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ABSTRACT
The classification of electroencephalography (EEG) induced by the same joint is one
of the major challenges for brain-computer interface (BCI) systems. In this paper,
we propose a new framework, which includes two parts, feature extraction and
classification. Based on local mean decomposition (LMD), cloud model, and common
spatial pattern (CSP), a feature extraction method called LMD-CSP is proposed to
extract distinguishable features. In order to improve the classification results multi-
objective grey wolf optimization twin support vector machine (MOGWO-TWSVM)
is applied to discriminate the extracted features. We evaluated the performance
of the proposed framework on our laboratory data sets with three motor imagery
(MI) tasks of the same joint (shoulder abduction, extension, and flexion), and the
average classification accuracy was 91.27%. Further comparison with several widely
used methods showed that the proposed method had better performance in feature
extraction and pattern classification.Overall, this study can be used for developing high-
performance BCI systems, enabling individuals to control external devices intuitively
and naturally.

Subjects Bioinformatics, Computational Biology, Neuroscience, Computational Science, Data
Mining and Machine Learning
Keywords Brain-computer interface, Motor imagery, Local mean decomposition, Cloud model,
Common spatial pattern, Multi-objective grey wolf optimizer, Twin support vector machine

INTRODCTION
BCI is a technology that can directly establish communication and control between human
brain and computer or other electronic equipment (Li et al., 2020; Park & Chung, 2020).
BCI technology is widely applied in medical rehabilitation, smart home, entertainment,
military, and other fields. At present, the EEG traces include sensorimotor rhythms (SMR)
(Blankertz et al., 2010), slow cortical potential (SCP) (Hinterberger et al., 2004), event-
related potential (ERP) (Delgado et al., 2020), and visual-evoked potential (VEP) (Zhou et
al., 2020). SMR is induced by motor imagery without external stimulation, so it is widely
used in BCI systems. However, the EEG is a non-stationary, non-linear, and noisy signal.
And, it is easily interfered by the environment when it is recorded, the signal-to-noise ratio
is low, which makes it more challenging to identify the EEG of MI tasks.
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In the past few decades, researchers have proposed various feature extraction methods
and classification algorithms to classify MI tasks efficiently. The most classical feature
extraction methods include wavelet transform (WT) (You, Chen & Zhang, 2020), empirical
mode decomposition (EMD) (Taran et al., 2018), common spatial pattern (CSP) (Yang
et al., 2016; Selim et al., 2018), and filter-bank CSP (FBCSP) (Ang et al., 2008; Wang et al.,
2020). The widely used classification algorithms include linear discriminant analysis (LDA)
(Aljalal, Djemal & Ibrahim, 2019), extreme learning machine (ELM) (Rodriguez-Bermudez,
Bueno-Crespo & Martinez-Albaladejo, 2017), k-nearest neighbors (KNN) (Bashar, Hassan
& Bhuiyan, 2015), support vector machine (SVM) (Selim et al., 2018) and least squares
support vector machine (LS-SVM) (Taran et al., 2018; Taran & Bajaj, 2019). Malan and
Sharma applied dual-tree complex wavelet transform (DTCWT) to extract time, frequency,
and phase features of left and right hand MI EEG signals, and classified them using SVM
with an average accuracy of 80.7% (Malan & Sharma, 2019). However, it is usually hard to
select an appropriate wavelet basis function. Taran et al. (2018) employed EMD to extract
MI features of left and right hands, and classified them by using LS-SVM with an average
accuracy of 97.56%. The weakness of that study is that it ignored the endpoint effect
and mode mixing phenomenon in the EMD process. Miao, Wang & Liu (2017) classified
left and right hand movements with an average accuracy of 86.41%, by using sparse
representation of CSP features. Kumar & Sharma (2018) proposed a parameter tuning
algorithm to improve the performance of CSP by selecting the optimal filter parameters.
That study reported an average error recognition rate of 10.19% on BCI Competition
III Dataset IVa (right hand and foot). Recently, Kumar, Sharma & Sharma (2021) used
genetic algorithm (GA) for adaptive filtering, combined CSP and long short-term memory
network (LSTM) for feature extraction, and applied SVM for classification. It should be
noted that these studies focused on binary problems. The aforementioned methods have
achieved good recognition results for the classification of the left hand, right hand, foot,
and tongue MI tasks. When imagining movements of different limbs, event-related de-
synchronization/event-related synchronization (ERD/ERS) will occur in the corresponding
areas of the motor cortex. This phenomenon can be recorded by the different electrodes
overlying the motor cortex, so BCI systems can efficiently identify MI tasks within different
limbs.

However, ERD/ERS induced by MI tasks of the same limb usually occurs in the adjacent
region of the motor cortex, which makes it exceedingly difficult to detect the MI tasks
within the same joint. Recently, a small number of researchers have conducted preliminary
explorations of the recognition of MI tasks within the same joint. For instance, Vuckovic &
Sepulveda (2012) employed Gabor coefficients calculated from independent components
as features and Elman’s neural networks as the classifier, the average recognition accuracy
of wrist extension and flexion MI was 67.5%. As we all know, that accuracy cannot meet
the working requirements of BCI systems. Edelman, Baxter & He (2016) used EEG source
imaging technology to identify 4-class MI tasks (wrist flexion, extension, pronation, and
supination) with the recognition accuracy of each class exceeding 79.00%.

From the above analysis, we can see that most existing studies focus on the MI tasks of
different limbs, which have achieved good recognition results. However, these methods
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Figure 1 Emotive Epoc+ and the placement position of Emotive electrodes. (A) Emotive Epoc+ EEG
signal acquisition instrument. (B) Location of all electrodes and marked electrodes are used in this study.
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can be further improved in some aspects. Furthermore, fewer studies decode multiclass
MI tasks of the same joint, and the recognition accuracy of the same joint is lower than
that of different limbs. Therefore, this paper proposes a method to decode the various
MI movements of the same joint using LMD-CSP and MOGWO-TWSVM. First, LMD
is used to decompose the preprocessed MI EEG into a series of product functions (PFs).
According to the entropy (En) and super entropy (He) of the cloud model, the real PF
components are selected. Second, the selected PFs of each channel are reconstructed into
a new signal matrix, then feature vectors are extracted by using the CSP. Finally, TWSVM
optimized by the MOGWO algorithm is applied to discriminate the extracted features. The
proposed framework was verified using our laboratory data sets, which include shoulder
abduction, extension, and flexion MI tasks. There were two reasons why we chose these
movements. First, these movements were part of the exercise for stroke patients. Second,
these movements could intuitively control the robotic arm. In addition, we compared the
LMD-CSP and MOGWO-TWSVM with several widely used feature extraction methods
and classifiers, respectively. The conventional feature extraction methods include time
domain parameters (TDP) (Tavakolan et al., 2017), CSP (Selim et al., 2018), FBCSP (Ang
et al., 2008), and common spatial pattern based on empirical mode decomposition (EMD-
CSP) (Wang et al., 2008). The traditional classifiers include LDA, ELM, KNN, SVM, and
LS-SVM. Those comparisons could confirm the quality of the proposed method.

MATERIALS & METHODS
EEG signal acquisition
Emotive Epoc+ was employed to record the EEG signals. It includes 14 effective electrodes
(AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4) and 2 reference electrodes
(CMS, DRL). The sampling rate is 128 Hz. The layout of electrodes is according to the
standard international 10–20 system. The equipment and electrodes arrangement are
shown in Fig. 1.

Seven right-handed subjects (five males and two females aged from 23 to 28), who
were in good condition both psychologically and physically, were randomly selected to
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Figure 2 Experimental paradigm for the motor imagery (MI) tasks. (A) The experiment included three
MI tasks (shoulder abduction, flexion, and extension). (B) The experimental process of one trail.
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participate in this experiment. All subjects had given written informed consent before the
experiment. The study was approved by the Scientific Research Ethics and Technology
Safety committee of Northeast Electric Power University.

In the experiment, the subjects were required to perform 3-class MI tasks (shoulder
abduction, extension, and flexion) according to prompts. Figure 2 shows the experimental
paradigm for the motor imagery (MI) tasks. At the start of each trial, the subjects naturally
placed their hands and kept relaxed. At time point t =1s, the monitor showed a cross ‘+’,
and presented a short beep tone to raise the subject’s attention. At t=3s, an arrow pointed
to the left, right, or top at random, was shown to indicate the subjects to imagine the
corresponding movement (shoulder abduction, extension, or flexion movement). And the
arrow disappeared after 1.25 s. At t=7s, the subjects stopped motor imagination. The next
trial began after 2 s. For training classifiers, 60 trials per subject were collected in total (20
trials per class).

EEG preprocessing
First, the raw EEG data were filtered between 8 Hz and 30 Hz by a 5th order zero-
phase Butterworth filter to remove DC drift and high-frequency noise. Second, the
automatic artifact removal (AAR) toolbox was used to remove electrooculogram (EOG)
and electromyogram (EMG) artifacts. Third, the common average reference (CAR) was
used to reduce the background noise. The CAR method is the selected channel minus
the average of all electrodes. Finally, the denoised EEG data were processed by mirror
extending technology to eliminate the influence of the endpoint effect in the LMD process.
The extended sequence is defined as follows:

xi(t )= [si(n),si(n−1),...,si(1),si(1),...,si(n),si(n),...,si(1)]T (1)

where si(c) represents the denoised EEG signal of the ith electrode.
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Research on feature extraction method based on LMD-CSP
Local mean decomposition
LMD is a new adaptive time-frequency analytical algorithm first proposed by Smith (2005).
When compared with EMD, LMD can better reduce the mode mixing phenomenon and
has lower computational complexity and higher decomposition speed (Zhang & Chen,
2017). Using the LMD method, the extended sequence xi(t ) is decomposed into a set of
PFs and a residual component, and the expression is as follows:

xi(t )=
k∑

j=1

hij(t )+ui(t ) (2)

where hij(t ) is the jth PF obtained from the i th electrode, and ui(t ) represents the residual
component.

Selection of product functions based on the cloud model
The cloud model is an uncertainty transformation model based on fuzzy set theory and
probability theory, which can achieve the transformation between a qualitative concept
and its quantitative data. It expresses the qualitative concept through the three digital
characteristics {Ex, En, He}. Expectation (Ex) is the central value of a concept, entropy
(En) represents the randomness of a qualitative concept, and super entropy (He) is the
dispersion degree of a concept (Wang et al., 2019).

Ex=
1
n

n∑
i=1

xi (3)

En=
√
π

2
×

1
n

n∑
i=1

|xi−Ex| (4)

He=
√
S−En2 (5)

where S is the second-order central moment of xi, xi(i = 1, 2, . . . ,n) represents the
quantitative value of n cloud-droplets.

En and He can express the degree of complexity. The larger the values of En and He, the
more complex the signals, and vice versa. Since the structure of the real EEG components
is generally complicated, the En and He of the real PFs are larger than those of false PFs.
Therefore, the parameters En and He of the cloud model are used to select the effective
PFs. In our study, through analyzing a large amount of experimental data, we selected the
PF1 component as the effective component for subsequent processing. The details of the
effective PF selection can be found in the Supplemental Information. For the recognition
of other data sets, we need to employ the entropy (En) and super entropy (He) of the cloud
model to select effective PF components again.

In this research, the experimental data of all channels were decomposed by LMD in
turn, and the PF1 components of each channel were recombined to construct a new signal
matrix X ∈RM×N, where M is the order of the selected PFs, and N represents the sampling
point of PF. In the next step, CSP was used to extract the spatial features of X.
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Common spatial pattern
The goal of CSP is to design a spatial filter which can maximize the variance of two kinds of
motor imagery EEG data. Because CSP is based on the simultaneous diagonalization of a
2-class covariance matrix, it can only be used in binary problems. Therefore, we applied the
one-versus-one (OVO) scheme to LMD-CSP for the multiclass problem, so that a k-class
problem was transformed into k (k-1)/2 binary class problems. For the signal matrix Xi of
the i th experimental data, the covariance matrix is calculated as follows:

R=
XiXT

i

trace(XiXT
i )

(6)

where ‘‘T’’ represents the transpose operator, and trace(·) means to find the trace of a
matrix.

For the binary class MI tasks (i.e., shoulder abduction and extension), we calculated
the covariance matrix over the trails of each class, and averaged them to obtain the mean
covariance matrix RA and RE. Then the RA and RE were transformed to obtain the spatial
filterWAE (in this paper,WAE ∈R8 ×14) (Liu et al., 2012). Combined with the OVO scheme,
we obtained three spatial filters (WAE, WAF and WEF). Then the three spatial filters were
spliced vertically to gain a global spatial filter. The global spatial filter is as follows:

W = [WAE;WAF;WEF] (7)

whereWAE represents the spatial filter between abduction and extension,WEF represents
the spatial filter between extension and flexion, andWAF represents the spatial filter between
abduction and flexion.

For a single trial data, we obtained the LMD-CSP projection matrix Z =WX i. The p th
row of Z is denoted as Zp. The required characteristics can be obtained by:

fp= log

(
var
(
Zp
)∑g

k=1var(Zk)

)
(8)

where p= 1, 2, . . . g. The features obtained by LMD-CSP are denoted as F = [f 1, f 2, . . . fg].
Figure 3 shows the distributions of the most significant two LMD-CSP features from

subjects 1. Obviously, the features of different MI tasks extracted by LMD-CSP are highly
distinguishable and these are easy to separate.

Research on classification method based on MOGWO-TWSVM
Twin support vector machine
TWSVM, first proposed by Jayadeva, & Khemchandani & Chandra (2007) is a newmachine
learning method based on traditional SVM. TWSVM aims to construct a hyperplane for
each class. It requires that each hyperplane is close to the corresponding class samples as
possible, and far away from the other class samples as possible. TWSVMhas higher training
speed and generalization ability than SVM because the former solves two small quadratic
programming problems (QPPs) to construct the hyperplanes like SVM, and the constraint
condition of a QPP is only related to one class of samples.

Suppose that training samples of class 1 are denoted as A =[x1(1), x2(1), . . . , xm1
(1)]T

∈Rm1×g, where xj (i) ∈Rg represents the jth sample of class 1, m1 represents the number of
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samples. Similarly, training samples of class 2 are denoted as B ∈Rm2×g. When training the
TWSVM classifier between class 1 and class 2, two nonparallel hyperplanes are obtained as
follows:

K
(
xT ,CT )w1+b1= 0 (9)

K
(
xT ,CT )w2+b2= 0 (10)

where CT
=[ATBT]T, w1 and w2 are two normal vectors of hyperplanes, b1 and b2 are the

bias vectors.
TWSVMconstructs the two hyperplanes by solving the following optimization problems:

min
w(1),b(1),ξ (2)

1
2

∥∥K (A,CT )w(1)+e1b(1)∥∥2+ c1eT2 ξ (2) (11)

−
(
K
(
B,CT )w(1)+e2b(1))≥ e2−ξ (2), ξ (2)≥ 0

min
w(2),b(2),ξ (1)

1
2

∥∥K (B,CT )w(2)+e2b(2)∥∥2+ c2eT1 ξ (1) (12)

−
(
K
(
A,CT )w(2)+e1b(2))≥ e1−ξ (1), ξ (1)≥ 0

where c1 and c2 are penalty parameters, e1 and e2 are column vectors of ones.
In this study, we established a classifier for each binary class, so k (k-1)/2 TWSVM

classifiers were constructed. In the process of classification, the feature vectors of each MI
task were input into the classifiers, and the final result was obtained by voting. The penalty
parameters c1 and c2 of the TWSVM were set by the following MOGWO.

Multi-objective Grey Wolf Optimizer
MOGWO, proposed by Mirjalili et al. (2016) is a new swarm intelligence optimization
algorithm based on the conventional grey wolf optimizer algorithm. When compared with
other multi-objective optimization algorithms, MOGWO has higher convergence and
coverage (Dilip et al., 2018). In MOGWO, the location of each gray wolf is denoted as a
solution, and the first three best solutions are denoted as the alpha (α) wolves, beta (β)
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wolves, and delta (δ) wolves, the other candidate solutions are omega (ω) wolves. In the
iterative process, ω wolves are led by α wolves, β wolves and δ wolves to find global optimal
solutions.

MOGWO uses an external archive to store and update the non-dominated Pareto
optimal solutions. At the same time, it also employs a leader selection mechanism to search
for the least crowded segments from the archive, and three non-dominated solutions of
the segments are used as α, β, δ wolves by a roulette-wheel method. The location of each
search agent is updated as follows:

⇀

Di= |
→

Ci ·
→

Xi(t )−
→

X (t )|,i∈ (α,β,δ) (13)

→

Xi(t )=
→

Xi(t)−
→

Ai ·
→

Di,i∈ (α,β,δ) (14)

→

X (t+1)=

→

Xα(t )+
→

Xβ(t )+
→

Xδ(t )
3

(15)

where the coefficient vector
→

A and
→

C are calculated as follows:

EA= E2a× Er1−Ea (16)

EC = 2 · Er2 (17)

where the parameter
→
a is decreased from 2 to 0 in the iterative process, and

→
r1 ,
→
r2 are

random vectors in [0, 1].

Multi-objective function
The average recognition accuracy is usually employed to measure classification
performance. However, it only quantifies the overall classification performance and
ignores evaluating the classification results of each class. Therefore, we applied the mean
recognition accuracy and the recognition of each class as objective functions to evaluate
the candidate solutions generated by the MOGWO algorithm. The objective function can
be expressed as:

Accuracy =
∑3

i=1NCi∑3
i=1NCi+

∑3
i=1NEi

(18)

CRi=
NCi

NCi+NEi
,i= 1,2,3 (19)

where Accuracy is the mean recognition accuracy, CRi represents the recognition accuracy
of i th class, NC i is the number of i th class correctly distinguished samples, NE i is the
number of i th class wrongly distinguished samples.
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Table 1 Parameter setting used in multi-objective grey wolf optimization (MOGWO).

Parameter Name Value

n Number of wolves 12
MI Max iterations 100
A Archive size 10
α Grid inflation parameter 0.1
β Leader selection parameter 4
δ Number of grids per dimension 10

Statistical analysis
In this study, the one-way analysis of variance (ANOVA) method was used to detect the
significant effect of the different methods on classification accuracy. If this ANOVA is
significant, we would further use pair-wise t-tests to identify significant differences in
recognition results between the proposed method and the other compared methods. It can
be considered that there is a significant difference in the classification effect between the
two algorithms when the calculated p-value is less than 0.05.

RESULTS
Experimental results
In this research, we employed the Gaussian kernel function with 5-fold cross-validation to
search for optimal parameters and obtain the required experimental results. MOGWO was
applied to optimize a Gaussian kernel function parameter λ and two penalty parameters c1
and c2 of the classifier model. And the parameter λ was selected from 0.001 to 8, the range
of the parameters c1 and c2 were [0.01, 8]. The MOGWO parameters used in this paper are
listed in Table 1, and the details of the parameters are given in document (Mirjalili et al.,
2016). The Pareto optimal set obtained by MOGWO and the corresponding parameters of
the proposed classifier model from subject 4 are given in Table 2. Through analyzing the
Pareto optimal set, we selected the optimal solution to obtain the required final recognition
accuracy. The optimal solution of subject 4 is marked in Table 2.

Next, we obtained the Pareto optimal set of the remaining subjects through the above
steps and the required recognition accuracy of each class and the required average
recognition accuracy we got is shown in Fig. 4. We obtained the highest classification
accuracy of 98.33% from subject 7, and the average classification accuracy of all subjects is
91.27%. Besides, we calculated precision and recall to quantify the classification results. The
obtained results are listed in Table 3. In order to intuitively show the experimental results
of 3-class MI tasks, we drew the average confusion matrix of all subjects for the proposed
method. As can be seen from Fig. 5, shoulder abduction shows the best classification
accuracy (95.71%). In the meantime, through analyzing the classification accuracy of
each class MI task, we find that the recognition accuracy of shoulder abduction from five
subjects (except for subject 1 and subject 3) is higher than that of shoulder extension and
flexion from Fig. 4. From the above results, we can consider the three classes of MI tasks
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Table 2 Pareto optimal set of subject 4 and the corresponding parameters of twin support vector ma-
chine (TWSVM).

c1 c2 λ CR1 CR2 CR3 Accuracy

2.2342 4.3876 3.8087 1.00 0.80 0.80 0.8667
2.6221 1.8131 5.2273 0.90 0.90 0.85 0.8833
2.6688 0.7101 4.7547 0.85 0.65 0.90 0.8000
2.1949 1.1183 0.1383 0.35 0.15 1.00 0.5000
2.3311 1.3203 3.5416 1.00 0.75 0.85 0.8667
2.3229 1.7539 4.3890 0.95 0.85 0.85 0.8833
2.4102 0.8047 5.4034 0.65 0.70 0.90 0.7500
2.6035 1.8690 4.6250 0.95 0.90 0.80 0.8833
2.1782 0.7592 5.2358 0.60 0.70 0.95 0.7500

Notes.
The optimal solution is marked in bold.
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Figure 4 Average classification accuracies for the three categories. Three motor imagery (MI) tasks
classification accuracy of all subjects obtained using the proposed method (LMD-CSP and MOGWO-
TWSVM).

Full-size DOI: 10.7717/peerj.12027/fig-4

can be effectively recognized by the proposed method, and shoulder abduction is easy to
classify efficiently.

Verification of feature extraction capability
To validate the extraction capability of the proposed feature extraction method, we
compared LMD-CSP with some widely used feature extraction methods, including TDP
(Tavakolan et al., 2017), CSP (Selim et al., 2018), FBCSP (Ang et al., 2008), and EMD-CSP
(Wang et al., 2008). In our work, we used TDP, CSP, FBCSP, EMD-CSP, and LMD-CSP
on our data sets for feature extraction, and the same classifier (MOGWO-TWSVM)
was employed for recognition. The recognition results are shown in Fig. 6. The average
classification accuracy of LMD-CSP (91.27%± 5.16%) is higher than that of TDP (65.95%
± 13.97%), CSP (77.62% ± 4.79%), FBCSP (80.47% ± 4.97%) and EMD-CSP (84.81%
± 3.92%). Through analyzing the recognition rate of each subject, we find that LMD-CSP
is higher than the compared methods among all subjects. And a one-way ANOVA revealed
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Table 3 Averaged precision and recall of three class motor imagery (MI) tasks under the proposed
method.

Subject Precision (%) Recall (%)

subject 1 96.75 96.67
subject 2 91.55 91.11
subject 3 85.15 84.44
subject 4 88.65 88.33
subject 5 93.45 93.33
subject 6 87.05 86.67
subject 7 98.41 98.33
average 91.57 91.27

95.71% 2.62% 1.67%

1.90% 86.67% 11.43%

0.95% 7.61% 91.43%

Predicted Class
100%0%

True C
lass

Abdu Ext Flex

A
bd

u
Ex

t
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ex

Figure 5 The mean confusionmatrix of all subjects (Abdu represents abduction, Ext represents exten-
sion, Flex represents flexion).

Full-size DOI: 10.7717/peerj.12027/fig-5

that there was a statistically significant difference in mean classification accuracy between
at least two feature extraction methods (F (4, 30) = [10.331], p-value < 0.001). Pair-wise
t-tests were further applied to calculate p-values between LMD-CSP and the other four
feature extraction methods. The results are listed in Table 4. Combined the analysis of
Fig. 6 and Table 4, show that LMD-CSP has stronger feature extraction capability than the
other methods.

Because each MI task activated the corresponding region of the cortex, we further
analyzed the contribution of different channels in the classification of the MI tasks. Since
there were 3-class MI tasks, we obtained three pairs of MI tasks: abduction and extension
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Figure 6 Comparison of classification accuracy obtained by the different feature extraction meth-
ods. Five different feature extraction methods, including time domain parameters (TDP), common spa-
tial pattern (CSP), filter-bank common spatial pattern (FBCSP), common spatial pattern based on em-
pirical mode decomposition (EMD-CSP), and the proposed feature extraction method (LMD-CSP), were
employed to extract motor imagery (MI) features on our data sets, respectively. Then, the same multi-
objective grey wolf optimization twin support vector machine (MOGWO-TWSVM) classified those MI
features to obtain classification accuracy of all subjects.

Full-size DOI: 10.7717/peerj.12027/fig-6

Table 4 Paired t -test (p-value) between the proposed feature extraction method (LMD-CSP) and the
other four feature extraction methods.

Method TDP CSP FBCSP EMD-CSP

p-value 0.0022 0.0001 0.0013 0.0141

(A/E), abduction and flexion (A/F), and extension and flexion (E/F). For each pair of MI
tasks, the channel weight scores were calculated to highlight the maximally discriminable
channels. The weight score of each channel is defined as the ratio of the 2-norm of the
corresponding column vector of the CSP filter to the 2-norm of the CSP filter. More details
can be seen at Zhou et al. (2015). It should be noted that the weight scores were averaged
across subjects and then normalized into the range (0, 1). The obtained results are shown in
Fig. 7. As can be seen from Fig. 7, the prefrontal channels (AF3 and AF4), frontal channels
(F3 and F4), and temporal channels (P8 and T8) contribute greatly to the classification
for almost each pair of MI tasks. In Tavakolan et al. (2017), the authors stated that the MI
tasks of the same limb activated the adjacent cortex. Since the three MI tasks decoded in
this paper belong to the same limb, these results are expected.

Verification of classification performance
To demonstrate the performance of the proposed classifier, we input the MI feature vectors
extracted by LMD-CSP into LDA, ELM, KNN, SVM, LS-SVM, and MOGWO-TWSVM
for classification. The obtained results are shown in Fig. 8. It can be seen from Fig. 8 that
when compared with the above conventional classifiers, the average classification accuracy
by MOGWO-TWSVM is improved, increasing by 18.48%, 14.68%, 10.24%, 7.07% and
9.52%, respectively. And the difference between the average accuracy of the different
classifiers was significant (F (5, 36) = [9.067], p-value < 0.001). The p-values between
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Figure 7 Averaged channel weight scores for each pair of motor imagery tasks (A/E represents abduc-
tion and extension, A/F represents abduction and flexion, and E/F represents extension and flexion).
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Figure 8 Comparison of classification accuracy obtained by the different classifiers. The proposed fea-
ture extraction method (LMD-CSP) was employed to extract (motor imagery) MI features on our data
sets. Then the same features were classified by six different classifier, including linear discriminant analy-
sis (LDA), extreme learning machine (ELM), k-nearest neighbors (KNN), least squares support vector ma-
chine (LS-SVM), and the proposed classifier (MOGWO-TWSVM), to obtain classification accuracy of all
subjects.

Full-size DOI: 10.7717/peerj.12027/fig-8

Table 5 Paired t -test (p-value) betweenmulti-objective grey wolf optimization twin support vector
machine (MOGWO-TWSVM) and the other five classifiers.

Method LDA ELM KNN SVM LS-SVM

p-value 0.0002 0.0033 0.0009 0.0005 0.0186

MOGWO-TWSVM and the other five classifiers were further calculated based on pair-wise
t-tests. The results are listed in Table 5. Combined the analysis of Fig. 8 and Table 5, show
that MOGWO-TWSVM has good recognition performance and strong robustness.

Comparison with other recent methods
To demonstrate the validity of the proposed framework, we applied the proposed
framework (LMD-CSP and MOGWO-TWSVM) and other recent methods such as
the temporal filter parameter optimization with CSP (TFPO-CSP) (Kumar & Sharma,
2018) and the frequency-based deep learning scheme for recognizing brain wave signals
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Figure 9 Classification accuracy comparison by the proposed method with other recent methods. The
temporal filter parameter optimization with CSP (TFPO-CSP), the frequency-based deep learning scheme
for recognizing brain wave signals (OPTICAL+), and the proposed method were employed to discrimi-
nate two-class EEG data (shoulder abduction and extension) in our data sets to obtain the classification
accuracy of all subjects.

Full-size DOI: 10.7717/peerj.12027/fig-9

(OPTICAL+) (Kumar, Sharma & Sharma, 2021) on the same data sets, this data sets
include the EEG data of shoulder abduction and extension. The obtained results are
shown in Fig. 9. It can be seen that the mean classification accuracy of the proposed
framework (94.76% ± 5.15%) is higher than that of TFPO-CSP (86.07% ± 10.69%) and
OPTICAL+ (84.64%± 15.30%). And the average recognition rate differed significantly by
framework (F (2, 18)= [3.694], p-value= 0.045). Pair-wise t-tests were further applied for
multiple comparisons. The p-values between the proposed framework and TFPO-CSP and
OPTICAL+ were all less than 0.05. The above results confirm the validity of the proposed
method.

DISCUSSION
In this paper, threeMI tasks of the same joint are successfully recognized by using LMD-CSP
and MOGWO-TWSVM with seven healthy subjects. In this section, we will discuss the
proposed framework in terms of MI tasks, feature extraction, classification, limitations,
and future research lines.

There are few studies on detecting the MI of different movements within the same
joint. Therefore, we can only discuss studies that are similar in content to our study.
Tavakolan et al. classified three different states (grasp MI, elbow MI, and rest) with an
average classification accuracy of 74.2%, using time domain parameters (TDP) including
autoregressivemodel coefficients, rootmean square, andwaveform length as features and an
SVM classifier (Tavakolan et al., 2017). The weakness of that study is that it only identified
different joints within the same limb. Mammone, Ieracitano & Morabito (2020) reported
an average accuracy of 62.47% for classifying various movements (elbow flexion/extension,
forearm pronation/supination, and hand open/close), using time-frequency (TF) maps
as features and a deep convolutional neural network (CNN). However, multi-class MI
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recognition of the same joint was not involved. In this study, we discriminated 3-class
MI tasks of the same joint by using LMD-CSP for feature extraction and MOGWO-
TWSVM for classification, the classification accuracy in seven subjects was no less than
84.44%. Compared with other research, we have investigated the classification of the same
joint multi-class MI, and obtained higher recognition accuracy. Due to the success of
discriminating single joint MI tasks, more control commands can be provided for BCI
systems. And, users can intuitively control external devices, such as a robotic arm, which is
of great significance for developing high-performance BCI systems.

The traditional CSP, which is widely applied to extract MI features, requires a lot
of electrodes and lacks frequency information. To make up for the lack of frequency
information, wavelet packet decomposition (WPD) and CSP were combined to extract
effective features (Yang et al., 2016). That study achieved an average classification rate of
88.66% for left and right hand MI tasks. However, the wavelet basic functions need to
be set manually. Kumar & Sharma (2018) employed the genetic algorithm (GA) to select
filter parameters, which improved the performance of CSP with a classification error rate
of 10.19%. Li et al. (2016) combined orthogonal empirical mode decomposition (OEMD)
and a bank of FIR filters to enable the extracted CSP features with frequency domain
information. The weakness of that study is that the proposed method has high complexity.
In this study, a new adaptive time-frequency analysis algorithm, LMD, which has low
computation complexity, and the traditional CSP were combined to extract MI features.
LMD-CSP not only makes up for the lack of frequency information, but also improves the
adaptability of the algorithm.

The purpose of this paper was to propose a framework for advanced feature extraction
and classification of 3-class MI tasks within the same joint. Therefore, TWSVM was
applied to classify the extracted MI features, because it has high classification speed and
generalization ability. And, the parameters of TWSVM were optimized by MOGWO to
improve the classification accuracy. Soman et al. classified left and right hand movements
with a kappa value of 0.526, using CSP and TWSVM (Soman & Jayadeva, 2015). The low
kappa value that can be contributed to the hyperparameter selection problem of TWSVM
was not considered in that study. In another study, Li et al. (2017) employed CSP to extract
features from left and right handMI EEG signals, and the extracted features were input into
the chaotic particle swarm optimization twin support vector machine (CSPO TWSVM),
the mean accuracy was 75.95%. Compared with the approaches presented in that study, the
proposed classifier (MOGWO-TWSVM) achieved a high classification accuracy (91.27%).
The reason may be that MOGWO has high convergence and coverage, which can find the
optimal parameters of the TWSVM to achieve the best classification performance.

It should be noted that there are some limitations to this study. On the one hand, we
classified the MI tasks by using the same frequency band for different subjects in this study,
which limited the classification performance of the proposed framework on some subjects.
On the other hand, the sample size for each class in our data set was not large, so detailed
statistical analyses were not performed.

In future research, we will verify the effectiveness of the proposed framework by using
more experimental EEG data. And, we will try to decodemulti-classMI tasks of distal joints,
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such as the wrist joint and finger joint. Additionally, to improve classification performance,
we will combine EEG and electromyography (EMG) that are related to movement.

CONCLUSIONS
This paper proposes a new scheme for MI recognition of the same joint based on LMD-
CSP and MOGWO-TWSVM. The proposed method combines LMD and CSP to extract
MI features, where the cloud model is introduced to select effective PF components to
enhance the separability of features, thereby successfully extracting feature vectors with
high discrimination. Second, this paper employs MOGWO to tune the hyperparameters
of TWSVM to improve the classification performance and generalization ability of the
classifier model, and the average recognition accuracy reaches 91.27%. In future work, we
will try to apply the proposed method to complex MI task recognition.
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