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ABSTRACT
Protein function prediction is a crucial part of genome annotation. Predictionmethods
have recentlywitnessed rapid development, owing to the emergence of high-throughput
sequencing technologies. Among the available databases for identifying protein func-
tion terms, Gene Ontology (GO) is an important resource that describes the functional
properties of proteins. Researchers are employing various approaches to efficiently
predict the GO terms. Meanwhile, deep learning, a fast-evolving discipline in data-
driven approach, exhibits impressive potential with respect to assigning GO terms to
amino acid sequences. Herein, we reviewed the currently available computational GO
annotationmethods for proteins, ranging fromconventional to deep learning approach.
Further, we selected some suitable predictors from among the reviewed tools and
conducted amini comparison of their performance using aworldwide challenge dataset.
Finally, we discussed the remaining major challenges in the field, and emphasized the
future directions for protein function prediction with GO.

Subjects Bioinformatics, Computational Biology, Data Mining and Machine Learning
Keywords Gene Ontology, Protein function prediction, Machine learning, Deep learning,
CAFA3, Annotation

INTRODUCTION
Proteins are organic macromolecules that are fundamental determinants of the structure
and function of living organisms. They play a role in numerous processes, including
biochemical reactions, transmission of signals, nutrient transport, immune systemboosting,
etc. Therefore, understanding protein properties is essential not only from the biological
and evolutionary perspectives, but also from the viewpoint of leveraging their potential
in biomedical and pharmaceutical applications, and other areas (Amiri-Dashatan et al.,
2018).

Generally, protein function identification is accomplished through manual or
computational annotation. The former approach is the gold standard for functional
annotation, because it is implemented by expert annotators and yields high quality curated
results.Nonetheless, this approach is expensive and laborious, and thus, it is difficult to scale.
Furthermore, because of the development of high-throughput sequencing technologies,
such as next-generation sequencing (NGS), the amount of sequences to be annotated has
increased dramatically. Thus, computational annotation methods have been developed as
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a must to automatically process the high volume of newly generated sequences, and also to
improve the accuracy of the annotated data (Sleator & Walsh, 2010).

Because of the variability in the vocabulary used to define protein function, which makes
the annotation process confusing to both humans and machines, various databases have
been proposed to provide a standardized scheme, such as the Enzyme Commission
(EC) (Webb, 1992), Functional Catalogue (FunCat) (Ruepp et al., 2004), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2004). Currently, Gene
Ontology (GO) (Ashburner et al., 2000; Consortium, 2015) is the most comprehensive
resource, as it possesses all the desirable properties of a functional classification
system (Pandey, Kumar & Steinbach, 2006). The GO consortium created a database
for a controlled vocabulary describing the functional properties of genomic products
(e.g., genes, proteins, and RNA). Each ontology (vocabulary) belongs to one of three
categories: molecular function (MF), biological process (BP), and cellular component
(CC). In terms of structure, the GO follows a hierarchical organization as a directed
acyclic graph (DAG), in which each term is a node and each edge connected to two nodes
represents a parent–child relationship. It can be used to infer many types of information,
such as ‘‘is-a’’ or ‘‘part-of’’. For instance, if term A is denoted as ‘‘is-a’’ of term B, it means
that A is a sub-type of B. Further, ‘‘part-of’’ implies that the child node is necessarily part of
the parent. This allows the flexible annotation of proteins with respect to the various levels
of function—from general to specific terms—depending on the available evidence (Stein,
2001).

Automated function prediction (AFP) based on the GO system is a challenging problem
in bioinformatics. Many studies have discussed protein functional annotation from
different perspectives. Previous reviews focused on AFP (Rost et al., 2003) in terms of the
data type used (Watson, Laskowski & Thornton, 2005; Pandey, Kumar & Steinbach, 2006;
Sleator & Walsh, 2010; Shehu, Barbará & Molloy, 2016), drawbacks and corresponding
solutions (Friedberg, 2006), protein interaction networks (Sharan, Ulitsky & Shamir,
2007), types of classified function (Rentzsch & Orengo, 2009), and GO assignment
based on sequence information (Cozzetto & Jones, 2017). The two latest reviews are
prepared by Bonetta & Valentino (2020) and Zhao et al. (2020). Bonetta & Valentino
(2020) demonstrate protein function prediction in the machine learning workflow.
Meanwhile, Zhao et al. (2020) discuss prediction of gene function prediction from the
GO modeling perspective. All these researches provided independent perspectives to the
issue, but we observed that there has not been any detailed review about deep learning,
which is an emerging approach for protein function prediction with GO terms. Therefore,
our paper suggests the possibility of predicting protein function using both conventional
learning and deep learning, further indicating that better predictive performance can be
expected by comparing several methods with each other.

Herein, we reviewed automated protein function prediction using GO terms (ranging
from traditional solutions to the most recently developed deep learning-based tools). We
presented not only an overview of the literature, but also, a performance comparison of
the emerging solutions. Further, we highlighted the challenges and future prospects of
the field. We hope that this review will provide bioinformaticians, computer scientists
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or any researchers who are interested in this topic, with the latest updates in terms of
protein features used, models, and evaluation criteria, hoping to contribute to further
improvements in the future.

SURVEY METHODOLOGY
Based on previous studies (Jung & Thon, 2006; Jung et al., 2010) and the aforementioned
surveys, our review is divided in two main parts offering an overview of the field (from
its inception to its present state). The first parts covers the conventional approach and
includes solutions that do not use deep learning, while the second part describes methods
that rely on deep learning to address the problem of protein functional annotation. We
used Google Scholar https://scholar.google.com/ as the literature database to retrieve
relevant publications, without applying any restrictions as to the publishing data, journal,
or publisher.

Below, we review the conventional approach briefly, as some excellent literature reviews
are already available on the subject (Shehu, Barbará & Molloy, 2016; Cozzetto & Jones,
2017). In that part, we summarize three main sub-categories of the traditional approach,
and mention prominent or most recent corresponding studies. The second part of the
review is our main focus. Search results using combinations of the following keywords:
‘‘deep learning’’, ‘‘deep neural network’’, ‘‘GeneOntology’’, ‘‘GO terms’’, ‘‘protein function
prediction’’, ‘‘functional annotation’’, and ‘‘gene function prediction’’, are selected after
screening the titles, abstracts and conclusions. We also referred to references cited in the
downloaded papers, to capture significant studies in the field.

CONVENTIONAL APPROACH FOR PREDICTING PROTEIN
GO TERMS
In general, several techniques have been proposed to tackle the assignment of GO terms to
proteins using different types of data and methods. We review the representative solutions
below, focusing on three categories: similarity-based methods, probabilistic methods, and
machine learning methods.

Similarity-based methods
Initially, functional annotations were assigned to uncharacterized proteins based on a
simple principle: a protein sequence was searched in databases of experimentally curated
proteins and if there were any similar proteins retrieved (‘‘similar’’ in a specifically defined
way), GO terms associated with the retrieved sequences were assigned to the query protein.

The very first solution of similarity-based methods was homology-based. These tools
relied on local alignment search tools, such as the Basic Local Alignment Search Tool
(BLAST) (Altschul et al., 1997). In these methods, the unknown sequence is searched in a
database that curates well-annotated proteins. Then, a retrieved sequence with the highest
alignment score—as per a predetermined threshold—is identified and its annotation is
transferred to the query protein. OntoBlast (Zehetner, 2003), GOFigure (Khan et al., 2003),
GOblet (Hennig, Groth & Lehrach, 2003), and GOtcha (Martin, Berriman & Barton, 2004)
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are typical annotation systems adopting sequence similarity determined by BLAST search.
Further details regarding these tools are presented in Table 1.

PFP (Hawkins et al., 2009) is another method that utilizes functional information
associated with remote homologs by employing Position-Specific Iterated BLAST (PSI-
BLAST) (Altschul et al., 1997). The tool is an improvement in terms of coverage and
accuracy, as determined by analyzing a benchmark dataset, compared with GOtcha,
top PSI-BLAST, and InterProScan (Zdobnov & Apweiler, 2001). Another variant solution
based on sequence alignment is INGA (Piovesan et al., 2015), in which protein–protein
interaction (PPI) network data is combined with domain assignment and sequence
similarity from BLAST, to attain a consensus prediction of GO functions using enrichment
analysis. Further, GoFDR (Gong, Ning & Tian, 2016) takes relevantGO terms frommultiple
sequence alignment (MSA) querying via BLAST or PSI-BLAST search. The probability of
assigning a term to the query sequence is determined by the functionally discriminating
residues (FDRs), a position-specific scoring matrix (PSSM) for the FDRs, and a score-to-
probability table prepared using training sequences.

Although methods based on a local alignment search are straightforward and perform
well to some extent, they also have some drawbacks, including database annotation
errors or excessive function transfer, threshold relativity, and low sensitivity or specificity
(Sasson, Kaplan & Linial, 2006). In addition to the alignment-based methods, several other
predictors are available that transfer function annotations based on the similarity at the
level of protein structure, protein family, or phylogenomics (Shehu, Barbará & Molloy,
2016).

Probabilistic methods
A number of probabilistic models have been devised for protein function deduction (Deng,
Chen & Sun, 2004a; Deng et al., 2004b; Letovsky & Kasif, 2003; Nariai, Kolaczyk & Kasif,
2007). Letovsky & Kasif (2003) employed a functional linkage graph (Marcotte et al., 1999)
constructed based on a PPI network of the yeast Saccharomyces cerevisiae. The working
assumption was that the probability of sharing functions between (nodes) proteins in close
proximity on the graph is higher than that for nodes that are not in close proximity. In this
method, the probabilities of GO terms assigned to a protein sequence are derived from a
binomial model incorporating the Markov Random Field (MRF) algorithm. Later, Nariai,
Kolaczyk & Kasif (2007) integrated multiple sources of evidence (PPI, gene expression data,
protein motif information, mutant phenotype data, and protein localization data) using a
Bayesian framework, to improve the prediction performance, compared with their model
that only uses PPI.

Working on the same model organism, S. cerevisiae, as used in the methods described
above, Kourmpetis et al. (2010) suggested applying a Bayesian approach to the MRF model.
This suggestion was considered an improvement for the estimation of model parameters
and the provision of predictions from network data. Further, Pinoli, Chicco & Masseroli
(2015) compared different weighting schemes as combined with three algorithms, namely,
truncated singular value decomposition (tSVD), semantically improved tSVD (SIM),
and probabilistic latent semantic analysis with normalization (pLSAnorm). The first two
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Table 1 GO annotation predictors using the traditional approach.

Methods Program name Description Reference

Similarity based OntoBlast Web server, which is a part of the ‘‘Ontologies TO
GenomeMatrix’’ tool (Hewelt et al., 2002). It predicts
protein function by a weighted list of GO terms associated
with BLAST hit sequences in nine genome databases.

Zehetner (2003)

GOFigure Produces output as a clickable graph in four steps, including
homologous sequence search, minimum cover graph
construction, and assigning ontologies after scoring them.

Khan et al. (2003)

GOblet Software package allowing the user to define the E-value
sensitivity and databases used for the BLAST search.
All ontologies identified after matching the proteins are
constructed in a summary DAG structure, where the
number of sequences sharing a common GO term is
cumulative to present the significance of the term.

Hennig, Groth & Lehrach (2003)

Gotcha Transfers GO associations retrieved from BLAST to gene
products through a novel ranking scheme. The E-values
of the derived terms are propagated to their parent terms
on DAG, providing normalized confidence scores for an
individual GO ontology.

Martin, Berriman & Barton (2004)

PFP Functional annotation system based on PSI-BLAST hits,
exploiting matched sequences up to an unconventionally
high threshold, and mining highly relevant GO terms from
UniProt to score functions for unknown proteins.

Hawkins et al. (2009)

INGA Functional annotation server derives GO predictions from
combining many data sources.

Piovesan et al. (2015)

GoFDR Multiple alignment-based method utilizing FDRs and
PSSM to rank GO terms for amino acid sequences.

Gong, Ning & Tian (2016)

Probabilistic – Probabilistic framework based on PPI, predicting GO
assignments for 10% unannotated proteins in yeast.

Letovsky & Kasif (2003)

– Leverages heterogeneous data to increase the probabilistic
based model for the functional prediction of Saccharomyces
cerevisiae.

Nariai, Kolaczyk & Kasif (2007)

BMRF Variant of the MRF-based approach on PPI that infers
novel predictions for unannotated proteins.

Kourmpetis et al. (2010)

Machine learning GOPET GO term prediction and evaluation tool, supplying
molecular function and biological process GO terms
for any organism.

Vinayagam et al. (2006)

PoGO Ensemble model with InterPro sequence similarity,
biochemical property, and protein tertiary structure to
predict the GO of fungal proteins.

Jung et al. (2010)

FFPred3 SVM-based tool, providing the homology-independent
assignment of GO terms for eukaryotic proteins.

PANNZER2 Weighted k-nearest neighbor classifier, providing
functional annotation for uncharacterized proteins with GO
terms and free text descriptions.

Törönen, Medlar & Holm (2018)

DeepText2GO Combination of a text-based method and a sequence-based
method to improve large-scale protein function prediction.

You, Huang & Zhu (2018a)

NetGo Effective LTR-based web server, combining both sequence
and massive network information of proteins to annotate
gene products.

You et al. (2019)
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methods are based on linear algebra, while the latter is a modified probabilistic model
based on Bayesian inference. These methods were successfully used to generate novel
GO annotations for three model organisms, i.e., Bos taurus, Danio rerio, and Drosophila
melanogaster.

Machine learning methods
Machine learning-based tools have been developed to identify the hidden relationships
between various protein features (sequence, structure, or other related evolutionary
evidence) and functional labels, based on a training set (a group of fully characterized
macromolecules), and use that information to generate annotations for novel proteins.
Variousmethods that rely onmachine learning have been suggested, incorporating different
lines of evidence as features to train the classifiers and predict GO terms. Branch (a) of
Fig. 1 formulates the common workflow of those solutions, the details of which can vary
between methods as described below.

Utilizing multiple support vector machine (SVM) classifiers is a predominant selection
in several studies. For instance, GOPET (Vinayagam et al., 2006) feeds several features
related to GO terms (sequence similarity measures based on BLAST search, frequency,
quality of homolog annotation, and annotation level within the GO hierarchy) to 99
SVM classifiers. A specific term will be predicted to be a ‘‘correct’’ or ‘‘incorrect’’ label
for an unknown sequence, with voting confidence scores calculated. As another example,
FFPred (Lobley et al., 2007; Lobley et al., 2008) was initially established for the unannotated
human proteome, but demonstrated a generalization to other proteomes. The latest
version of FFPred is FFPred3 (Cozzetto et al., 2016), which is still based on SVM, is
expanded to investigate the correlations between feature characteristics retrieved from
sequences and structures within the three sub-ontologies (MF, BP, and CC). Another tool,
Prediction of Gene Ontology terms (PoGO) (Jung et al., 2010), has been developed from
Automatic Annotation of Protein Functional Class (AAPFC) (Jung & Thon, 2006). Instead
of only using InterPro terms as features, PoGO integrates three more sources (sequence
similarity, biochemical properties, and protein tertiary structure). Subsequently, SVM and
a linear classifier (Freund & Schapire, 1997) are used as base-level classifiers before the
meta-learning step.

Using the k-nearest neighbor (k-NN) algorithm, PANNZER2 (Törönen, Medlar & Holm,
2018) provides a fast functional annotation systems based on sequence homology and other
annotation predictors. Meanwhile, MS-k NN (Lan et al., 2013) aggregates heterogeneous
data to propose a competitive model for protein function prediction. DeepText2GO
(You, Huang & Zhu, 2018a) is a consensus approach, integrating deep semantic text
representation from MEDLINE citations (ncb, 2018) as text information, and sequence
information obtained via BLAST and InterProScan. These features are fed to the k-NN
and logistic regression models to produce the functions of no-knowledge proteins on a
large scale. NetGO (You et al., 2019) is an extension of GoLabeler (You et al., 2018b), which
employs the learning-to-rank(LTR) model to integrate sequence-based evidence. NetGO
improves the performance of a large scale AFP by accessing the enormous protein–protein
network of over 2000 species in the STRING database (Szklarczyk et al., 2016).
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Query sequence

Sequence-based features

Other features (PPI, text
description, etc.)

Sequence
alignment

...
Machine learning

model 1
(Binary classifier
for GO term 1)

Machine learning
model N

(Binary classifier
for GO term N)

Post-processing of predictions

(a) (b)

Deep learning model
(Binary entropy-loss function
 for multi-label classification)

GO1: score1 ... GON: scoreN

GO terms predicted and
their confident scores

Final predictions

Other feature types

Figure 1 A common workflow of (A) machine learning-based and (B) deep learning-based solutions
for predicting the GO terms of proteins. The components presented in the dashed box are optional, de-
pending on each method. N is the number of GO terms that are selected for the training dataset to build
the model.

Full-size DOI: 10.7717/peerj.12019/fig-1

Machine learning approaches are highly advantageous and considered the future
direction for AFP. Some novel proteins either lack identifiable homologous sequences or
their detectable homologues have not been assigned any GO labels. Consequently, assigning
protein function from scratch using machine learning, i.e., directly inferring the annotation
from the amino acid sequence, without access to any additional references or databases,
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is an ongoing task. The sophisticated algorithms are being developed, as presented in the
next section.

GO TERM ANNOTATION OF PROTEINS USING DEEP
LEARNING APPROACH
The excellent potential of deep learning—the latest discipline of machine learning—has
been demonstrated in several application fields, including bioinformatics (Min, Lee & Yoon,
2017; Li et al., 2019). The main characteristic that distinguishes this approach from other
methods is the learning process. Deep learning models are inspired by neural networks in
the human brain. They automatically extract high-level features from raw data and provide
predictions in an end-to-end manner. In contrast to that in conventional machine learning
models, accurate classification is achieved via handcrafted features.

Currently, the amount of generated genomic data, and the numbers of sophisticated
algorithms and computational resources are rapidly growing. These resources support
deep learning to tackle the functional annotation problem. Below, we review proposed
methods based on two criteria, i.e., the model and the input data used. A summary table of
the reviewed methods is presented in Table 2, and a common workflow for deep learning
approach is illustrated as Figure 1B.

Model-based approach
Supervised learning
Supervised learning is an essential approach for in silico protein function prediction.
Supervised models learn to annotate function guided by a training dataset, which is a
group of characterized proteins with reliable, experimentally confirmed annotations. After
the learning stage, a model that captures the relationship between feature and function is
produced, and used to predict the GO terms for novel amino acid sequences.

Deep neural network (DNN) is a feed-forward architecture. It generally comprises
an input layer, multiple hidden layers, and an output layer. Input data are processed in
a unidirectional manner along the layers, from the first to the final stage. With respect
to GO-based functional annotation, DNNs have been employed as multi-task DNNs
(MTDNNs) (Fa et al., 2018) or a series of MTDNNs (Rifaioglu et al., 2019).

Convolutional neural network (CNN)was initially developed to handle two-dimensional
images for handwritten digit recognition (LeCun et al., 1990). However, it has since become
an effective architecture not only for multi-dimensional data, but also for one-dimensional
input, such as sentences or genomic sequences. A CNN model starts with convolutional
layers, whose units are feature maps. Each unit is obtained by computing convolution
operations between local patches of a unit in the preceding layer and a filter (set of weights)
(LeCun, Bengio & Hinton, 2015). Non-linearity pooling layers are stacked to convolutional
layers, enabling the integration of different-scale features in this architecture. CNNs can be
applied in AFP either alone (Kulmanov, Khan & Hoehndorf, 2018;Cai, Wang & Deng, 2020;
Du et al., 2020) or in combination with other architectures (Zhang et al., 2020; Spalević et
al., 2020).

Vu and Jung (2021), PeerJ, DOI 10.7717/peerj.12019 8/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.12019


Table 2 Deep learning-based methods for assigning GO terms to proteins.

Feature used Program name Description DLmodel
used

Sequence based Chicco, Sadowski & Baldi (2014) Deep AE-based method for GO term prediction. AE
Zou, Wang & Yu (2017) Infers missing GO annotations for proteins of Homo

sapiens, S. cerevisiae,Mus musculus, and Drosophila using
deep restricted Boltzmann machines.

DRBM

ProLanGO (Cao et al. (2017) LSTM-based model using the idea of NMT for the
functional annotation of amino acid sequences.

LSTM

SECLEF (Szalkai & Grolmusz, 2018b) Generates the GO function and UniProt protein family
from sequence data. The core models were developed by
Szalkai & Grolmusz (2018a). The web-based interface is
available at https://pitgroup.org/seclaf/.

CNN

DEEPred (Rifaioglu et al., 2019) GO-based protein function prediction with a set of
connected MTDNN. The source code and data are available
at https://github.com/cansyl/DEEPred.

DNN

DeepSeq (Nauman et al., 2019) Predicts H. sapiens protein function from sequence
data only, using a deep learning architecture based
on CNN. Source code and data available at https:
//github.com/recluze/deepseq.

CNN

DeepGOPlus (Kulmanov & Hoehndorf, 2020) Advanced method of DeepGO, relying on a structure of
several CNN layers. Available at http://deepgoplus.bio2vec.
net/.

CNN

Integrated data
based/Structure
based

Tavanaei et al. (2016) Deep CNN model classifying functionality, based on the
tertiary structure of human proteins.

CNN

DeepGO (Kulmanov, Khan & Hoehndorf, 2018) Deep learning framework, employing one convolutional
layer. Protein GO annotations are inferred based on a
hierarchically structured classifier. Online tool available at
https://deepgo.cbrc.kaust.edu.sa/deepgo/.

CNN

deepNF (Gligorijević, Barot & Bonneau, 2018) Deep network fusion, captures high-level features of several
network data for AFP. Source code and data available at
https://github.com/VGligorijevic/deepNF.

AE

(Fa et al., 2018) An implementation of two stacked multi-layer
structures to predict GO terms from the sequence and
structure properties. Source code and data available at
http://bioinf.cs.ucl.ac.uk/downloads/mtdnn.

DNN

DeepFunc (Zhang et al., 2019) Deduces Go annotations by concatenating InterPro-based
and protein interaction network features.

FCDN

DeepGOA (Zhang et al., 2020) Integrates comprehensive sequence and PPI information for
AFP.

Bi-LSTM,
CNN

SDN2GO (Cai, Wang & Deng, 2020) Integrates architectures with three sub-models and a
weighting classifier to achieve GO term predictions. Source
code and data available at https://github.com/Charrick/
SDN2GO.

CNN

DeepAdd (Du et al., 2020) CNN-based framework, predicting protein function from
sequence and additional information (PPI or SSP).

CNN

FFPred-GAN (Wan & Jones, 2020) Novel FFPred that uses training sample augmented by a
deep learning architecture.

GAN

GONET (Li et al., 2020) Deep model for protein function prediction using
representation learning to embed protein sequences
and networks.

CNN, RNN
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Recurrent neural network (RNN) is a deep learning architecture developed especially
for sequential data. RNNs have a DNN backbone, and the units of the hidden layer are
connected. Therefore, a hidden unit receives information from the input layer at the current
time step, and also from the hidden units at the preceding stage (LeCun, Bengio & Hinton,
2015). Long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) is a variant of
the RNN model, developed to capture long-term dependencies between input sequences.
Bi-directional LSTM (Bi-LSTM) is an LSTM model that processes data in two directions,
forwards and backwards. These neural networks are employed to process protein sequences
as a natural language (Cao et al., 2017) or are combined with the CNNmodel (Zhang et al.,
2020) to provide GO annotations.

Another type of neural network, fully connected deep network (FCDN), is a series of
fully connected layers. This model was utilized for converting input vectors from InterPro
and predicting GO terms (Zhang et al., 2019).

Unsupervised learning
Unlike supervised learning, unsupervised learning independently mines hidden patterns
in input distribution. It is crucial for exploring unlabeled data and provides important
information for supervised architectures. Typically, unsupervised learning models are
employed for clustering, reducing dimensions, and transforming data.

Autoencoder (AE) (Baldi, 2012) is an unsupervised learning model developed
for assigning GO terms to amino acid sequences. AE is a neural network for data
transformation. After encoding and decoding, the target output size is the same as that of the
input. Using a trained AEmodel, GO predictions for proteins can be deduced directly from
the generated matrix (Chicco, Sadowski & Baldi, 2014). Alternatively, low-dimensional
feature representations in the hidden layer are extracted and fed into an SVM classifier
for final classification (Gligorijević, Barot & Bonneau, 2018) or a CNN model (Peng et al.,
2020) for final classification.

Restricted Boltzmann machine (RBM) (Salakhutdinov & Hinton, 2009) has one hidden
layer for representing latent features and an input layer encoding the observed data. For
GO annotation, units of the input layer are the available GO terms (Zou, Wang & Yu,
2017). Zou, Wang & Yu (2017) introduced a deep RBM (DRBM), where multi-layer RBMs
are trained and unfolded, resulting in protein function prediction.

Finally, generative adversarial network (GAN) (Goodfellow et al., 2014) comprises two
networks, i.e., a generative model that produces synthetic realistic data and a discriminative
model that evaluates whether the data are real or not. In AFP, the GAN model improves
the prediction by creating synthetic features for supervised classifiers (Wan & Jones, 2020),
or by exploiting ontology correlations (Seyyedsalehi et al., 2021).

Data-based approach
In terms of the input feature, deep learning-based methods primarily use two approaches
to assign GO terms to unknown gene products. One is a sequence-only approach, which
is useful for predicting the functions of novel proteins in the absence of homologous
information or other references. The second one is structure-based or otherwise exploits
big data from several available resources.
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Sequence-based models
One of the earliest deep learning-based methods for GO annotation predictions is the
one proposed by Chicco, Sadowski & Baldi (2014). The authors compared two annotation
solutions, i.e., tSVD, presented in Pinoli, Chicco & Masseroli (2013), and the AE neural
network. The output form of the two methods was similar; however, the latter performed
better on six different datasets. Later, instead of using the AE architecture, (Zou, Wang &
Yu, 2017) proposed DRBM for annotating the gene products of four model species, Homo
sapiens, S.cerevisiae, Musmusculus, and Drosophila.

ProLanGo (Cao et al., 2017) is the first tool that applies Neural Machine Translation
(NMT) developed by Google in AFP. The authors converted amino acid sequences and GO
terms into ‘‘ProLan’’ and ‘‘GOLan’’ languages, respectively. The GO annotation of a new
protein was then generated after being translated using a model with three RNN layers. In
another study, artificial neural networks proposed by Szalkai & Grolmusz (2018a) utilized
six CNN layers of increasing depth. Based on that work, SECLEF (Szalkai & Grolmusz,
2018b) has been designed to train and test the GO function and UniProt protein family
using biological sequences as input. The user can implement their self-configured models
in a downloadable program or run two pre-trained models (Szalkai & Grolmusz, 2018a) on
a web server. DeepSeq (Nauman et al., 2019) is another method for assigning GO terms to
amino acid sequences, based on convolutional layers. However, the authors only predicted
the five most frequent MF ontologies for H. sapiens proteins.

Using the DNN architecture, DEEPred (Rifaioglu et al., 2019) implements a stack of
multi-task feed-forward DNNs. Each individual network is built for a specific GO term
level on DAG, which allows the hierarchical post-processing of predictions. Protein
sequences are experimentally represented by three types of descriptors(subsequence profile
map, pseudo-amino acid composition, and conjoint triad feature), with subsequence
profile map performing best in the analysis.

DeepGOPlus (Kulmanov & Hoehndorf, 2020) has been developed to overcome the
existing limitations of DeepGO (Kulmanov, Khan & Hoehndorf, 2018), such as sequence
length, unavailable PPI features, and the number of GO labels. Functional annotation is
predicted by a multi-layer CNN structure in combination with sequence similarity. Lately,
TALE (Cao & Shen, 2021) has been developed to generate GO predictions by integrating
sequence patterns based on transformer encoder and the joint similarity of sequence-term.
Similar to DeepGOPlus, TALE is also combined with sequence similarity as TALE+ model
to enhance its performance. Meanwhile, PFP-WGAN (Seyyedsalehi et al., 2021) is one of
two latest ideas that use GAN to infer the functionalities of proteins. While the generator
network processes raw sequences, the discriminator takes two inputs; one consists of
annotated proteins from the SwissProt database and the other of raw sequences with
respective annotations synthesized from the generator.

Integrated data-based/Structure based-models
The functional assignment of amino acid sequences from 3D structures was proposed by
(Tavanaei et al., 2016). The main analysis involved a CNN model that was trained and
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tested on five datasets of human proteins, each of which had been assigned two GO terms.
However, the prediction has not been propagated on the DAG tree for inherited GO terms.

DeepGO (Kulmanov, Khan & Hoehndorf, 2018) is a functional annotation server based
on CNN architecture that had been devised to learn features from amino acid sequences
and the PPI network. GO labels are assigned to input proteins through a hierarchical
classification structured as a DAG tree. DeepAdd (Du et al., 2020) was inspired by DeepGO
server and provides a solution for AFP, utilizing a CNN framework to learn vector
representations from sequences and additional information. However, sequences are
processed into k-mer embedding by Word2Vec, instead of the tri-gram embedding
suggested in DeepGO. Further, in DeepAdd, the protein sequence profile (SSP) is added
if the PPI network information is not available. Based on a similar concept of combining
primary protein structure and PPI, GONET (Li et al., 2020), a novel model, was built by
employing CNN, RNN, and Attention layer for human and mouse sequences.

Working on a dataset identical to the one collated by FFPred3, Fa et al. (2018) tested an
MTDNN that treated protein function prediction as a multi-label classification problem.
Here, the solution consisted of layers shared by all tasks (GO labels), which are stacked
in parallel with task-specific layers. DeepFunc (Zhang et al., 2019) is a novel predictor
that surpasses DeepGO, FFPred3, and BLAST. First, protein domain, family, and motif
information is queried from InterPro and encoded before passing through fully connected
layers. Next, topological features of PPI are obtained by the Deepwalk algorithm. Finally,
the method concatenates two types of features (sequence- and network-based input) to
fit an FCDN. The architecture of DeepGOA (Zhang et al., 2020) is more sophisticated
than that of DeepFunc. In addition to information generated by InterPro and PPI, global
and local semantic features of amino acid sequences are extracted by Bi-LSTM and a
convolutional layer, respectively. Using the same types of features, SDN2GO (Cai, Wang
& Deng, 2020) utilizes three sub-models for each information source, with all outputs
integrated in the final weighted model.

In another study, deepNF (Gligorijević, Barot & Bonneau, 2018) was constructed by
multimodal deep AE to capture hidden information in proteins from different types of
interaction networks. In that suggestion, feature representations are extracted to train the
final SVM classifier to produce GO terms for human proteins. DeepMNE-CNN (Peng et
al., 2020) has a superior performance than deepNF in the human data by utilizing CNN
layers instead of SVM for the classification model. On the other hand, FFPred-GAN (Wan
& Jones, 2020) utilizes GAN for feature enrichment to feed conventional machine learning
models, especially SVM. Real features are biophysical information extracted from raw
amino acid sequences by FFPred, and the generator takes latent variables to augment the
synthetic samples.

COMPARISON
In addition to proposing a new approach, accuracy assessment is important for
demonstrating the improvements of a novel methodology. This necessitates the
establishment of a common framework for the evaluation and comparison of the proposed
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Table 3 Statistics of final benchmark CAFA3.

Annotation type Number of sequences Number of terms (GO leaf only)

MF CC BP

NK (no-knowledge) 1177 377 236 1087
LK (limited-knowledge) 2151 368 203 878
All (NK + LK) 3328 631 327 1673

solutions. Accordingly, the critical assessment of functional annotation (CAFA) (Radivojac
et al., 2013; Jiang et al., 2016; Zhou et al., 2019) is a community-based experiment that
provides a large-scale evaluation of computational protein function prediction methods in
a time-delayed manner. Four main competitions (CAFA1–CAFA4) have been held every
3 years since 2010. CAFA-π is an extension of CAFA3, and allows the competitors to
improve their computational solutions focusing on the prediction of genes associated with
specific GO terms. Generally, each challenge comprises three phases, i.e., predictions for a
set of target proteins, experimental verification for a subset of target proteins to obtain a
benchmark dataset, and performance analysis of all the competitors based on predefined
metrics and the benchmark data. Official reports have just been released for the first three
challenges and CAFA-π (Radivojac et al., 2013; Jiang et al., 2016; Zhou et al., 2019).

In the remainder of this section, we present a practical comparison of emerging analysis
methods and discuss the retrieved results.

Set up
Data
We used the finalized benchmark set provided in the CAFA3 report (Zhou et al., 2019). The
statistics are presented in Table 3. There are two sequence types in the benchmark dataset,
NK (no-knowledge) and LK (limited-knowledge), which have been coined in CAFA2 (Jiang
et al., 2016). Based on the timeline of the challenge, t0 is the deadline for the prediction
submission of the target sequences. Then, experimental annotations for a subset of target
sequences are accumulated until t1, to complete a benchmark dataset for the performance
evaluation. The NK proteins are those that had not had any experimental annotations in
three GO domains at t0, but had at least one GO term with experimental evidence code
between t0 and t1. The LK sequences are those that had been experimentally annotated in
one or two GO domains at t0, and gained at least one experimental annotation in the other
GO domains between t0 and t1.

Methods
The servers of several tools have been updated recently, but we need to control their training
data or databases used, in which do not include sequences in the CAFA3 benchmark.
Therefore, we chose INGA, which was one of the top models in CAFA3, as a representative
conventional tool. DeepGOPlus is a recently developed representative annotation system
that is based on deep learning. In addition to these two tools, other studies that performed
their analysis on the CAFA3 dataset are also summarized in this part.
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For DeepGOPlus, we re-trained the model with the CAFA3 training sequences and
generated predictions for the CAFA3 benchmark set based on their source code provided.
For INGA, we obtained predictions for the CAFA3 benchmark based on the predictions of
CAFA3 targets, which were provided on their website.

Model performances were evaluated based on protein-centric metrics (Fmax , precision,
and recall) provided by the CAFA3 assessment tool. The area under the precision–recall
curve (AUPR), which is a measurement of highly imbalanced data, was also considered.
Results regarding the performance of other methods, including Naive, BLAST, FFPred3
and DEEPred, were derived from DEEPred paper (Rifaioglu et al., 2019).

In terms of evaluation, two modes were designed. In the partial mode, the scores of each
method were computed on the sequences that have at least one GO term predicted at any
threshold. Conversely, scores in the full mode were computed on all protein sequences in
the benchmark set.

Results
The results of the analysis are shown in terms of GO domains and types of sequences
(NK vs. All) in full mode (Fig. 2) and partial mode (Fig. 3). The scores of Naive, BLAST,
FFPred3 and DEEPred are only available for the full mode. Models using the traditional
approach and deep learning approach are depicted in blue and orange tones, respectively.

As is shown in Fig. 2, deep learning-based models (DEEPred and DeepGOPlus) showed
a competitive performance compared to conventional models in terms of MF and BP
prediction; in particular, DEEPred acquired the highest precision in the threeGO categories.
Such high precision obtained by DEEPred, which was explained in their paper (Rifaioglu
et al., 2019), probably resulted from the imbalanced dataset and post-processing step. For
example, the negative protein set for each GO term is four times as large as the positive one,
this leads to low false positive and high false negative predictions. Additionally, DEEPred
filtered some false positives at the post-processing step, thus increasing their precision. For
the CC class, two baselines (Naive and BLAST) were at the top for Fmax and recall, followed
by FFPred3. The overall outcome is presented similarly in Fig. 3, in which DeepGOPlus
performed better than INGA in most of categories.

The aforementioned results and the CAFA3 report indicate that conventional models,
such as INGA and GOLabeler (referred to as ‘‘ZhuLab’’ in CAFA3) perform as well as
other high-performing models. ZhuLab was the best performer in terms of Fmax and
NK-full evaluation, with the scores of 0.40, 0.61, and 0.62 for BP, CC, andMF, respectively.
However, these conventional models integrate several types of information, which is not
always available for all sequences.Meanwhile, the deep learning approach had demonstrable
advantages in this area and yielded highly competitive predictions. The research direction
is currently shifting toward this new approach, with even more efficient solutions being
developed.

CONCLUSION
The computational GO annotation of proteins has been an actively pursued and challenging
task in bioinformatics since around the 2000s; this is a response to the need to bridge the
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Figure 2 Performance of the selected methods with the CAFA3 benchmark dataset in full mode: (A)
NK sequences and (B) All sequences (NK + LK). Scores in the full mode were computed on all protein
sequences in the benchmark set. Scores of Naive, BLAST, FFPred3, DEEPred have been reported directly
from Rifaioglu et al. (2019).

Full-size DOI: 10.7717/peerj.12019/fig-2

gap between the known and unknown, newly discovered amino acid sequences. On the
one hand, understanding protein function is essential for deciphering biological evolution
and for countless applications, such as drug design and disease treatment. The GO database
has facilitated a comprehensive vocabulary for functional annotation because it presents
structuredGO functions in three domains (MF, BP, and CC), thereby effectively supporting
in silico protein function assignment. Herein, we presented the current state of the field and
compared GO-based AFP solutions, classed as conventional and deep learning approaches.
As it is difficult to introduce all the available methodologies and comprehensively compare
them, we tested the prominent predictors in this study. This was complemented by the
analysis of related publications, with the assessment outcomes computed by CAFA, a
worldwide venue for comparing computational protein function predictors.

We observed that one of the primary difficulties in the field is the utilization of input
features to achieve effective performance. While heterogeneous input data are useful for
GO prediction, only sequence information is available for the majority of unannotated
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Figure 3 Performance of the selected methods with the CAFA3 benchmark dataset in partial mode:
(A) NK sequences and (B) all sequences (NK + LK). In the partial mode, scores of each method were
computed on the sequences that have at least one GO term predicted at any threshold.
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proteins. With respect to the specific approaches, machine learning models may be limited
by the heterogeneity of genomic data when mining different sources of information,
while parameter and hyper-parameter tuning is the challenging step of the deep learning
approach. In terms of output, the GO database has been updating because GO annotations
are still imbalanced and not complete for all species. Its sophisticated structure is ideal for
describing the functional roles of proteins, but also makes the prediction task a complex
multi-label problem.

Nonetheless, despite the existing challenges, the quest for successful annotation will
continue in many directions, driven by the community effort. Together with the constant
expansion of -omics databases, data-driven methods have shown excellent applications in
various areas, with a promising trend in functional annotation. Depending on the available
sources, they can be based on integrated data or sequence information only, considering
a hybrid approach. Some approaches have been suggested and developed to cope with
imbalanced data; these include working on the subgroups in which the classes are more
balanced, data augmentation using GAN, and considering evaluation metrics specified
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for imbalanced data, such as AUPR. The multi-label problem can be addressed via the
advancement of computational resources and well-defined solutions, for example, stacking
many individual solutions together. Finally, successful solutions for GO term prediction
can be expanded to include other functional resources (EC, pathways, etc.), to comprehend
the biological role and life science potential of proteins.
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