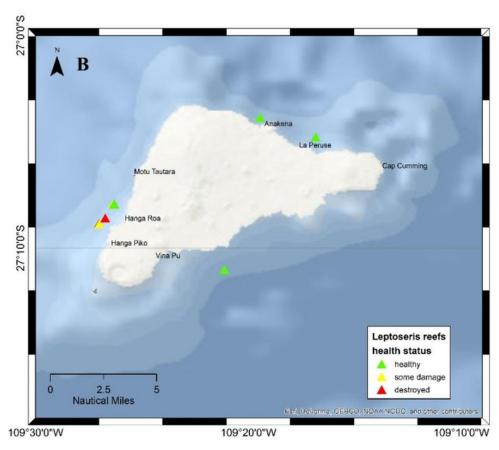




ROV images of the filamentous mats and mesophotic reefs off Rapa Nui. A) filamentous mats field ~80 m depth off Hanga Roa, Rapa Nui.

B) Close up of the filaments. C) Filaments among *C. vaughani* individuals. D) Dead *Leptoseris* sp. reef ca. 80 m depth overgrown by filaments. E) Healthy *Leptoseris* reef off Anakena ~ 80 m depth. F) Healthy *Leptoseris* reef off Hanga Roa filmed during prospective ROV surveys in "CIMAR-5 Islas" cruise made in 1999. Scale bars: 10 cm (A, B, C), 25 cm (D, E, F). Images: Matthias Gorny, OCEANA.

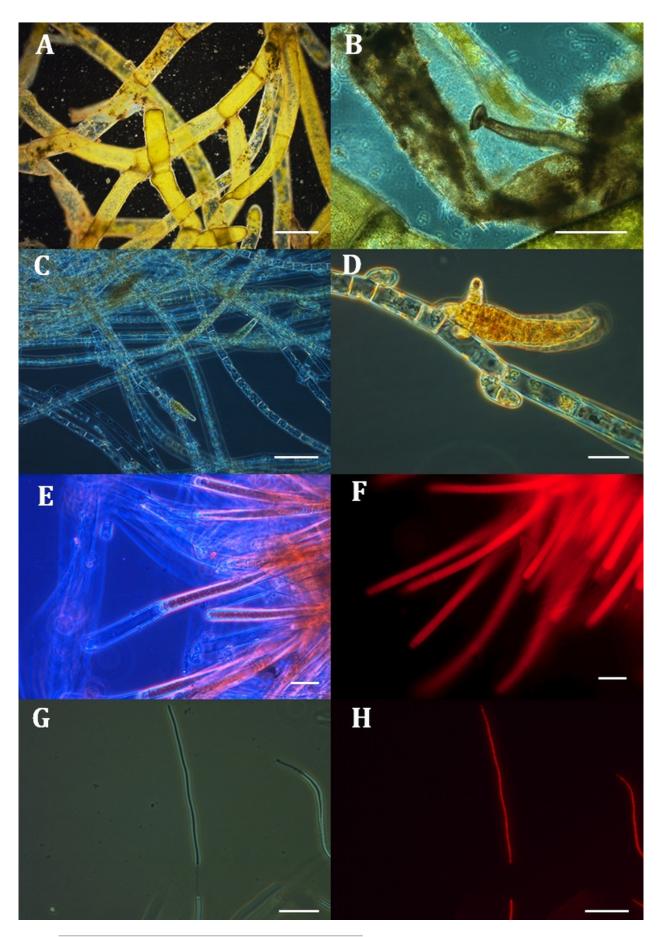



Location of mesophotic reefs off Rapa Nui in this study.

A) Map showing the position of reefs and main taxa constituting them recorded with ROV between 40-350 m. B) Map showing the different health statuses of *Leptoseris* sp. reefs. Green: Healthy (no noticeable impact), Yellow: Some damage (25-75% of corals damaged), and Red: Destroyed (only dead corals or fragments).










Micrographs of the four filamentous taxa collected off Hanga Roa, Rapa Nui at mesophotic depths using phase-contrast (A-E, and G) and epifluorescence (F and H) techniques.

(A, B) Cladophora sp. (C, D) Ectocarpus sp. (E, F) Lyngbya sp. (G, H) Pseudoanabaena sp. Scale bars = A: 500  $\mu$ m, B: 200  $\mu$ m, C: 100  $\mu$ m, D: 30  $\mu$ m, E and F: 20  $\mu$ m, G and H: 30  $\mu$ m.



PeerJ reviewing PDF | (2021:03:59454:0:1:NEW 30 Mar 2021)