

Real-world response to direct acting antivirals in Mexican patients with hepatitis C virus genotype-1 and previous pegylated interferon and Ribavirin therapy (#59862)

1

First submission

Guidance from your Editor

Please submit by **30 May 2021** for the benefit of the authors (and your \$200 publishing discount) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the [materials page](#).

1 Figure file(s)

9 Table file(s)

1 Raw data file(s)

Custom checks

Human participant/human tissue checks

Have you checked the authors [ethical approval statement](#)?

Does the study meet our [article requirements](#)?

Has identifiable info been removed from all files?

Were the experiments necessary and ethical?

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

 You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Real-world response to direct acting antivirals in Mexican patients with hepatitis C virus genotype-1 and previous pegylated interferon and Ribavirin therapy

Daniel Melendez Mena ^{1,2}, Miguel A Mendoza-Torres ^{1,2}, Virginia Sedeno Monge ³, Víctor Hugo García y García ², Elain Rivera-García ³, Laura Sánchez-Reza ², María del Carmen Baxin Domínguez ⁴, Belinda Guzman-Flores ⁵, Ignacio Martínez-Laguna ⁶, José Manuel Coronel Espinoza ⁷, Iván Galindo-Santiago ⁸, Juan Carlos Flores-Alonso ⁸, Verónica Vallejo-Ruiz ⁸, Paulina Cortes-Hernandez ⁹, Julio Reyes-Leyva ⁸, Francisca Sosa-Jurado ⁸, Gerardo Santos-López ^{Corresp. 8}

¹ Centro Interdisciplinario de Posgrados, Facultad de Medicina, Universidad Popular Autónoma del Estado de Puebla, Puebla, Puebla, Mexico

² Servicio de Gastroenterología, Centro Médico Nacional General de División Manuel Ávila Camacho, Instituto Mexicano del Seguro Social, Puebla, Puebla, Mexico

³ Decanato de Ciencias Médicas, Universidad Popular Autónoma del Estado de Puebla, Puebla, Puebla, Mexico

⁴ Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico

⁵ Banco de Sangre, Centro Médico Nacional General de División Manuel Ávila Camacho, Instituto Mexicano del Seguro Social, Puebla, Puebla, Mexico

⁶ Instituto de Ciencias, Benemerita Universidad Autónoma de Puebla, Puebla, Puebla, Mexico

⁷ Hospital General Regional # 1, Instituto Mexicano del Seguro Social, Tarímbaro, Michoacán, Mexico

⁸ Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico

⁹ Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico

Corresponding Author: Gerardo Santos-López

Email address: gerardo.santos.lopez@gmail.com

Background. Direct Acting Antivirals (DAAs) represent a large improvement in the treatment of chronic hepatitis C, resulting in >90% sustained viral response (SVR). There are no reports on the real-world DAA response for Mexico and few reports exist for Latin America. The aim of the study was to report SVR, and immediate benefits with the DAA treatments sofosbuvir, simeprevir, with/without ribavirin (SOF/SMV±RBV) and ombitasvir, paritaprevir, ritonavir, dasabuvir with/without RBV (OBV/PTV/r/DSV±RBV) in patients with viral genotype 1a or 1b, and who did not respond to previous peginterferon/ribavirin (PegIFNα2a+RBV) therapy. **Methods.** A cohort of 261 adult patients received

PegIFNα2a+RBV therapy before 2014; 167 (64%) did not respond, 83 of these, were subsequently treated with SOF/SMV±RBV or OBV/PTV/r/DSV±RBV. Child-Pugh-Score (CPS), Fibrosis-4 (FIB-4), and AST to Platelet Ratio Index (APRI) were evaluated before and after treatment. **Results.** SVR with PegIFNα2a+PRV was 36%, and 97.5% with DAAs. CPS, FIB-4 and APRI improved significantly after DAAs, mainly because of liver transaminase reduction. **Conclusions.** DAA treatment showed excellent SVR rates in Mexican patients who had not responded to interferon/ribavirin therapy. Improvement in CTP, FIB-4 and APRI without improvement in fibrosis was observed in cirrhotic and non-cirrhotic patients,

despite a considerable reduction in liver transaminases, which suggests a reduction in hepatic necroinflammation.

1 **Real-world response to Direct Acting Antivirals in**
2 **Mexican patients with Hepatitis C virus genotype-1**
3 **and previous Pegylated Interferon and Ribavirin**
4 **therapy**

5
6

7 Daniel Meléndez-Mena^{1,2}, Miguel A. Mendoza-Torres^{1,2}, Virginia Sedeño-Monge³, Víctor H.
8 García y García¹, Elain N. Rivera García³, Laura Sánchez-Reza¹, María C. Baxin-Dominguez⁴,
9 Belinda Guzmán-Flores⁵, Ygnacio Martínez-Laguna⁶, José M. Coronel-Espinoza⁷, Iván Galindo-
10 Santiago⁸, Juan C. Flores-Alonso⁸, Verónica Vallejo-Ruiz⁸, Paulina Cortés-Hernández⁹, Julio
11 Reyes-Leyva⁸, Francisca Sosa-Jurado^{8*} and Gerardo Santos-López^{8*}

12

13 ¹Servicio de Gastroenterología, Unidad Médica de Alta Especialidad, Centro Médico Nacional
14 "General de División Manuel Ávila Camacho", Instituto Mexicano del Seguro Social (IMSS).
15 Puebla, Puebla, México.

16 ²Centro Interdisciplinario de Posgrados, Facultad de Medicina, Universidad Popular
17 Autónoma del Estado de Puebla. Puebla, Puebla, México.

18 ³Decanato de Ciencias Médicas, Facultad de Medicina, Universidad Popular Autónoma del
19 Estado de Puebla. Puebla, Puebla, México.

20 ⁴Clínica del Hígado y hepatopatías autoinmunes, Unidad Médica de Alta Especialidad, Dr.
21 Antonio Fraga Mouret, Centro Médico Nacional " La Raza", IMSS.

22 ⁵Banco de Sangre, Unidad Médica de Alta Especialidad, Centro Médico Nacional "General de
23 División Manuel Ávila Camacho", Instituto Mexicano del Seguro Social (IMSS). Puebla, Puebla,
24 México.

25 ⁶Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita
26 Universidad Autónoma de Puebla. Puebla, Puebla, México.

27 ⁷Servicio de Gastroenterología, Hospital General Regional No 1, El Charo, IMSS. Tarímbaro,
28 Michoacán de Ocampo, México.

29 ⁸Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente,
30 IMSS. Metepec, Atlixco, Puebla, México.

31 ⁹Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, IMSS.
32 Metepec, Atlixco, Puebla, México.

33

34 Corresponding Author:

35 Francisca Sosa-Jurado and Gerardo Santos-López

36 Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente,
37 IMSS. Km 4.5 Carretera Federal Atlixco-Metepec, Hospital General de Zona No 5, Metepec,
38 Atlixco; 74360 Puebla, México.

39 Email address: sosajurado@hotmail.com, gerardo.santos.lopez@gmail.com

40

41 **Abstract**

42 **Background.** Direct Acting Antivirals (DAAs) represent a large improvement in the treatment
43 of chronic hepatitis C, resulting in >90% sustained viral response (SVR). There are no reports on
44 the real-world DAA response for Mexico and few reports exist for Latin America. The aim of the
45 study was to report SVR, and immediate benefits with the DAA treatments sofosbuvir,
46 simeprevir, with/without ribavirin (SOF/SMV±RBV) and ombitasvir, paritaprevir, ritonavir,
47 dasabuvir with/without RBV (OBV/PTV/r/DSV±RBV) in patients with viral genotype 1a or 1b,
48 and who did not respond to previous peginterferon/ribavirin (PegIFN α 2a+RBV) therapy.

49 **Methods.** A cohort of 261 adult patients received PegIFN α 2a+RBV therapy before 2014; 167
50 (64%) did not respond, 83 of these, were subsequently treated with SOF/SMV±RBV or
51 OBV/PTV/r/DSV±RBV. Child-Pugh-Score (CPS), Fibrosis-4 (FIB-4), and AST to Platelet Ratio
52 Index (APRI) were evaluated before and after treatment.

53 **Results.** SVR with PegIFN α 2a+RBV was 36%, and 97.5% with DAAs. CPS, FIB-4 and APRI
54 improved significantly after DAAs, mainly because of liver transaminase reduction.

55 **Conclusions.** DAA treatment showed excellent SVR rates in Mexican patients who had not
56 responded to interferon/ribavirin therapy. Improvement in CTP, FIB-4 and APRI without
57 improvement in fibrosis was observed in cirrhotic and non-cirrhotic patients, despite a
58 considerable reduction in liver transaminases, which suggests a reduction in hepatic
59 necroinflammation.

60

61 **Introduction**

62 About 70-85% of the patients that become infected with Hepatitis C virus (HCV) develop CHC
63 and require treatment (Lozano *et al.*, 2012). Almost 400,000 people die each year from CHC
64 related liver diseases mainly from cirrhosis and hepatocellular carcinoma (HCC) (Sagnelli *et al.*,
65 2013).

66 For nearly a decade, the first-line therapy against CHC was pegylated interferon alpha
67 (pegIFN α) with ribavirin (RBV), but SVR was observed only in 40-50% of patients infected
68 with viral genotype 1 and in 70% of those with genotypes 2 or 3 (Hofmann *et al.*, 2015). In the
69 last five years, the DAAs, revolutionized CHC treatment (Elbaz *et al.*, 2015). The first
70 generation DAAs are serine protease inhibitors used in triple combination with interferon and
71 RBV that had low tolerability (Watanabe *et al.*, 2016). New DAA combinations without
72 interferon, that target several viral-cycle proteins, like NS3/4A (protease), NS5A and NS5B
73 (RNA polymerase), were introduced in 2013-2014 and show enhanced efficacy and tolerability.
74 These last generation DAAs, have increased SVR rates to over 90% and effectively treat all
75 HCV genotypes (Gotte & Feld, 2016) even when advanced cirrhosis is present (Mizokami *et al.*,
76 2015), making them efficient curative therapies. However, access to DAAs varies greatly among
77 countries. According to WHO, only around half of patients with CHC that started treatment in
78 2015 received DAAs, and they concentrated in high income countries (World Health
79 Organization, 2017). Thus, data on real-world safety and effectiveness of DAA regimens are still
80 emerging for the middle- and low-income countries that harbor most of the CHC patients. There
81 is limited data on real-world DAA treatments administered through public health systems in

82 Latin America (LA), which are crucial in the efforts to eradicate HCV. Delivering DAA
83 treatments to patients in need is now a main challenge worldwide. Furthermore, some CHC
84 patients face restrictions to receive DAA regimens even in high-income countries, due to costs.
85 This results in a portion of patients being treated only after liver fibrosis/cirrhosis have emerged,
86 and highlights the need to understand the effects of DAAs on liver fibrosis and inflammation.
87 In Mexico the most frequent HCV genotype is 1. Treatment for this genotype with
88 pegIFN α +RBV has a low SVR rate of around 38% (Sandoval-Ramirez *et al.*, 2015), while the
89 SVR with DAAs has not been reported in this country and few reports exist for LA (Cheinquer
90 *et al.*, 2017). Large public health systems such as the Mexican Institute of Social Security
91 (IMSS) that currently tends to \approx 60% of the Mexican population (*Instituto Mexicano del Seguro*
92 *Social*, 2018), introduced DAA regimens in 2017, initially treating patients who received and did
93 not respond to pegIFN α 2a+RBV. We studied Mexican adults with CHC that were treated with
94 pegIFN α 2a+RBV between 2005 and 2014. The non-responders from this cohort were among the
95 first treated with DAAs in a real-world, public health setting in Mexico between 2017 and 2019
96 and their results are reported here.

97

98 Materials & Methods

99 *Initial cohort with pegIFN α 2a+RBV treatment (2005 to 2014)*

100 A cohort study was carried out with 261 patients at a High Specialty Medical Unit of the
101 Mexican Institute of Social Security (UMAE-HE, IMSS) in the city of Puebla, Mexico. Patients
102 \geq 18 years old, with CHC, viral genotype 1 (1a, 1b, 1a1b), patients had either no cirrhosis or
103 compensated cirrhosis.

104

105 *HCV genotype and viral load in the initial cohort*

106 The viral genotype was determined with INNO-LiPA HCV II (Inogenetics, Zwijndre, Belgium),
107 and the viral load with AmpliPrep/Cobas and AmpliPrep/Cobas TaqMan HCV test (Roche
108 Molecular Systems, Indianapolis, IN, USA), before treatment and at 4, 12, 24, 48 and 72 weeks
109 after the start of pegIFN α +RBV.

110

111 *PegIFN α 2a+RBV Treatment*

112 Patients received standard therapy for 48 weeks with pegIFN α 2a 180 μ g/week plus ribavirin, at a
113 dose adjusted by body weight in the range of 1000-1200 mg/day. Rapid viral response (RVR),
114 complete early viral response (cEVR), partial early viral response (pEVR), slow viral response
115 (SLVR), null response, SVR, relapse, breakthrough and non-responder (NR) to
116 pegIFN α 2a+RBV were determined according to the Mexican consensus on the diagnosis and
117 management of hepatitis C infection (Sanchez-Avila *et al.*, 2015).

118

119 *Sub-cohort of non-responder patients to pegIFN α 2a+RBV that underwent DAA treatment in
120 2017 to 2019*

121 A sub-cohort of patients classified as non-responders to pegIFN α 2a+RBV that returned for, and
122 completed, DAA treatment between June 2017 and January 2019 was studied. These patients
123 were candidates for DAA treatment irrespective of their cirrhosis degree.

124

125 *Laboratory and imaging tests in the sub-cohort with DAA treatment*

126 Cirrhosis was diagnosed with clinical, and laboratory data, plus hepatic elastography and
127 ultrasound. A single hepatic elastography performed pre-treatment (FibroScan 530 Compact,
128 Echosens, France) was used to determine steatosis, and METAVIR score of Fibrosis. Serum
129 determinations of total bilirubin, albumin, International Normalization Ratio of prothrombin time
130 (INR), aspartate aminotransferase (AST), alanine aminotransferase (ALT), platelet counts (PC),
131 the presence of ascites, or hepatic encephalopathy, Child-Pugh-Score (CPS), Fibrosis-4 (FIB-4),
132 and AST to Platelet Ratio Index (APRI) were evaluated before and after treatment.
133 Confirmation of the viral genotype, and HCV RNA viral load determinations were done with the
134 Real Time System HCV Assay (Abbott Molecular, Abbott Park, Illinois USA). The lower limit
135 of quantification (LLOQ) is 1.39 Log₁₀ IU/mL, and lower limit of detection (LLOD) is 1.08
136 Log₁₀ IU/ml. The viral load was measured at DAA treatment start, at 12 weeks (treatment end)
137 and at 24 weeks (12 weeks after treatment end).

138

139 *Treatment with OBV/PTV/r/DSV±RBV or SOF/LDV±RBV*

140 Patients were evaluated by the group of experts in the management of hepatitis C (GEMHEC) at
141 IMSS, who determined which of two available DAA regimens was best for each patient, based
142 on medical criteria: Patients without cirrhosis, or with cirrhosis CPS-A to CPS-B, were treated
143 with OBV/PTV/r/DSV±RBV at 25/150/100/500±1000-1200 mg per day, for 12 weeks. Patients,
144 without cirrhosis, or with cirrhosis CPS-A to CPS-C, were treated with SOF/LDV±RBV at
145 400/90±1000-1200 mg per day, for 12 weeks. The efficacy of each regime was assessed by the
146 percentage of patients with RVS defined as undetectable plasma HCV RNA 12 weeks after
147 treatment end.

148

149 *Ethical aspects*

150 The study was performed in accordance with ethical regulations and approved by the committee
151 of research and ethics (Local Committee for Health Research No. 2101), IMSS (Registry
152 numbers R-2004-2101-008, R-2008-2101-10, and R-2019-2101-001). Written informed consent
153 was obtained from all patients prior to entering the study.

154

155 *Statistical analysis*

156 For quantitative variables, means (95%CI), paired and unpaired Student's t test were calculated.
157 For qualitative variables, frequencies, percentages, univariate analysis with chi-square or Fisher's
158 exact tests, and multivariate analysis with multinomial logistic regression, were performed.
159 Statistical significance was defined as $p \leq 0.05$. All statistical analyses were done with GraphPad
160 Prism version 5.0 (GraphPad software, Inc. San Diego CA).

161

162 **Results**163 *Response to pegIFN α 2a+RBV treatment*

164 We followed 261 Mexican adults with CHC and viral genotype 1, with or without cirrhosis, who
165 received treatment with pegIFN α 2a+RBV between 2005 to 2014 (patient characteristics in
166 Table S1). Thirty six percent of patients (94) achieved SVR, while 64% (167) were non-
167 responders (Table 1).

168 Two independent variables associated significantly with SVR after pegIFN α 2a+RBV in a
169 multivariate analysis: not having cirrhosis (RR=3.0) and having a baseline viral load $<5.56 \log_{10}$
170 IU/ml (RR=3.5), while the opposite conditions associated to null response (Table S2).

171 None of the studied factors associated with relapse, and no type of intermediate response (RVR,
172 cEVR, and pEVR,) was predictive of SVR or relapse during pegIFN α 2a+RBV treatment (Table
173 S2).

174 All of the non-responders to pegIFN α 2a+RBV that were alive in 2017 were invited to receive
175 DAA treatment and 83 patients attended. The rest (84 patients) did not receive subsequent DAA
176 treatment through IMSS: 13 had died before 2015 and the rest were unavailable for follow-up.
177 The baseline characteristics of the patients that received and did not receive DAAs are contrasted
178 in Table S3.

179

180 *Sub-cohort of non-responders to pegIFN α 2a+RBV that received DAA treatment*

181 Of the 83 patients that returned for DAA treatment, 39 received *OBV/PTV/r/DSV±RBV*, and 44
182 *SOF/LDV±RBV*, for 12 weeks. Demographic data, comorbidities, type of response to the
183 previous treatment, steatosis grade, and basal platelet counts, were similar between the two
184 groups (Table 2).

185 Viral genotype 1a predominated in the *SOF/LDV±RBV* group. This group also had a lower viral
186 load and a higher proportion of patients with cirrhosis pre-DAA treatment than the
187 *OBV/PTV/r/DSV±RBV* group (Table 2). An overall SVR rate of 97.6% was obtained at 24 weeks
188 (12 weeks after treatment end) in 83 patients who had either of the DAA treatments, with no
189 significant difference in SVR between treatments ($p = 0.217$) (Table 3).

190 Two patients, both treated with *OBV/PTV/r/DSV±RBV*, had non-response: 1 had null response,
191 and 1 had relapse. Both patients were men, without comorbidities, and had an initial viral load
192 $>5.58 \log_{10}$ UI/ml (Table 4). No demographic, clinical, or laboratory characteristics were
193 significantly associated with non-response (Table S4).

194 At week 12 (end of treatment), 5 patients treated with *OBV/PTV/r/DSV±RBV* and 3 patients with
195 *SOF/LDV±RBV* still had detectable viral RNA (above of LLOD but, below LLOQ). At week 12
196 after the end of treatment, 7 of these patients had undetectable viral RNA, while the last patient
197 (treated with *OBV/PTV/r/DSV+RBV*) had undetectable viral RNA at week 24 after the end of
198 treatment. Therefore, all 8 patients eventually achieved SVR with the DAAs. Table 4 shows their
199 characteristics.

200

201 *Child-Pugh Score, serological fibrosis markers FIB-4 and APRI before and after DAA*
202 *treatments*
203 CPS post-treatment improved significantly in 12 patients with cirrhosis. After
204 OBV/PTV/r/DSU±RBV treatment, 1 patient improved from CPS-B to -A; while after
205 SOF/LDV±RBV treatment, 11 patients improved: one from CPS-C to -A, and the other 10 from
206 CPS-B to -A (Table 5).
207 Since hepatic elastography was carried out only pre-treatment we did not have a direct
208 METAVIR comparison of the hepatic fibrosis before and after DAAs. Therefore, we determined
209 the FIB-4 score, and the APRI index, to explore whether liver fibrosis changed with treatment.
210 We found a decrease in mean FIB-4 and APRI values with both DAA regimens that was
211 observed in both cirrhotic and non-cirrhotic patients. This decrease was enough to rate below the
212 threshold for F4 cirrhosis in patients after *OBV/PTV/r/DSU±RBV* but not after *SOF/LDV±RBV*,
213 which had more F4 cirrhosis before treatment. Non-cirrhotic patients still rated as having
214 persistent liver fibrosis after DAAs, despite the decrease in mean FIB-4 and APRI values (Table
215 5).
216

217 ***Tolerability and adverse events***
218 The adverse effects during DAA treatments were epigastralgia (18%), headache (12%),
219 hyperbilirubinemia without elevation of ALT or AST during the first two weeks (12%), fever
220 (2.4%), and pruritus (1.2%). All the events were tolerated and controllable and none of the
221 patients discontinued treatment. One patient, treated with SOF/LDV±RBV, had a sudden hepatic
222 decompensation, that could be associated with frequent ingestion of *Peumus boldus* leave
223 infusions during treatment. Herb-drug interactions have been documented for *P. boldus* with
224 other drugs (Awortwe *et al.*, 2018). The patient discontinued the infusions, corrected the hepatic
225 decompensation, completed treatment and reached SVR.
226

227 **Discussion**

228 SVR is attained only in about half of CHC patients treated with pegIFN α +RBV but in over 90%
229 of those treated with DAAs. Widespread access to DAAs was initially delayed by drug costs and
230 accessibility, especially in some world regions that harbor most of the CHC patients (*World
231 Health Organization*, 2017). The switch to the new treatments in those regions has been slow
232 and relies importantly on public health systems. Mexico and Brazil are the countries in Latin
233 America with the highest rates of cirrhosis, related to alcoholism and CHC (Mendez-Sanchez *et
234 al.*, 2018). Mexican public health institutions, such as IMSS, included DAAs in their list of
235 essential medicines in June 2017, initially treating patients who had failed pegIFN α 2a+RBV.
236 This is the first report of the outcome of a Mexican cohort treated this way.
237 We found 36% SVR with the initial pegIFN α 2a+RBV regimen (Table 1), similar to previous
238 reports in Mexico of 32.5% (Sandoval-Ramirez *et al.*, 2015). Fifty one percent of the non-
239 cirrhotic patients, and 68% of those with low baseline viral load achieved SVR with
240 pegIFN α 2a+RBV (data not shown), similar to other publications (Enomoto & Nishiguchi, 2015;

241 *Naing et al., 2015*). Diabetes did not associate with failure of pegIFN α 2a+RBV treatment: 34.2%
242 of diabetic patients achieved SVR (data not shown), similar to SVR of all the cohort. The
243 original cohort included equivalent amounts of patients with HCV subtypes 1a and 1b (Table
244 S1), which had similar SVR rates with pegIFN α 2a+RBV (Table 1).
245 Not all patients that displayed some initial response to pegIFN α 2a+RBV (RVR, cEVR or pEVR)
246 achieved SVR: 18.7% relapsed (data not shown), slightly above previous reports of 16% and
247 14.4% relapse (15,17). Thus, RVR, cEVR, pEVR were not predictors of SVR or relapse with
248 pegIFN α 2a+RBV (Table S2). The low SVR rate with this treatment was likely associated to the
249 high frequency of cirrhosis and the high viral load present in our initial cohort (Table S1). This
250 was expected, as virus elimination is difficult with pegIFN α 2a+RBV when the viral load is high,
251 in particular for genotype 1 (*Enomoto & Nishiguchi, 2015*).
252 Of the 167 non-responder patients to pegIFN α 2a+RBV, only 83 returned for DAA treatment and
253 all of them concluded therapy with either *OBV/PTV/r/DSV±RBV* or *SOF/LDV±RBV*. DAA
254 treatment happened on average 7 years after pegIFN α 2a+RBV treatment, thus the sub-cohort
255 with DAA treatment was older (56.2 vs 49.5 years), had a higher cirrhosis rate (60% vs 29%) and
256 a lower basal average viral load, when they received DAAs than when they received
257 pegIFN α 2a+RBV (Figure 1).
258 Women were 74.6% of the patients treated with DAAs, which is a high percentage compared to
259 other DAA real-world studies that report 35% (*Perello et al., 2017*), 45% (*Flisiak et al., 2016*)
260 54% (*Mendizabal et al., 2017*), and 44.4% (*Holzmann et al., 2018*) females (the last two in Latin
261 America). The high proportion of women in our cohort likely reflects that in Mexico an
262 important risk factor for CHC is the history of blood transfusion prior to 1995 (*Lopez-Colombo*
263 *et al., 2014*) likely during obstetric or gynecological procedures. Females had a higher mean age
264 than men in our DAA sub-cohort (Table 2).
265 SVR in the group treated with *OBV/PTV/r/DSV±RBV* was 94.8%, similar to other studies that
266 have reported 96% (*Welzel et al., 2017*), 99% (MALACHITE II trial) (*Dore et al., 2016*), and
267 98.7% (AMBER study) (*Flisiak et al., 2016*), in patients with previous treatment, 96.8%
268 (*Mendizabal et al., 2017*) and 96.2% (*Perello et al., 2017*) including both treatment-naïve and
269 previously treated patients respectively. Two patients presented failure to *OBV/PTV/r/DSV±RBV*,
270 and this was not associated with any of the studied factors (Table S5), similar to previous reports
271 (*Flisiak et al., 2016*). However non-responders were 2/10 men in contrast to 0/29 women, and
272 2/21 patients without cirrhosis, in contrast to 0/18 patients with cirrhosis (Table S5).
273 SVR in the group treated with *SOF/LDV±RBV* was 100%, similar to two multicenter studies that
274 have reported 95.8%, and 92.5 to 100%, respectively (*Calleja et al., 2017*; *Terrault et al., 2016*)
275 in patients with previous treatment; and 99% in cirrhotic patients with viral subtype 1b (*Ogawa*
276 *et al., 2017*), and a meta-analysis reported $\geq 95\%$ (*Rezaee-Zavareh et al., 2017*). Our
277 *SOF/LDV±RBV* group had 72.7% of cirrhotic patients and viral subtype 1a predominated over 1b
278 (Table 3). Male gender (*Ogawa et al., 2017*), basal albumin <3.5g/dL, and basal total bilirubin
279 >2.0 mg/dL have been associated with failure to *SOF/LDV±RBV* treatment (*Calleja et al., 2017*;
280 *Terrault et al., 2016*). In contrast, in our study 75% of patients with *SOF/LDV±RBV* were

281 women; 47.8% had basal albumin >3.5g/dL and 68% had basal total bilirubin <2.0 mg/dL, likely
282 favoring SVR (Table 2).

283 Biochemical improvement was observed after both DAA treatments, particularly 10% increase in
284 albumin levels, up to 3-fold decrease in ALT and AST levels, and no decrease in hemoglobin
285 despite 79% of patients with SOF/LDV receiving RBV. In agreement with lack of change in
286 hemoglobin, indirect bilirubin did not increase with DAAs either (data not shown). An AFP
287 concentration above 10 ng/mL was found in 28.9% of patients pretreatment and the
288 concentrations decreased by 50% after DAA treatment (Table 4). Only one patient (4.16%)
289 showed an increase in AFP levels after treatment, in contrast to 22.9% found in another study
290 (Fouad *et al.*, 2019). Biochemical improvement translated into better CPS: 12 cirrhotic patients
291 improved the CPS post-DAAs (Table 4). Other studies report changes in CPS at 36 weeks (El-
292 Sherif *et al.*, 2018), and at 6 months (Essa *et al.*, 2019) post DAAs.

293 Ninety eight percent of our patients eradicated HCV after 12 weeks of treatment, but we detected
294 residual HCV RNA at treatment end (12 weeks), in 8 patients that became undetectable in the
295 following months (Table S4). A study reported that normalization of albumin, AST, and ALT
296 levels after DAA treatment is associated with the restoration of immune activity (Kostadinova *et*
297 *al.*, 2018), suggesting that the immune response may clear the residual virus in the following
298 weeks.

299 Still, not all patients showed biochemical improvement. For example, elevated ALT persisted
300 post-treatment in 9.8% of patients (data not shown), corresponding to patients with cirrhosis.
301 This suggests the persistence of chronic liver inflammation despite SVR with DAAs in some
302 cirrhotic patients, as has been observed (Enomoto *et al.*, 2018).

303 The serological fibrosis markers FIB-4 and APRI showed a significant decrease after DAA
304 treatment ($p < 0.05$) (Table 4). However, their values suggest that cirrhosis and liver fibrosis were
305 not eliminated by DAA treatments (Table 4). A recent study with non-cirrhotic patients reported
306 that APRI and FIB-4 rates decrease rapidly and steadily from week 2 to week 12 post-DAA
307 treatment (Hsu *et al.*, 2019). Another study reported a decrease in transient elastography 18
308 months after treatment, but the authors discuss that it remains to be examined whether this
309 indicates a true regression of fibrosis or simply the resolution of chronic liver inflammation
310 (Bachofner *et al.*, 2017). A study with liver biopsies of patients that reached SVR, reported a
311 decrease in the Knodell inflammatory score, and did not observe short-term improvement in
312 fibrosis post-DAA treatment (41±20 weeks after treatment end) (Enomoto *et al.*, 2018). Thus,
313 our observation on FIB-4 and APRI could be due more to an improvement in chronic liver
314 inflammation, which is supported by the significant decrease in liver transaminases (Table 4).
315 The biochemical and hepatic-fibrosis characterization of patients treated with DAAs, is
316 instrumental to understand details beyond SVR, in particular related to liver inflammation and its
317 contribution to long-term outcomes, like HCC. Several studies report that patients with cirrhosis
318 remain at risk of HCC despite SVR, irrespective of the treatment (even with DAAs) (Chinchilla-
319 Lopez *et al.*, 2017; Waziry *et al.*, 2017). In contrast, in patients without cirrhosis, a decrease in

320 liver inflammation reduces the risk of cirrhosis and HCC (*Hsu et al., 2019*). This suggests that
321 the best window for DAA treatment is before the installation of cirrhosis.

322

323 **Conclusions**

324 DAA treatment showed excellent SVR rate Mexico patients who had failed therapy with
325 pegIFNa2a+RBV **an average of 7 years before** CPS improved in some patients with cirrhosis.
326 DAA treatment did not correct cirrhosis but FIB-4 and APRI suggest a reduction of chronic liver
327 inflammation.

328

329 **Acknowledgements**

330 JRL has a research fellowship from Fundación IMSS A.C., Mexico
331 (www.fundacionimss.org.mx).

332

333 **Author Contributions**

334 DMM, MAMT, VSM, PCH, JRL, GSL and FSJ conceived and designed the study; DMM,
335 MAMT, VGG, ERG, MBD, BGF, JCE, IGS, JCFA and VVR cared for patients and performed
336 laboratory tests; VSM, VGG, YML, VVR, PCH, GSL and FSJ analyzed the data; DMM, VSM,
337 VVR, PCH, JRL, GSL and FSJ prepared the figures and/or tables; DMM, VSM, VVR, PCH,
338 JRL, GSL and FSJ drafted the work or revised it critically for important content.

339

340

341

342

343 **References**

344 **Awortwe C, Makiwane M, Reuter H, Muller C, Louw J, and Rosenkranz B. 2018.** Critical
345 evaluation of causality assessment of herb-drug interactions in patients. *Br J Clin Pharmacol*
346 84:679-693. 10.1111/bcp.13490

347 **Bachofner JA, Valli PV, Kroger A, Bergamin I, Kunzler P, Baserga A, Braun D, Seifert B,**
348 **Moncsek A, Fehr J, Semela D, Magenta L, Mullhaupt B, Terzioli Beretta-Piccoli B,**
349 **and Mertens JC. 2017.** Direct antiviral agent treatment of chronic hepatitis C results in
350 rapid regression of transient elastography and fibrosis markers fibrosis-4 score and aspartate
351 aminotransferase-platelet ratio index. *Liver Int* 37:369-376. 10.1111/liv.13256

352 **Calleja JL, Crespo J, Rincon D, Ruiz-Antoran B, Fernandez I, Perello C, Gea F, Lens S,**
353 **Garcia-Samaniego J, Sacristan B, Garcia-Eliz M, Llerena S, Pascasio JM, Turnes J,**
354 **Torras X, Morillas RM, Llaneras J, Serra MA, Diago M, Rodriguez CF, Ampuero J,**
355 **Jorquera F, Simon MA, Arenas J, Navascues CA, Banares R, Munoz R, Albilllos A,**
356 **Marino Z, and Spanish Group for the Study of the Use of Direct-acting Drugs Hepatitis**
357 **CCG. 2017.** Effectiveness, safety and clinical outcomes of direct-acting antiviral therapy in
358 HCV genotype 1 infection: Results from a Spanish real-world cohort. *J Hepatol* 66:1138-
359 1148. 10.1016/j.jhep.2017.01.028

360 **Cheinquer H, Sette H, Jr., Wolff FH, de Araujo A, Coelho-Borges S, Soares SRP, and**
361 **Barros MFA. 2017.** Treatment of Chronic HCV Infection with the New Direct Acting

362 Antivirals (DAA): First Report of a Real World Experience in Southern Brazil. *Ann Hepatol*
363 16:727-733. 10.5604/01.3001.0010.2717

364 **Chinchilla-Lopez P, Qi X, Yoshida EM, and Mendez-Sanchez N. 2017.** The Direct-Acting
365 Antivirals for Hepatitis C Virus and the Risk for Hepatocellular Carcinoma. *Ann Hepatol*
366 16:328-330. 10.5604/16652681.1235473

367 **Dore GJ, Conway B, Luo Y, Janczewska E, Knysz B, Liu Y, Streinu-Cercel A, Caruntu**
368 **FA, Curescu M, Skoien R, Ghesquiere W, Mazur W, Soza A, Fuster F, Greenbloom S,**
369 **Motoc A, Arama V, Shaw D, Tornai I, Sasadeusz J, Dalgard O, Sullivan D, Liu X,**
370 **Kapoor M, Campbell A, and Podsdaleck T. 2016.** Efficacy and safety of
371 ombitasvir/paritaprevir/r and dasabuvir compared to IFN-containing regimens in genotype 1
372 HCV patients: The MALACHITE-I/II trials. *J Hepatol* 64:19-28. 10.1016/j.jhep.2015.08.015

373 **El-Sherif O, Jiang ZG, Tapper EB, Huang KC, Zhong A, Osinusi A, Charlton M, Manns**
374 **M, Afdhal NH, Mukamal K, McHutchison J, Brainard DM, Terrault N, and Curry**
375 **MP. 2018.** Baseline Factors Associated With Improvements in Decompensated Cirrhosis
376 After Direct-Acting Antiviral Therapy for Hepatitis C Virus Infection. *Gastroenterology*
377 154:2111-2121 e2118. 10.1053/j.gastro.2018.03.022

378 **Elbaz T, El-Kassas M, and Esmat G. 2015.** New era for management of chronic hepatitis C
379 virus using direct antiviral agents: A review. *J Adv Res* 6:301-310.
380 10.1016/j.jare.2014.11.004

381 **Enomoto H, and Nishiguchi S. 2015.** Factors associated with the response to interferon-based
382 antiviral therapies for chronic hepatitis C. *World J Hepatol* 7:2681-2687.
383 10.4254/wjh.v7.i26.2681

384 **Enomoto M, Ikura Y, Tamori A, Kozuka R, Motoyama H, Kawamura E, Hagihara A, Fujii**
385 **H, Uchida-Kobayashi S, Morikawa H, Murakami Y, and Kawada N. 2018.** Short-term
386 histological evaluations after achieving a sustained virologic response to direct-acting
387 antiviral treatment for chronic hepatitis C. *United European Gastroenterol J* 6:1391-1400.
388 10.1177/2050640618791053

389 **Essa M, Sabry A, Abdelsamea E, Tharwa ES, and Salama M. 2019.** Impact of new direct-
390 acting antiviral drugs on hepatitis C virus-related decompensated liver cirrhosis. *Eur J*
391 *Gastroenterol Hepatol* 31:53-58. 10.1097/MEG.0000000000001250

392 **Flisiak R, Janczewska E, Wawrzynowicz-Syczewska M, Jaroszewicz J, Zarebska-Michaluk**
393 **D, Nazzal K, Bolewska B, Bialkowska J, Berak H, Fleischer-Stepniewska K,**
394 **Tomasiewicz K, Karwowska K, Rostkowska K, Piekarska A, Tronina O, Madej G,**
395 **Garlicki A, Lucejko M, Pisula A, Karpinska E, Kryczka W, Wiercinska-Drapalo A,**
396 **Mozer-Lisewska I, Jablkowski M, Horban A, Knysz B, Tudrujek M, Halota W, and**
397 **Simon K. 2016.** Real-world effectiveness and safety of ombitasvir/paritaprevir/ritonavir +/-
398 dasabuvir +/- ribavirin in hepatitis C: AMBER study. *Aliment Pharmacol Ther* 44:946-956.
399 10.1111/apt.13790

400 **Fouad R, Elsharkawy A, Abdel Alem S, El Kassas M, Alboraie M, Sweedy A, Afify S,**
401 **Abdellatif Z, Khairy M, and Esmat G. 2019.** Clinical impact of serum alpha-fetoprotein
402 and its relation on changes in liver fibrosis in hepatitis C virus patients receiving direct-
403 acting antivirals. *Eur J Gastroenterol Hepatol* 31:1129-1134.
404 10.1097/MEG.0000000000001400

405 **Gotte M, and Feld JJ. 2016.** Direct-acting antiviral agents for hepatitis C: structural and
406 mechanistic insights. *Nat Rev Gastroenterol Hepatol* 13:338-351. 10.1038/nrgastro.2016.60

407 **Hofmann WP, Mauss S, Lutz T, Schober A, Boker K, Moog G, Baumgarten A, Pfeiffer-**
408 **Vornkahl H, Alshuth U, Huppe D, Wedemeyer H, Manns MP, and Schott E. 2015.**
409 Benefit of Treatment Individualization in Patients with Chronic Hepatitis C Receiving
410 Peginterferon Alfa-2a and Ribavirin in a Large Noninterventional Cohort Study. *PLoS One*
411 10:e0134839. 10.1371/journal.pone.0134839

412 **Holzmann I, Tovo CV, Minme R, Leal MP, Kliemann MP, Ubirajara C, Aquino AA,**
413 **Araujo B, and Almeida PRL. 2018.** Effectiveness of chronic hepatitis C treatment with
414 direct-acting antivirals in the Public Health System in Brazil. *Braz J Infect Dis* 22:317-322.
415 10.1016/j.bjid.2018.06.004

416 **Hsu WF, Lai HC, Su WP, Lin CH, Chuang PH, Chen SH, Chen HY, Wang HW, Huang**
417 **GT, and Peng CY. 2019.** Rapid decline of noninvasive fibrosis index values in patients with
418 hepatitis C receiving treatment with direct-acting antiviral agents. *BMC Gastroenterol* 19:63.
419 10.1186/s12876-019-0973-5

420 **Instituto Mexicano del Seguro Social. 2018.** *Informe al Ejecutivo Federal y al Congreso de la*
421 *Unión sobre la situación financiera y los riesgos del Instituto Mexicano del Seguro Social*
422 *2017-2018.* Ciudad de México, México: Instituto Mexicano del Seguro Social.

423 **Kostadinova L, Shive CL, Zebrowski E, Fuller B, Rife K, Hirsch A, Compan A, Moreland**
424 **A, Falck-Ytter Y, Popkin DL, and Anthony DD. 2018.** Soluble Markers of Immune
425 Activation Differentially Normalize and Selectively Associate with Improvement in AST,
426 ALT, Albumin, and Transient Elastography During IFN-Free HCV Therapy. *Pathog Immun*
427 3:149-163. 10.20411/pai.v3i1.242

428 **Lopez-Colombo A, Melendez-Mena D, Sedeno-Monge V, Camacho-Hernandez JR,**
429 **Vazquez-Cruz E, Morales-Hernandez ER, Sosa-Jurado F, Marquez-Dominguez L, and**
430 **Santos-Lopez G. 2014.** Hepatitis C virus infection in patients and family members attending
431 two primary care clinics in Puebla, Mexico. *Ann Hepatol* 13:746-752.

432 **Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T,**
433 **Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG,**
434 **Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett**
435 **D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S,**
436 **Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE,**
437 **Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M,**
438 **Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar**
439 **KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais**
440 **DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P,**
441 **Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen**
442 **M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D,**
443 **Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D,**
444 **Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G,**
445 **Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A,**
446 **Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mabweijano J, MacIntyre MF,**
447 **Mallinger L, March L, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi**
448 **BM, McAnulty JH, McDermott MM, McGrath J, Mensah GA, Merriman TR, Michaud**
449 **C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K,**
450 **Nair MN, Naldi L, Narayan KM, Nasser K, Norman P, O'Donnell M, Omer SB,**
451 **Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, Rivero AP, Padilla RP,**
452 **Perez-Ruiz F, Perico N, Phillips D, Pierce K, Pope CA, 3rd, Porrini E, Pourmalek F,**

453 **Raju M, Ranganathan D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De**
454 **Leon FR, Rosenfeld LC, Rushton L, Sacco RL, Salomon JA, Sampson U, Sanman E,**
455 **Schwebel DC, Segui-Gomez M, Shepard DS, Singh D, Singleton J, Sliwa K, Smith E,**
456 **Steer A, Taylor JA, Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA,**
457 **Venketasubramanian N, Vijayakumar L, Vos T, Wagner GR, Wang M, Wang W, Watt**
458 **K, Weinstock MA, Weintraub R, Wilkinson JD, Woolf AD, Wulf S, Yeh PH, Yip P,**
459 **Zabetian A, Zheng ZJ, Lopez AD, Murray CJ, AlMazroa MA, and Memish ZA. 2012.**
460 **Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010:**
461 **a systematic analysis for the Global Burden of Disease Study 2010. *Lancet* 380:2095-2128.**
462 **10.1016/S0140-6736(12)61728-0**

463 **Mendez-Sanchez N, Zamarripa-Dorsey F, Panduro A, Puron-Gonzalez E, Coronado-**
464 **Alejandro EU, Cortez-Hernandez CA, Higuera de la Tijera F, Perez-Hernandez JL,**
465 **Cerda-Reyes E, Rodriguez-Hernandez H, Cruz-Ramon VC, Ramirez-Perez OL,**
466 **Aguilar-Olivos NE, Rodriguez-Martinez OF, Cabrera-Palma S, and Cabrera-Alvarez**
467 **G. 2018. Current trends of liver cirrhosis in Mexico: Similitudes and differences with other**
468 **world regions. *World J Clin Cases* 6:922-930. 10.12998/wjcc.v6.i15.922**

469 **Mendizabal M, Haddad L, Gallardo PE, Ferrada A, Soza AA, Adrover R, Aravena E,**
470 **Roblero JP, Prieto J, Vujacich C, Romero G, Munoz A, Anders M, Hernandez N,**
471 **Coccozella D, Gruz F, Reggiardo MV, Ruf AE, Varon A, Cartier M, Perez Ravier R,**
472 **Ridruejo E, Peralta M, Poncino D, Vorobioff J, Aballay Soteras G, and Silva MO. 2017.**
473 **Ombitasvir/paritaprevir/ritonavir/dasabuvir +/- ribavirin is safe and effective in HCV-**
474 **infected patients in a real-life cohort from Latin America. *J Med Virol* 89:1590-1596.**
475 **10.1002/jmv.24816**

476 **Mizokami M, Yokosuka O, Takehara T, Sakamoto N, Korenaga M, Mochizuki H, Nakane**
477 **K, Enomoto H, Ikeda F, Yanase M, Toyoda H, Genda T, Umemura T, Yatsuhashi H,**
478 **Ide T, Toda N, Nirei K, Ueno Y, Nishigaki Y, Betular J, Gao B, Ishizaki A, Omote M,**
479 **Mo H, Garrison K, Pang PS, Knox SJ, Symonds WT, McHutchison JG, Izumi N, and**
480 **Omata M. 2015. Ledipasvir and sofosbuvir fixed-dose combination with and without**
481 **ribavirin for 12 weeks in treatment-naive and previously treated Japanese patients with**
482 **genotype 1 hepatitis C: an open-label, randomised, phase 3 trial. *Lancet Infect Dis* 15:645-**
483 **653. 10.1016/S1473-3099(15)70099-X**

484 **Naing C, Sitt T, Aung AT, and Aung K. 2015. Sustained Virologic Response to a Dual**
485 **Peginterferon alfa-2a and Ribavirin in Treating Chronic hepatitis C Infection: A**
486 **Retrospective Cohort Study. *Medicine (Baltimore)* 94:e1234.**
487 **10.1097/MD.0000000000001234**

488 **Ogawa E, Furusyo N, Nomura H, Dohmen K, Higashi N, Takahashi K, Kawano A, Azuma**
489 **K, Satoh T, Nakamura M, Koyanagi T, Kato M, Shimoda S, Kajiwara E, Hayashi J,**
490 **and Kyushu University Liver Disease Study G. 2017. NS5A resistance-associated variants**
491 **undermine the effectiveness of ledipasvir and sofosbuvir for cirrhotic patients infected with**
492 **HCV genotype 1b. *J Gastroenterol* 52:845-854. 10.1007/s00535-016-1290-1**

493 **Perello C, Carrion JA, Ruiz-Antoran B, Crespo J, Turnes J, Llaneras J, Lens S, Delgado**
494 **M, Garcia-Samaniego J, Garcia-Paredes F, Fernandez I, Morillas RM, Rincon D,**
495 **Porres JC, Prieto M, Lazaro Rios M, Fernandez-Rodriguez C, Hermo JA, Rodriguez**
496 **M, Herrero JI, Ruiz P, Fernandez JR, Macias M, Pascasio JM, Moreno JM, Serra MA,**
497 **Arenas J, Real Y, Jorquera F, Calleja JL, and Spanish Collaborative Group for the**
498 **Study of the Use of Hepatitis CD-AD. 2017. Effectiveness and safety of ombitasvir,**

499 paritaprevir, ritonavir +/- dasabuvir +/- ribavirin: An early access programme for Spanish
500 patients with genotype 1/4 chronic hepatitis C virus infection. *J Viral Hepat* 24:226-237.
501 10.1111/jvh.12637

502 **Rezaee-Zavareh MS, Hesamizadeh K, Behnava B, Alavian SM, Gholami-Fesharaki M, and**
503 **Sharafi H. 2017.** Combination of Ledipasvir and Sofosbuvir for Treatment of Hepatitis C
504 Virus Genotype 1 Infection: Systematic Review and Meta-Analysis. *Ann Hepatol* 16:188-
505 197. 10.5604/16652681.1231562

506 **Sagnelli E, Pisaturo M, Stanzione M, Messina V, Alessio L, Sagnelli C, Starace M, Pasquale**
507 **G, and Coppola N. 2013.** Clinical presentation, outcome, and response to therapy among
508 patients with acute exacerbation of chronic hepatitis C. *Clin Gastroenterol Hepatol* 11:1174-
509 1180 e1111. 10.1016/j.cgh.2013.03.025

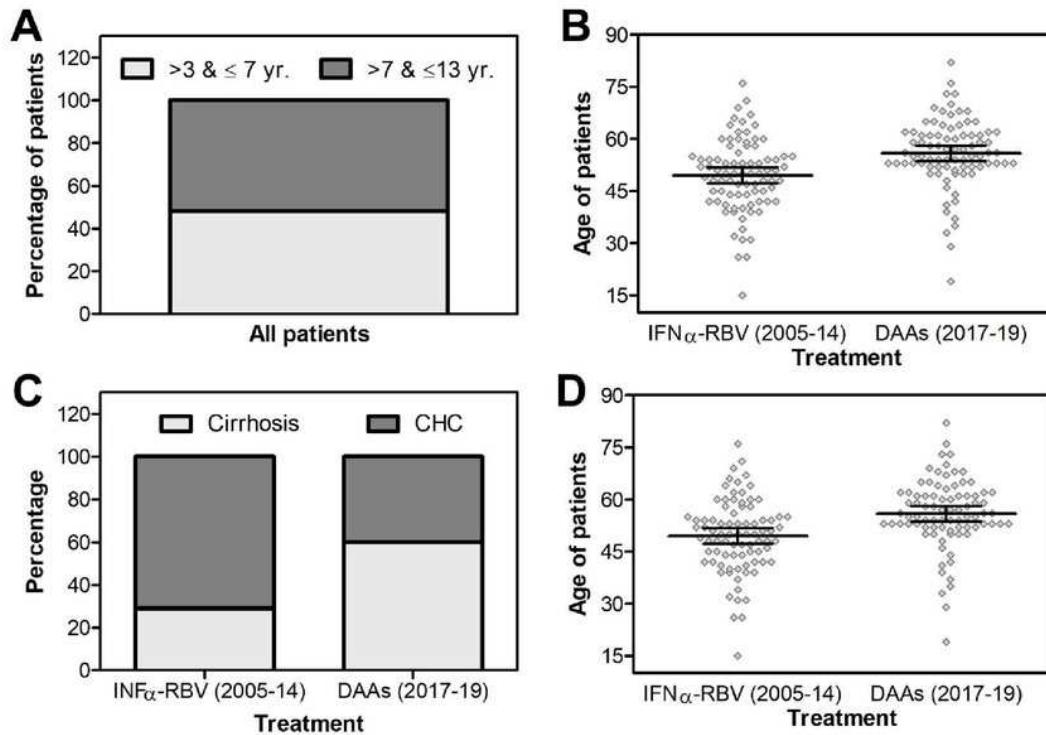
510 **Sanchez-Avila JF, Dehesa-Violante M, Mendez-Sanchez N, Bosques-Padilla F, Castillo-**
511 **Barradas M, Castro-Narro G, Cisneros-Garza L, Chirino-Sprung RA, Garcia-Juarez I,**
512 **Gonzalez-Huezo MS, Male-Velazquez R, Moreno-Alcantar R, Munoz-Espinoza L,**
513 **Ramos-Gomez M, Rizo-Robles MT, Sandoval-Salas R, Sierra-Madero J, Torres-Ibarra**
514 **Mdel R, Vazquez-Frias R, Wolpert-Barraza E, Mexican Association of H, Mexican**
515 **Association of G, and Mexican Hepatitis CCG. 2015.** Mexican consensus on the diagnosis
516 and management of hepatitis C infection. *Ann Hepatol* 14 Suppl 1:5-48.

517 **Sandoval-Ramirez JL, Mata-Marin JA, Huerta Garcia G, and Gaytan-Martinez JE. 2015.**
518 Responses to peginterferon alfa-2a vs alfa-2b plus ribavirin in a Mexican population with
519 chronic hepatitis C. *J Infect Dev Ctries* 9:267-273. 10.3855/jidc.5284

520 **Terrault NA, Zeuzem S, Di Bisceglie AM, Lim JK, Pockros PJ, Frazier LM, Kuo A, Lok**
521 **AS, Schiffman ML, Ben Ari Z, Akushevich L, Vainorius M, Sulkowski MS, Fried MW,**
522 **Nelson DR, and Group H-TS. 2016.** Effectiveness of Ledipasvir-Sofosbuvir Combination
523 in Patients With Hepatitis C Virus Infection and Factors Associated With Sustained
524 Virologic Response. *Gastroenterology* 151:1131-1140 e1135. 10.1053/j.gastro.2016.08.004

525 **Watanabe T, Joko K, Seike H, Michitaka K, Horiike N, Kisaka Y, Tanaka Y, Nakanishi S,**
526 **Nakanishi K, Nonaka T, Yamauchi K, Onji M, Ohno Y, Tokumoto Y, Hirooka M, Abe**
527 **M, and Hiasa Y. 2016.** Simeprevir with peginterferon/ribavirin for patients with hepatitis C
528 virus genotype 1: high frequency of viral relapse in elderly patients. *Springerplus* 5:518.
529 10.1186/s40064-016-2190-9

530 **Waziry R, Hajarizadeh B, Grebely J, Amin J, Law M, Danta M, George J, and Dore GJ.**
531 **2017.** Hepatocellular carcinoma risk following direct-acting antiviral HCV therapy: A
532 systematic review, meta-analyses, and meta-regression. *J Hepatol* 67:1204-1212.
533 10.1016/j.jhep.2017.07.025


534 **Welzel TM, Hinrichsen H, Sarrazin C, Buggisch P, Baumgarten A, Christensen S, Berg T,**
535 **Mauss S, Teuber G, Stein K, Deterding K, van Bommel F, Heyne R, John C,**
536 **Zimmermann T, Lutz T, Schott E, Hettinger J, Kleine H, Konig B, Huppe D, and**
537 **Wedemeyer H. 2017.** Real-world experience with the all-oral, interferon-free regimen of
538 ombitasvir/paritaprevir/ritonavir and dasabuvir for the treatment of chronic hepatitis C virus
539 infection in the German Hepatitis C Registry. *J Viral Hepat* 24:840-849. 10.1111/jvh.12708

540 **World Health Organization. 2017.** *Global Hepatitis Report, 2017.* Geneva, Switzerland: World
541 Health Organization.

Figure 1

Characteristics of the sub-cohort that underwent treatment with pegIFNα2a+RBV and subsequently (average 7 years later) with DAAs

(A) Half of the subcohort had DAAD treatment less than 7 years after pegIFNα2a+RBV ($>3 < 7$ years) and the other half more than 7 years after ($>7 < 13$ years). (B) Age of patients when they underwent pegIFNα2a+RBV treatment and age of the same group of individuals when they had DAA treatment. (C) Percent of patients with cirrhosis vs CHC without cirrhosis, when they underwent treatment with pegIFNα2a+RBV and with DAAs (D) Viral load of the individuals at the start of pegIFNα2a+RBV treatment and subsequently when they started DAA treatment. The viral load decreased in some individuals is probably related to progression into cirrhosis. In C and D, average and 95% confidence intervals are shown.

Figure 1. Characteristics of the sub-cohort that underwent treatment with pegIFN α 2a+RBV and subsequently (average 7 years later) with DAAs. (A) Half of the subcohort had DAAD treatment less than 7 years after pegIFN α 2a+RBV ($>3 < 7$ years) and the other half more than 7 years after ($>7 < 13$ years). (B) Age of patients when they underwent pegIFN α 2a+RBV treatment and age of the same group of individuals when they had DAA treatment. (C) Percent of patients with cirrhosis vs CHC without cirrhosis, when they underwent treatment with pegIFN α 2a+RBV and with DAAs (D) Viral load of the individuals at the start of pegIFN α 2a+RBV treatment and subsequently when they started DAA treatment. The viral load decreased in some individuals is probably related to progression into cirrhosis. In C and D, average and 95% confidence intervals are shown.

Table 1(on next page)

Final response to pegIFN α 2a+RBV treatment of 261 Mexican patients with CHC and viral genotype 1.

1 **Table 1:**
2 **Final response to pegIFN α 2a+RBV treatment of 261 Mexican patients with CHC and viral
3 genotype 1.**

Final response	Subtypes of Genotype 1		
	1 + 1a1b*	1a	1b
NR, n (%)	18 (6.9)	69 (26.4)	80 (30.7)
SVR, n (%)	12 (4.6)	41 (15.7)	41 (15.7)
<i>p</i>	0.687	0.794	0.520

4 NR: Non-responder, SVR: sustained viral response, *p*: value for Fisher's Exact test. Statistical
5 significance was defined as *p*< 0.05. *Includes patients with unsubtyped HCV genotype 1 (n=10)
6 and those detected as 1a1b (n=20).

7

Table 2 (on next page)

Demographic and clinical data of the Mexican patients treated with *OBV/PTV/r/DSV±RBV* or *SOF/LDV±RBV*.

1 **Table 2:**
 2 **Demographic and clinical data of the Mexican patients treated with *OBV/PTV/r/DSV±RBV***
 3 **or *SOF/LDV±RBV*.**

	Patients treated with <i>OBV/PTV/r/DSV±RBV</i> (39)	Patients treated with <i>SOF/LDV±RBV</i> (44)	<i>p</i>
<i>Gender, n (%)</i>			
Female/male	29 (74.3) / 10 (25.7)	33 (75) / 11 (25)	---
<i>Mean age (95% CI)</i>	54.5(49-58)	54.7(49.5-58)	
Female/male age	57.2 (53-61)/51.8 (45-58)	58.5 (55-62)/50 (44-55)	0.161/0.011
<i>Patients ≥ 50 years old, n (%)</i>			
All patients	34 (87.1)	36 (81.1)	---
<i>Response to pegIFNa2a+RBV treatment, n (%)</i>			
Null response	27 (69.3)	29 (65.9)	---
Relapse	9 (23.0)	14 (31.8)	---
Breakthrough	3 (7.7)	1 (2.3)	---
Total	39 (100)	44 (100)	
<i>Comorbidity, n (%)</i>			
Diabetes	5 (12.8)	4 (9.0)	---
Smoking	3 (7.7)	8 (18.8)	---
Alcoholism	5 (12.8)	3 (6.8)	---
Obesity *	7 (17.9)	12 (27.3)	---
<i>Viral Subtype 1, n (%)</i>			
1a	8 (21.5)	34 (77.3)	0.024
1b	31 (79.5)	10 (22.7)	0.024
Total	39 (100)	44 (100)	
<i>Initial viral load (log₁₀ IU/ml)</i>			
Mean (CI95%)	5.58 (5.3-5.8)	5.10 (4.78-5.40)	0.031
<i>Initial viral load >5.58 (Log₁₀ UI/ml), n (%)</i>			
Yes	15 (38.4)	20 (45.5)	---
No	24 (61.6)	24 (54.5)	---
Total	39 (100)	44 (100)	
<i>METAVIR Score**, n (%)</i>			
F0 or F1	17 (43.6)	8 (18.2)	---
F2	1 (2.6)	0 (0.0)	---

F3	3 (7.7)	4 (9.0)	---
F4	18 (46.1)	32 (72.7)	< 0.001
Total	39 (100)	44 (100.0)	
<i>Degree of steatosis***, n (%)</i>			
None	16 (41.0)	21 (47.8)	---
1 to 3	23 (59.0)	10 (52.2)	---
Total	39 (100)	44 (100)	
<i>Basal albumin >3.5 g/dL, n (%)</i>			
Yes	31 (79)	21 (47.8)	0.003
No	8 (21)	23 (52.2)	---
Total	39 (100)	44 (100)	
<i>Basal total bilirubin <2.0 mg/dL, n (%)</i>			
Yes	35 (89)	30 (68)	0.03
No	4 (11)	14 (32)	---
Total	39 (100)	44 (100)	
<i>Basal platelet count >100,000 / (mm3), n (%)</i>			
Yes	28 (72)	23 (52.2)	---
No	11 (28)	21 (47.8)	---
Total	39 (100)	44 (100)	

4 * Body Mass Index (BMI) ≥ 30 , includes obesity degrees 1-3. **METAVIR Score from Hepatic
5 elastography (FibroScan) before DAA treatment, classified from the measurement in kPa:
6 <7.6kPa = F0-F1, 7.7-9.4 kPa = F2, 9.5-12 kPa = F3, >12 kPa = F4. *** Degree of steatosis
7 (FibroScan) ≤ 220 dB/m = non steatosis, >220 - 235 dB/m = 1, 236 - 290 dB/m = 2, >290 dB/m = 3. ---
8 = not associated. 9

Table 3 (on next page)

Final response to DAA treatments in previously treated Mexican patients with CHC and viral genotype 1.

1 **Table 3:**
2 **Final response to DAA treatments in previously treated Mexican patients with CHC and**
3 **viral genotype 1.**

	Final response		
	SVR, n (%)	NR, n (%)	Total
<i>OBV/PTV/r/DSV+RBV</i>	7 (87.5)	1 (12.5)	8 (100)
<i>OBV/PTV/r/DSV</i>	30 (96.8)	1 (3.2)	31 (100)
Total	37 (94.8)	2 (5.2)	39 (100)
<i>SOF/LDV+RBV</i>	34 (100.0)	0 (0.0)	34 (100.0)
<i>SOF/LDV</i>	10 (100)	0 (0.0)	10 (100)
Total	44 (100)	0 (0.0)	44 (100)

4 NR: Non-responder, SVR: sustained viral response.

5

Table 4(on next page)

Types of response and characteristics of the patients that either failed DAA-treatment (first two lines), or had detectable viral RNA at the end of DAA treatment.

1 Table 4:

2 Types of response and characteristics of the patients that either failed DAA-treatment (first two lines), or had detectable viral RNA at
3 the end of DAA treatment.

Type of response to INFα2a/RBV 2005-2013	DAA Treatment 2017	Gender	Age	Elastography (Kpa)	Cirrhosis, CPS	Viral subtype	Initial viral load (Log_{10} IU/mL)	HCV RNA at week 12 (end of treatment)	HCV RNA at week 24	Type of response to DAAs	SVR
Null response	OBV/PTV/r/DSV	M	59	7.3	No	1b	6.5	Not detected	1.62Log_{10} UI/mL	Relapse	No
Breakthrough	OBV/PTV/r/DSV +RBV	M	33	4.3	No	1a	5.7	5.29Log_{10} UI/mL	5.10Log_{10} UI/mL	Null response	No
Null response	OBV/PTV/r/DSV	F	50	31.4	Yes, CPS-A	1b	5.7	*Detected	Not detected	Responder	Yes
Relapse	OBV/PTV/r/DSV	F	54	5.3	No	1b	5.3	*Detected	Not detected	Responder	Yes
Relapse	OBV/PTV/r/DSV +RBV	F	56	5.5	No	*1a	5.3	*Detected	Detected/Not detected at week 36	Responder	Yes
Null response	OBV/PTV/r/DSV	M	50	5.5	No	1b	5.4	*Detected	Not detected	Responder	Yes
Relapse	OBV/PTV/r/DSV	F	52	11	No	1b	4.3	*Detected	Not detected	Responder	Yes
Null response	SOF/LDV	F	52	4.3	No	1a	6.0	*Detected	Not detected	Responder	Yes
Null response	SOF/LDV+RBV	F	52	19.8	Yes, CPS-A	1b	6.4	*Detected	Not detected	Responder	Yes
Null response	SOF/LDV+RBV	F	68	22.3	Yes, CPS-A	1a	5.5	*Detected	Not detected	Responder	Yes

4 *This patient had a HCV viral load below the LLOQ but above of LLOD at week 12 (end of treatment). ◀This patient had a positive
5 qualitative test at week 12 (end of treatment) and at week 24 (12 weeks post-treatment), that became undetectable at week 36 (24
6 weeks post-treatment). M: Male; F: Female; Kpa: Kilopascals; CPS: Child Pugh Score; LLOQ: Lower limit of quantification (1.39
7 Log_{10} IU/mL); LLOD: Lower limit of detection (1.08Log_{10} IU/mL)

8

Table 5(on next page)

Biochemical parameters and clinical data, pre-/post-DAA treatments.

1 **Table 5:**2 **Biochemical parameters and clinical data, pre-/post-DAA treatments.**

	OBV/PTV/r/DSV±RBV			SOF/LDV±RBV		
	Pre-treatment	Post-treatment*	p	Pre-treatment	Post-treatment*	p
<i>Laboratory parameters, average (95% CI)</i>						
Total bilirubin, mg/dL	1.1 (0.9-1.3)	1.1 (0.86-1.3)	0.120	1.4 (1.2-1.8)	1.6 (0.8-2.44)	0.750
Albumin, g/dL	3.8 (3.6-3.9)	4.1 (4.02-4.26)	< 0.001	3.4 (3.3-3.6)	3.8 (3.6-4.0)	<0.001
Hemoglobin, g/dL	14.5 (14.1-15.0)	14.6 (14.1-15.1)	0.891	14.1 (13.6-14.6)	14.3 (13.8-14.8)	0.271
INR	1.05 (1.01-1.08)	1.10 (1.07-1.14)	< 0.001	1.12 (1.08-1.17)	1.19 (1.13-1.24)	0.004
ALT, IU/Lt **	65 (52-79)	22 (19.6-25.2)	< 0.001	72 (59-84)	28 (22.3-34)	<0.001
AST, IU/Lt **	64 (52-76)	28 (25.4-31)	< 0.001	86 (71-101)	38 (33.9-42.6)	<0.001
Platelets x1000/mm ³	159 (134-185)	166 (140-191)	0.072	114 (96-133)	117 (98-136)	0.221
AFP, ng/mL	10 (6.32-13.7)	4.7 (3.35-6.22)	< 0.001	16 (10.1-22.3)	8.2 (2.29-14.2)	<0.001
<i>Child-Pugh-Score (CPS), n (%) ***</i>						
A (5-6 points)	18 (95.0)	19 (100)		16 (50.0)	27 (84.4)	
B (7-9 points)	1 (5.0)	0 (0.0)		14 (43.8)	4 (12.5)	
C (10-15points)	0 (0.0)	0 (0.0)		2 (6.2)	1 (3.1)	
Total cirrhosis	19 (100)	19 (100)	1.00	32 (100)	32 (100)	0.012
<i>Serological fibrosis markers</i>						
Cirrhotic patients						
FIB-4	4.5 (3.0-6.0)	3.2 (1.9-4.5)	<0.025	7.6 (6.3-8.8)	5.4 (4.2-6.6)	<0.001
APRI	2.3 (1.4-3.1)	0.9 (0.5-1.3)	<0.001	3.6 (2.6-4.8)	1.7 (1.4-2.1)	<0.001

Non cirrhotic, CHC

patients

FIB-4	2.0 (1.3-2.7)	1.5 (1.1-1.9)	0.05	2.3 (1.4-3.1)	1.8 (1.2-2.5)	0.03
APRI	0.9(0.5-1.4)	0.4 (0.3-0.56)	0.007	1.2 (0.6-1.7)	0.5 (0.3-0.7)	0.004

3 INR: International Normalization Ratio (INR) of prothrombin time; ALT: alanine aminotransferase; AST: aspartate aminotransferase;
4 AFP: Alpha-fetoprotein. * Values post-treatment were measured 12 weeks after treatment end (at week 24). **Normal reference
5 values were ALT=10-45 IU/L and AST 10-43 IU/L. *** Only patients with cirrhosis are displayed in this section: 19 with
6 OBV/PTV/r/DSV±RBV and 32 with SOF/LDV±RBV. FIB-4 cutoff value <1.45 corresponds to no hepatic fibrosis, >3.25 corresponds
7 to F4 cirrhosis. APRI cutoff value <0.5 corresponds to no hepatic fibrosis, >1.5 corresponds to F4 cirrhosis

8

9

10

11

12

