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ABSTRACT

Background. Alzheimer’s disease (AD) is an age-related neurodegenerative disease
caused by central nervous system disorders. Late-onset Alzheimer disease (LOAD) is
the most common neurodegenerative disorder worldwide. Differences at the expression
level of certain genes, resulting from either genetic variations or environmental inter-
actions, might be one of the mechanisms underlying differential risks for developing
AD. Peripheral blood genome transcriptional profiling may provide a powerful and
minimally invasive tool for the identification of novel targets beyond AS and tau for
AD research.

Methods. This preliminary study explores molecular pathogenesis of LOAD-related
inflammation through next generation sequencing, to assess RNA expression profiles
in peripheral blood from five patients with LOAD and 10 healthy controls.

Results. The analysis of RNA expression profiles revealed 94 genes up-regulated and 147
down-regulated. Gene function analysis, including Gene Ontology (GO) and KOBAS-
Kyoto Encyclopedia of DEGs and Genomes (KEGG) pathways indicated upregulation
of interferon family (INF) signaling, while the down-regulated genes were mainly
associated with the cell cycle process. KEGG metabolic pathways mapping showed
gene expression alterations in the signaling pathways of JAK/STAT, chemokines, MAP
kinases and Alzheimer disease. The results of this preliminary study provided not only
a comprehensive picture of gene expression, but also the key processes associated with
pathology for the regulation of neuroinflammation, to improve the current mechanisms
to treat LOAD.

Subjects Bioinformatics, Molecular Biology, Cognitive Disorders, Geriatrics, Neurology

Keywords Late-onset Alzheimer disease, RNA Ion AmpliSeq, Inflammation, Gene expression
analysis, Hub genes

INTRODUCION

Alzheimer’s disease (AD) is the most common neurodegenerative disorder worldwide.
Is the most common cause of dementia, accounting for an estimated 60% to 80% of
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cases (Alzheimer’s Association, 2021). The pathophysiological mechanism of AD remains
unclear, the etiology of the disease is multifactorial; its progression involves multiple
physiological, environmental and genetic factors (Bagyinszky et al., 2014). After age, sex is
one of the strongest risk factors for developing AD, Currently, over 65% of people with
late-onset Alzheimer’s Disease (LOAD) are women (Alzheimer’s Association, 2019). In
Alzheimer’s disease (AD), neuroinflammation, instead of being a mere bystander activated
by emerging senile plaques and neurofibrillary tangles, contributes as much or more to
the pathogenesis as do the plaques and tangles themselves. Inflammation is a complex
molecular and cellular defense mechanism in response to diverse stimuli, including stress,
injury, and infection. Inflammation has been well established as a major component of
neurodegenerative disorders, but it has never been clear if this was a direct cause of the
disease or a consequence of the progressive degenerative process that was occurring (Zhang
et al., 2013). In the brain, an upregulation in inflammatory signaling is characterized by
the activation of astrocytes and microglia and pro-inflammatory mediators (Liu ¢~ Chan,
2014; Martorell et al., 2013). In the last decades, the molecular level of human diseases has
been challenging to approach and has been explored mostly with different technologies
such as high-throughput sequencing. There is the increasing opportunity to link large
global datasets with the technologies of genomics, proteomics and transcriptomics through
bioinformatics methods to unlock the genetic, molecular pathways and physiological
that underpin the pro-inflammatory aging-phenotype. This approach takes on special
importance in the case of inaccessibility and invasiveness of obtaining samples from certain
organs such as the brain- hindering the analysis of neurological diseases. Peripheral blood
samples are possible subrogates of pathways triggered in the brain, to reflecting some
of the same expression evolution and regulation (Cai et al., 2010; Griswold et al., 2020).
Blood is one of the most clinically convenient tissues to sample for immune biomarkers,
whereas the brain is arguably the least convenient. Circulating blood is easily accessible
and can represent an alternative to tissue sampling to find molecular signatures of different
physiological conditions. Blood-based biomarkers have been suggested to be useful for
evaluating diagnosis, pathogenesis, and AD progression. A recent study of differential
expression in AD from different tissues shows that many genes differentially expressed in
AD were regulated similarly in blood and brain (Bai et al., 2014). For blood biomarkers to
be relevant to the inflammatory pathogenesis of AD, it is assumed that the immune status
of the central nervous system is correlated with, or caused by, the immune status of the
periphery. Chronic inflammation leads to various diseases such as cardiovascular diseases,
cancer, inflammatory bowel disease and Alzheimer’s disease, etc., due to the involvement of
numerous inflammatory pathways such as TNF-«, NF-«B, STAT, MAPK and JNK (Chen
et al., 2018). In our study, we used female LOAD and Healthy Control Samples to obtain
information about systemic factors that might influence Alzheimer’s disease using RNA Ion
AmpliSeq sequencing. The data reported herein represent changes AD patients’ immune
cells and supports that LOAD physiopathology relates to inflammatory cells as a hypothesis.
Gene function analysis, including Gene Ontology (GO) and KOBAS-Kyoto Encyclopedia
of DEGs and Genomes (KEGG) pathways analysis, were performed using differentially
expressed genes (DEG) on Metascape (https://metascape.org/gp/). The present study
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characterizes intrinsic molecular processes underlying LOAD and our preliminary data
suggests that we may have identified possible biomarkers for AD.

MATERIALS & METHODS

This study was conducted using peripheral blood samples from 15 female participants over
70 years old diagnosed with LOAD (5) and demographically matched healthy controls
(10). Alzheimer’s Disease has a greater incidence and is more prevalent in women as
compared with men (Laws, [rvine ¢ Gale, 2016). Besides, evidence indicates that the
APOE-¢4 risk for AD is greater in women than men, which is particularly evident in
heterozygous women carrying one APOE-¢4 allele (Riedel, Thompson ¢ Brinton, 2016). In
addition, a previous study from our laboratory found some gender differences in the clinical
course of Alzheimer’s disease in our population (Naranjo-Galvis et al., 2020, unpublished
data). Women have a higher survival rate but more disability. For example, having an
apolipoprotein E ¢4 allele (+APOE-g4) places women at a higher risk of developing
AD, compared to men. All women included in this study have an apolipoprotein Ee4
allele (+APOE-¢4) (Naranjo-Galvis et al., 2020, unpublished data). Control participants
were invited through an open call, while subjects with LOAD were referred by neurology
specialists, only those subjects diagnosed with LOAD according to the GDS (Reisberg et al.,
1982) and CDR criteria (Morris, 1993), were recruited for the study. Subjects with a history
of psychiatric or neurological disorders that explain their cognitive or behavioral changes,
severe auditory or visual deficits, history of substance abuse, allergic illness, systemic
inflammatory disease or unstable medical conditions, or those who were consumed
systemic corticosteroids at least one month before the test were excluded from the study.
The participants and LOAD subject’s guardian signed a written informed consent approved
by the Ethics Committee of the Universidad Auténoma de Manizales (Act 047 June 2015),
after the procedure’s totality was explained to them (Project 02110402025). Participants
provided a sociodemographic and pathological history questionnaire and the mini-mental
state examination (MMSE) (Folstein, Folstein & McHugh, 1975). Later, 5 ml of peripheral
blood was obtained in accordance with the Colombia Ministry of Health’s biosafety
regulations and guidelines.

Initial RNA extraction was performed using the Tempus™ Spin RNA Isolation Kit
(Ref. 4380204; Thermo fisher Scientific, Waltham, MA, USA) following the manufacturer’s
recommendations. The total RNA obtained was quantified using the Agilent RNA 6000
Pico microfluidics chip (reference 5067-1513) in the Bioanalyzer 2100 equipment (Agilent
Technologies, Palo Alto, CA, USA) following the manufacturer’s instructions.

Transcriptome sequencing was performed using the Ion AmpliSeq Transcriptome Gene
Expression Kit (Thermo Fisher Scientific). The library was prepared on 40 ng of total RNA
using the AmpliSeq Transcriptome Kit v2 (reference 4475936; Thermo Fisher Scientific)
combined with barcodes Ion Xpress™ 01-16 Kit (4471250AB, Thermo Fisher Scientific)
following the manufacturer’s specifications. The resulting libraries were quantified with
the Ton Library TagMan™ Quantification Kit (Ref. 4468802; Thermo Fisher Scientific)
in a final volume of 10 uL. The enrichment of the carried ISPs and the loading of the
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chip were developed in the automated Ion Chef system (Thermo Fisher Scientific) using
the Ion PI™ Hi-Q™ Chef Kit (reference A27198; Thermo Fisher Scientific) and the Ion
pI™ chips v3 (reference A26771; Thermo Fisher Scientific). Then, the chip was analyzed
in the Ion Proton sequencer (reference 4476610; Thermo Fisher Scientific), and the data
generated were initially analyzed with the Torrent Suite 5.0.2 to generate the sequence of
reads, eliminate bar codes, and low-quality reads. With the resulting reads (>80 million),
FASTQ files were generated using the File Exporter 4.6.0.0 plugin.

AmpliSeq sequencing data were analyzed and adjusted by quality using SAMStat v 1.5
(Lassmann, Hayashizaki & Daub, 2011) with the resultant data checked for quality using
FastQC. The data were aligned to the human reference genome annotation UCSC Hg19
using the Ion Torrent Mapping Alignment Program (TMAP).

RNA expression values were determined with BED Tools v 2.26 (Quinlan, 2014). and
differentially expressed genes (DEGs) were obtained using the R package DeSeq2 v.1.12.4,
available from Bioconductor (Love, Huber ¢ Anders, 2014). Transcripts were excluded
from any subsequent analysis if one point in the pairwise analysis did not have at least 50
reads across all the samples. Besides, a criterion of at least three replicates per condition
that would support a differentially expressed gene was applied to select DEG. The false
discovery rate (FDR) was set to a cut-off of 0.05 for all transcripts. Specifically, we applied
the Bonferroni correction for paired comparisons, and only accepted genes with corrected
significance (P value) < 0.05.

DEG was converted to their corresponding Homo sapiens Entrez gene IDs using the
latest database (ncbi.nlm.nih.gov/gene; updated on 2020-09-15); pathway and process
enrichment analysis of DEG was performed using Metascape (metascape.org) (Zhou et
al., 2019). For each given gene list, pathway and process enrichment analysis has been
carried out with the following ontology sources: GO Biological Processes, KEGG Pathway,
Canonical Pathways, Reactome Gene Sets, TRRUST, CORUM, DisGeNET, PaGenBase,
Transcription Factor Targets and COVID.

All genes in the genome were used as an enrichment background. Terms with P < 0.01
were statistically significant. Those with a minimum count of three and enrichment factor
>1.5 were collected and grouped into clusters based on their membership similarities. More
specifically, P-values were calculated based on accumulative hypergeometric distribution
(Feinleib & Zar, 2006), and q-values were calculated using the Benjamini-Hochberg
procedure for accounting for multiple testing (Hochberg ¢» Benjamini, 1990). Kappa scores
were used as the similarity metric when performing hierarchical clustering on the enriched
terms, and then sub-trees with similarity > 0.3 were considered a cluster (Colhen, 1960). The
most statistically significant term within a cluster was selected to represent the cluster. For
each given gene list, protein-protein interaction enrichment analysis was carried out with
the following databases: BioGrid (Stark, 2005), InWeb_IM (Li et al., 2016) and, OmniPath
(Tiirei, Korcsmdros ¢ Saez-Rodriguez, 2016). The resultant network contains the subset of
proteins that form physical interactions with at least one other member in the list.

Convergent functional genomic (CFG) is a methodology that integrates multiple lines
of external evidence (Genetic association of DNA variations with disease susceptibility;
gene expression regulated by AD genetic variants; protein-protein interaction with AD
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core proteins, i.e., APP, PSEN1, PSEN2, APOE and MAPT; diagnosis prediction of disease
models) from animal and human model studies (Niculescu ¢ Le-Niculescu, 2010) aiming
at prioritizing AD candidate genes (Xu et al., 2018). The DEGs were scored based the CFG
score of each gene ranged from 0 to 6 points supported by the above-mentioned evidence
from the AlzData database (CFG score); the higher the score, the more promising the gene
is.

RESULTS

RNA was isolated from whole blood from 5 LOAD cases and 10 controls (all female. Mean
age 76.3 £ 3.5). The amplicon sequencing approach using 20,812 probes sets specific to
human mRNA was applied to assess gene expression profiles, yielding 12.3 million reads
per sample with alignment rates higher than 94.7%.

For analysis of differential gene expression between LOAD cases and controls, signals
from 13,227 amplicons with mean mapped reads higher than fifty reads across all
participants were included. Differential gene expression analysis revealed 241 DEG
(FDR<0.1): 94 up-regulated, and 147 down-regulated considering values of P < 0.05
(Table S1). Functional enrichment analyses of the DEG were carried out through gene
ontology (GO) (Ashburner et al., 2000). To further capture the relationships between the
terms, a subset of enriched terms has been selected and displayed as a network plot, where
edges connect terms with a similarity >0.3. We selected the terms with the best p-values
from each of the 20 clusters, with the restriction that there are no more than 15 terms
per cluster and no more than 250 terms in total (Fig. 1). The network visualization was
performed using Cytoscape (Shannon et al., 2003), where each node represents an enriched
term and has been colored by its cluster-ID (Fig. 2).

The resultant network contains the subset of proteins that form physical interactions
with at least one other member in the list. If the network contains between three and
500 proteins, the Molecular Complex Detection (MCODE) algorithm has been applied
to the resultant network to identify densely connected network components (Bader ¢
Hogue, 2003). Pathway and process enrichment analysis has been applied to each MCODE
component independently, and the three best-scoring terms by p-value have been retained
as the functional description of the corresponding components (Table 1).

To identify more reliable candidate genes from a large number of LOAD-related genes,
a prioritized list of the DEGs was generated using a convergent functional genomics (CFG)
method (Table S1). For the 241 candidate genes (241 DEGs), 175 genes (64 up-regulated
and 111 down-regulated) were listed as highly LOAD-related candidate genes when received
at least two lines of LOAD-related evidence (CFG score > 1, Fig. 3). The interesting thing is
that these genes together play a very important role in the immune response. In summary,
this study we have also identified important genes (NRG1, NEDDY, IRF5, IFI35, STAT],
STAT?2, JAK2, IL3RA), and alterations in biological processes and pathways that may
be associated with Alzheimer’s Disease. Our study may provide effective means for the
prevention, diagnosis, and treatment Alzheimer’s Disease in female patients.

Even when this study is the first study carried out in Alzheimer’s Disease sufferers of
this part of Colombia, the sample size of the affected included is limited. The homogeneity
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ko04550: Signaling pathways regulating pluripotency of stem cells
G0:0001525: angiogenesis
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hsa00983: Drug metabolism - other enzymes

G0:0050731: positive regulation of peptidyl-tyrosine phosphorylation
G0:0010035: response to inorganic substance

ko05150: Staphylococcus aureus infection

G0:0071396: cellular response to lipid

G0:0009617: response to bacterium

G0:0050848: regulation of calcium-mediated signaling

G0:0006575: cellular modified amino acid metabolic process
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R-HSA-2262752: Cellular responses to stress

G0:0044770: cell cycle phase transition

R-HSA-9012852: Signaling by NOTCH3

G0:0051301: cell division

G0:0009394: 2'-deoxyribonucleotide metabolic process
G0:0007088: regulation of mitotic nuclear division

G0:0006596: polyamine biosynthetic process

R-HSA-3299685: Detoxification of Reactive Oxygen Species
R-HSA-5689901: Metalloprotease DUBs

G0:0006778: porphyrin-containing compound metabolic process
G0:0048872: homeostasis of number of cells

G0:0042098: T cell proliferation

G0:0000079: regulation of cyclin-dependent protein serine/threonine kinase activity
G0:0010821: regulation of mitochondrion organization
G0:0051223: regulation of protein transport

G0:0007178: transmenbrane receptor protein serine/threonine kinase signaling pathway

G0:0090305: nucleic acid phosphodiester bond hydrolysis
R-HSA-382551: Transport of small molecules

G0:0051224: negative regulation of protein transport

G0:0051224: negative regulation of cellular component organization

Figure 1 Bar graph of enriched terms across input gene lists, colored by p-values. (A) Upregulated. (B)
Downregulated. Image credit: Metascape.org.

Full-size &l DOI: 10.7717/peer;j.12016/fig-1

Table 1 GO enrichment analysis was applied to each MCODE network to assign “meanings” to the
network component, where the top three best p-value terms were retained.

Category DEGs GO Description LogP
Upregulated GO:0097696 STAT cascade —6.4
Upregulated G0:0007259 JAK-STAT cascade —6.5
Upregulated GO: 0042063 Gliogenesis —6.6
Downregulated R-HSA-9010553 Regulation of expression of SLITs and ROBOs —6.8
Downregulated R-HSA-8953897 Cellular responses to external stimuli -7.9
Downregulated R-HSA-2262752 Cellular responses to stress —8.0
Cardona et al. (2021), PeerdJ, DOI 10.7717/peerj.12016 6/17
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[l negative regulation of protein transport
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Figure2 The network of enriched terms colored by cluster-ID. Nodes sharing the same cluster-ID are

typically close to each other, terms containing more genes tend to have a more significant p-value. (A) Up-
regulated DEG. (B) Down-regulated DEG. Image credit: Metascape.org.
Full-size Gal DOI: 10.7717/peer;j.12016/fig-2

in the symptoms of the patients selected was determinant for their inclusion together the
fact that all should belong to the same region. Despite these matters, the extrapolation of
our main results must be considered carefully for the whole population of the region and
therefore understand as a limitation. Nonetheless, a follow-up study later for a bigger size

is required for future confirmations.

DISCUSSION

The availability of an accessible tissue where gene expression profile is similar to more

inaccessible CNS tissues has the potential to advance research in neuropsychiatric disorders,
and various studies have suggested that on a transcriptome level, whole blood shares
significant gene expression similarities with multiple CNS tissues (Sullivan, Fan ¢ Perou,
20065 Leandro et al., 2018; Griswold et al., 20205 Shigemizu et al., 2020). Furthermore, it is
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B DEGs Up-regulated
I DEGs Down-regulated

NRG1 5/6 (1:1/0)

NEDD9, IFI35, IRF5,
oDC1, PBX1, 46 (7:3/4)
SMOX, RPS12

C1QB, IL3RA, C1QA, OAS1,
PLSCR1, MGST1, LPARL...;
UBE2D3, RPS15A, RBX1, RPS25,
NLK, UBAP2, CD28...

3/6 (34:9/25)

SLC26A6, XAF1, NANOG, FOLR2, CDKN2B,
PLCXD1, COL6A2...;
PBXIP1, RPL18A, WBP2, PDCD10,
ENDOD1, OA21, BRAP...

2/6 (52:17/35)

PLXDC1, PARP9, GSDMA, SLAMFS, MVB12B,
FMNL2, CYP1B1...; 1/6 (81:34/47)
TAGLN2, SUSD3, MBOAT2, RSC1A1, NUP54, LTB, GRINA...

Figure 3 Probability pyramid representing the results of gene prioritization for the 175 DEGs (64
Up-regulated, 111 Down-regulated). The highest CFG score is 6. Colors represent different genes in our
study. Blue represents the DEGs Up-regulated, whereas read means the DEGs Down-regulated. Image
credit: the authors.

Full-size Gl DOI: 10.7717/peerj.12016/fig-3

now widely accepted that inflammation plays an important role in the pathogenesis of
AD (Heppner, Ransohoff & Becher, 2015). In this way, while prominent neuroinflammation
occurs in the brain parenchyma during LOAD, we also observed a peripheral inflammation,
including the active involvement of peripheral immune cells such as T lymphocytes or
monocytes (Mietelska-Porowska & Wojda, 2017).

Our study with five LOAD cases and 10 healthy controls demonstrates differences
in gene expression profiles between both samples. Measuring gene expression using the
AmpliSeq approach, a method of high sensitivity and reproducibility (Li et al., 2015),
facilitated the detection of 241 genes differentially expressed in LOAD even with a small
sample size. Although samples were from blood and not from CNS cells directly. However,
the identified genes could be relevant in LOAD’s physiopathology. While some studies of
differential expression in LOAD have been carried out in postmortem brains (Neff et al.,
2021), other research (Leandro et al., 2018; Griswold et al., 2020; Shigemizu et al., 2020) and
ours address the study of LOAD mechanisms through a non-invasive perspective. Being
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able to evaluate LOAD in vivo is opening future perspectives for identifying pathways
contributing to the early diagnosis of the disease.

Up-regulated genes were enriched in interferon-gamma (INF-y) pathways. INF-y
can activate a cytotoxic response in the brain; high cytokine levels impact astrocytes’
activation, which induces neurotoxicity and cell death. Experimental evidence has shown
that stimulation with INF-y increases more than four times the percentage of cell death
because astrocytes increase their neurotoxicity and, therefore, their potency to kill neuronal
tissue (Hashioka et al., 2009). The overexpression of genes related to INF-y induces both
gene expression and enzymatic activity of indoleamine 2,3-dioxygenase (IDO-1), an
enzyme expressed in numerous cell types, including macrophages, microglia, neurons,
and astrocytes. This enzyme is fundamental in the kynurenine pathway, which plays a
significant role in the pathogenesis of a wide variety of inflammatory, neurodegenerative,
and malignant disorders (Jones et al., 2015).

Furthermore, INF-y is an activator of the JAK/STAT pathway that modulates the
transcription of different inflammatory factors (Platanias, 2005). In our research, four
genes involved in the JAK/STAT pathway were up-regulated (STAT1, STAT2, JAK?2,
IL3RA). Biochemical studies of JAK2 have established their participation in the signaling
of different cytokines, including IL-3 receptors (Schindler ¢~ Strehlow, 1999); JAK2 has
a critical role in the transduction of IL-3, which plays an important role in cell growth
and differentiation (Testa, Pelosi ¢» Castelli, 2019). Studies in rats suggest that IL-3 has a
potential role in inflammatory processes in NCS, in vitro studies suggest that IL-3 could
mediate microgliosis and neurodegeneration in LOAD. Likewise, the increase in the
expression of IL-3R « is associated with tumorigenesis (Lee, Martin ¢» Merrill, 1993).

So, we hypothesized that the alteration in the JAK / STAT pathway due to the
overexpression of the STAT1, STAT2, JAK2, and IL3R genes has two different mechanisms
one: dysregulation of JAK2 and IL3R that result in the alteration of the production
of the cytokine IL-3 and the appearance of reactive microgliosis and subsequent
neurodegeneration in the brain, very common in LOAD, and the second one, the
deregulation of STAT1 and STAT?2 that together with JAK2 are involved in the activation
of the transcription of multiple cytokines of the INF family, which can result in a chronic
pro-inflammatory response, alterations in cell cycle regulation and apoptosis, So, it is
possible that neurotoxic effect of astrocytes derived from INF-y could be reversed by
using JAK/STAT pathway inhibitors (Hashioka et al., 2009) which makes the JAK/STAT
pathway a potential therapeutic target against LOAD and other related neurodegenerative
diseases. Compared to our study, Morabito et al. (2020) revealed specific transcriptomic
signatures across different brain datasets. Several pathways were upregulated, such
as mitogen-activated protein kinase (MAPK) signaling and Janus kinase (JAK)-signal
transducer/activator of transcription (JAK/STAT) involved in numerous cellular processes
and it is implicated in neurodegenerative disorders, like Alzheimer disease. Additionally, we
validate our results in multiple published human AD gene expression datasets, which can be
easily accessed using online resource (https://swaruplab.bio.uci.edu/consensusAD) in order
to provide a more comprehensive picture of the genome-wide transcriptomic alterations
occurring in AD and to begin to examine the associated gene regulatory programs
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(Morabito et al., 2020). A better understanding of inflammatory response pathways and
molecular mechanisms will undoubtedly contribute to improved prevention and treatment
of inflammatory diseases.

From the results obtained in the functional enrichment analysis numerous
downregulated genes were involved in biological processes associated with the cell cycle;
allowing us to hypothesize a link between the cell cycle dysregulation and the inflammation
in LOAD. It is well known that in the adult brain, the neurons are in phase GO; these
are not dividing and are terminally differentiated. Therefore, the re-expression of cell
cycle proteins is considered a pathological phenomenon because the deregulation of the
genes involved in G1/S and G2/M allows the neuron to escape from apoptosis and initiate a
continuous degenerative process (Harmdane et al., 2003), triggering tauopathies as observed
in LOAD (Tatebayashi et al., 2006). Besides, , the re-expression of G1/S markers correlates
with apoptosis in many tissues (Li ef al., 2015). Inflammation in the CNS occurs mainly
through the activation of astrocytes and microglia and the release of numerous factors like
chemokines, cytokines, or growth factors, leading to a complex crosstalk between different
brain cell types (astrocytes, microglia, endothelial cells, neurons, etc.). Among cytokines,
IFN-y is an important activator of the JAK-STAT signaling pathway (Regis et al., 2008).
CNS dysregulation of the JAK-STAT pathway is mainly related to brain inflammation
processes and neuronal/glial survival. In particular, STAT proteins can either promote cell
death and contribute to brain damage (Fig. 4).

We investigated DEG genes with high CFG scores for their correlation to AD. Among
175 DEGs, NRG1 showed a CFG score of five points. Studies recently explain the relation
between the pivotal role of NRG-1 and inflammation in the development of the cognitive
disorders. NRG-1 gene plays an important role in plasticity, maintenance and repair of the
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nervous system. Moreover, NRG-1 has been found in multiple regions of the adult brain
and is involved in the regulation of neurotransmission (Mostaid et al., 2017). Due to its
localization in the brain areas relating to auditory and visual hallucinations and delusions, it
has been hypothesized that the presence of NRG-1 may interact with specific inflammatory
pathological processes that have been shown to be associated with Late Onset Alzheimer’s
Dementia (LOAD) (Go et al., 2005).

Thus, because LOAD behaves as a multifactorial entity, the formulation of new
etiopathogenic models, which include new contributions emerging from areas such as
neuroimmunogenetics, may be informative. Despite the mechanisms of the observed
blood-brain and blood-tissue links are not completely established this approach is valuable
because facilitates the study of LOAD mechanisms through a less invasive perspective,
the fact of being able to evaluate LOAD in vivo expands the perspectives for identifying
biological factors contributing to the early diagnosis, prognosis and treatment of the
disease.

These are promising data—considering the peculiarities of our study—but overall, the
limitations of the list of genes identified as differentially expressed must be understood.
Mostly those genes that have a greater difference between the samples analyzed will have
been identified while those for which there is a smaller difference between groups / or a big
variance will probably not have been identified.

STUDY LIMITATIONS

There are some limitations in our approach. First, as a new method for sequence-based,
genome-scale gene expression quantification, AmpliSeq stands as a very versatile and
cost-effective approach for gene expression analysis with high accuracy (Li ef al,, 2015).
However, to ensure sufficient statistical power, studies of functional consequences of
differential gene expression generally entail a large scale of cohorts. Due to the small
size sample in our research further validation of our findings is required and additional
investigation in larger populations is necessary to find out clinical implications. Second,
gene expression between brain and peripheral blood are not completely correlated (Griswold
et al., 2020) and thus brain specific pathways will not be represented here. In addition,
whole blood represents a heterogeneous mixture of cell types (e.g., monocytes, neutrophils,
B-cells, T-cells etc.) which could introduce a bias in the results due to the proportions
of these cell types could differ by unknown covariates and cell specific effects could be
masked. However, our study’s strength is the appropriate adjustment of variables such as
age and sex and the stringent selection criteria of patient samples.

CONCLUSIONS

Immune function is an important mechanism in LOAD pathogenesis and differential
expression of immune genes has been noted in studies of AD brain and consistent in
blood (Ma et al., 2019; Stopa et al., 2018) being remarkable the role of interferon response.
Blood is one of the most clinically convenient tissues to sample for immune biomarkers,
whereas the brain is arguably the least convenient. For blood biomarkers to be relevant
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to the inflammatory pathogenesis of Alzheimer’s disease, it is assumed that the immune
status of the central nervous system is correlated with, or caused by, the immune status
of the periphery. The findings of AD-related genes from blood samples in a larger study
could provide biomarkers of AD’s progression and potential therapeutic targets to the
development of AD diagnostic and treatment tools.
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