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As an IUCN critically endangered species, the Indo-Pacific humpback dolphin, Sousa
chinensis, has attracted great public attention in recent years. The threats of human
disturbance and environmental pollution to this population have been documented
extensively. However, to our knowledge, research on the sensitivity of this species to
climate change is lacking. To understand the effect of climate change on the potential
distribution of Sousa chinensis, we developed a weighted ensemble model based on 83
occurrence records and six predictor variables (e.g., ocean depth, distance to shore, mean
temperature, salinity, ice thickness and current velocity). The ensemble model exhibited
higher prediction accuracy than the single-algorithm model, according to the TSS and AUC
values and indicated that ocean depth and distance to shore were the most important
predictors in shaping the distribution patterns. The projections from our model indicated a
severe adverse impact of climate change on the Sousa chinensis habitat, and over 80% of
the suitable habitat in the present day will be lost in all RCP scenarios in the future. With
the increased numbers of records of stranding and deaths of Sousa chinensis in recent
years, strict management regulations and conservation plans are urgent to safeguard the
current suitable habitats. Due to habitat contraction and poleward shifts in the future,
adaptive management strategies, including adjusting the current reserves and designing
new reserves, should be formulated to minimize the impacts of climate change on Sousa
chinensis.
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26 Abstract: As an IUCN critically endangered species, the Indo-Pacific humpback dolphin, Sousa 

27 chinensis, has attracted great public attention in recent years. The threats of human disturbance 

28 and environmental pollution to this population have been documented extensively. However, to 

29 our knowledge, research on the sensitivity of this species to climate change is lacking. To 

30 understand the effect of climate change on the potential distribution of Sousa chinensis, we 

31 developed a weighted ensemble model based on 83 occurrence records and six predictor variables 

32 (e.g., ocean depth, distance to shore, mean temperature, salinity, ice thickness and current 

33 velocity). The ensemble model exhibited higher prediction accuracy than the single-algorithm 

34 model, according to the TSS and AUC values and indicated that ocean depth and distance to shore 

35 were the most important predictors in shaping the distribution patterns. The projections from our 

36 model indicated a severe adverse impact of climate change on the Sousa chinensis habitat, and 

37 over 80% of the suitable habitat in the present day will be lost in all RCP scenarios in the future. 

38 With the increased numbers of records of stranding and deaths of Sousa chinensis in recent years, 

39 strict management regulations and conservation plans are urgent to safeguard the current suitable 

40 habitats. Due to habitat contraction and poleward shifts in the future, adaptive management 

41 strategies, including adjusting the current reserves and designing new reserves, should be 

42 formulated to minimize the impacts of climate change on Sousa chinensis.

43 Key words: Sousa chinensis, Species distribution models; Ensemble model; Potential 

44 distribution, Habitat contraction

45 1. Introduction

46 Indo-Pacific humpback dolphins (IPHD), Sousa chinensis, belong to the porpoise family of 
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47 cetaceans and are also known as "mermaids" and "water pandas". Due to their preferred inshore 

48 and estuarine habitats, IPHD are typically found in the shallow, coastal waters of the Indian and 

49 western Pacific oceans (Jefferson and Rosenbaum, 2014; Jefferson and Smith, 2016; Parra and 

50 Jefferson, 2018). These areas, which have intensive commercial fisheries, are usually rapidly 

51 developing and are easily polluted by industrial production and the lives of local residents; the 

52 corresponding consequences of habitat degradation may lead to population declines or even put 

53 this species at risk of extinction (Li, 2020). In recent years, the numbers of records on strandings 

54 or deaths of IPHD have increased in China. This species has already been classified as “vulnerable” 

55 by the International Union for Conservation of Nature (IUCN, 2019). Consequently, formulating 

56 a conservation plan for IPHD is urgent under current and future environmental scenarios, and 

57 understanding the species distribution is a prerequisite for plan formulation.

58 A species lives in a certain environmental niche space, so environmental changes have a great 

59 influence on the species distribution. The distribution of top marine predators is related to a variety 

60 of environmental determinants, such as ocean depth, salinity, distance to the shore and sea surface 

61 temperatures (Nøttestad et al., 2015; Chen et al., 2020). Global climate change has caused 

62 significant changes in marine environmental conditions over the past decades. For instance, the 

63 assessment that was made for the coastal China seas over the 21st century shows that the East China 

64 Sea will be simultaneously exposed to enhanced warming, deoxygenation, acidification, and 

65 decreasing net primary productivity (NPP) as a consequence of increasing greenhouse gas 

66 emissions (Tan et al., 2020). According to these facts, understanding how future climate change 

67 will influence IPHD distributions is vital for better protection of this species.
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68 Species distribution models (SDMs) build species-environment relationships that are typically 

69 based on species location data (e.g., abundance and occurrence) and environmental variables that 

70 are thought to influence species distributions and can provide a useful framework for identifying 

71 and evaluating the habitat suitability for a given species (Guisan and Thuiller, 2005). Currently, 

72 SDMs are applied broadly in the life and environmental science fields. A variety of algorithms are 

73 available to predict the impacts of climate change on species distributions (Zhang et al., 2019), to 

74 understand biological invasions (Zhang et al., 2020a) and to site aquaculture farms (Dong et al., 

75 2020). Accordingly, the use of SDMs in conservation biology and biodiversity assessments is ever 

76 increasing (Araújo et al., 2019).

77 In this study, we developed SDMs and built an ensemble model, which has not, to our 

78 knowledge, been used to identify suitable habitats for IPHD or to estimate the potential 

79 distributions of IPHD under present-day and future climate scenarios. Our ensemble model, which 

80 integrates the advantages of multiple modeling algorithms, can help us to 1) determine the 

81 important environmental variables that affect IPHD distributions, 2) map the environmental 

82 suitability for IPHD under present-day and future climate scenarios, and 3) assess the impacts of 

83 climate change on IPHD habitat distributions. Our study can provide important implications for 

84 formulating current and future protection strategies for IPHD and provides guidance for research 

85 on the potential distributions of other protected species under future climate change scenarios. In 

86 addition, it provides an essential reference to solve marine conservation planning problems.

87 2. Materials and methods

88 2.1 Study area and IPHD data collection
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89 IPHD are mainly distributed in the Western Pacific and Indian Ocean, so our research is 

90 located in these areas (e.g., 50°E to 180°E, 50°S to 50°N) (Fig. 1). Georeferenced species data 

91 (presence/absence) were obtained from the online database: Global Biodiversity Information 

92 Facility (GBIF, https://www.gbif.org) and Ocean Biogeographic Information System (OBIS, 

93 https://obis.org). The cluster samples in a 5 × 5 arc-minute grid that are consistent with the spatial 

94 resolution of environmental data are removed, and only one record per grid unit is used to avoid 

95 overrepresentation of environmental conditions (sampling bias) in densely sampled areas. A total 

96 of 124 incidents were retrieved, 82 of which were within our study area.

97 2.2 Environmental variables and future projections

98 The raster data of environmental variable projections in this study were retrieved from the 

99 Bio-ORACLE v2.1 dataset (http://www.bio-oracle.org) (Assis et al., 2018) and Global Marine 

100 Environment Datasets (http://gmed.auckland.ac.nz) (Basheret al., 2014). The mean chlorophyll, 

101 velocity, salinity, temperature, dissolved oxygen content, ice thickness and pH data were obtained 

102 from Bio-ORACLE. The distance to shore and mean ocean depth data were obtained from GMED. 

103 In addition, the annual ranges of chlorophyll, flow rate, salinity, temperature, dissolved oxygen, 

104 and ice thickness were also obtained from Bio-ORACLE. There were a total of 15 environmental 

105 variables with a spatial resolution of 5 × 5 arc-minutes (e.g., 9.2*9.2 km at the equator). Pearson 

106 correlation analysis was conducted for these 15 environmental variables to reduce the influence of 

107 collinearity on the precision of model predictions. By comprehensive consideration of the 

108 availability of current and future environmental data, six low-correlation (pairwise Pearson’s 

109 correlation coefficients were less than |0.7|) (Dormann et al., 2013) environmental variables, 
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110 including mean current velocity, mean salinity, mean temperature, mean ice thickness, mean ocean 

111 depth and distance to shore, were finally selected for the modeling analysis (Fig. 2).

112 Meanwhile, the projections of the first four environmental variables for the future (e.g., 2040–

113 2050 (2050s) and 2090–2100 (2100s)) under four representative concentration pathway emission 

114 scenarios (RCPS) were also retrieved from the Bio ORACLE v2.1 dataset. RCPs (e.g., RCP26, 

115 RCP45, RCP65, and RCP85) and are new climate change scenarios on radiation forcing at the end 

116 of the 20th century that were published in the fifth assessment report of the Intergovernmental 

117 Panel on Climate Change (IPCC). RCP26, which is a peak-and-decline scenario ending in very 

118 low greenhouse gas concentration levels by the end of the 21st century; RCP45 and RCP60, in 

119 which these levels stabilize; and RCP85, which is a scenario of increasing emissions over time, 

120 which leads to high levels of greenhouse gas concentrations (Moss et al., 2010). We assumed that 

121 distance to shore and ocean depth remain constant in the future. Projections of future temperature, 

122 salinity, and current velocity from Bio-ORACLE were generated based on the mean simulation 

123 results of three atmosphere-ocean general circulation models (e.g., AOGCMs: CCSM4, 

124 HadGEM2-ES, MIROC5) from the Coupled Model Intercomparison Project 5 (CMIP 5), which is 

125 believed to be capable of reducing the uncertainties among different AOGCMs (Assis et al., 2018). 

126 The changes in the four predictor variables in the future (e.g., 2050s and 2100s) under different 

127 scenarios are shown in Table 1.

128 2.3 Modeling procedures

129 We conducted the model analysis on the R platform based on the biomod2 package, and ten 

130 species distribution models were available in this package (Thuiller et al., 2020). The ten models 
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131 include the generalized linear model (GLM) (McCullagh and Nelder, 1989), generalized additive 

132 model (GAM) (Hastie and Tibshirani, 1990), classification tree analysis (CTA) (Breiman et al., 

133 1984), generalized enhanced regression model (GBM) (Ridgeway, 1999), artificial neural network 

134 (ANN) (Lek and Guégan, 1999), surface range envelope (SRE) (Breiman, 2001a), flexible 

135 discriminant analysis (FDA) (Hastie et al.,1994), multiple adaptive regression splines (MARS) 

136 (Friedman, 1991), random forest (RF) (Breiman, 2001b), and maximum entropy model (Maxent) 

137 (Phillips et al., 2006).

138 Due to the small number of true absence records, we simulated 5000 pseudoabsence points 

139 randomly in contrasting environmental conditions with the true presence points (Guisan et al., 

140 2017; Thuiller et al., 2020). A fivefold cross-validation technique with 10 repetitions was used to 

141 assess the model prediction accuracy (Guisan et al., 2017; Thuiller et al., 2020). Based on this 

142 approach, 80% of the dataset was randomly selected for calibration and testing of the models, and 

143 20% was withheld for evaluation of the model predictions. Two indicators were used to evaluate 

144 the predictive ability of each model: the true skill statistic (TSS) (Allouche et al., 2006) and the 

145 area under the receiver operating characteristic curve (AUC) (Swets, 1988). To ensure sufficient 

146 prediction accuracy, the models with mean TSS values above 0.80 and mean AUC values above 

147 0.85 were reserved for further analyses (Zhang et al., 2019).

148 To integrate the advantage of each model, we built an ensemble model that was based on the 

149 weighted average of the predictions from the selected models and used this ensemble model to 

150 predict IPHD distributions under present and future climate conditions. For a better interpretation 

151 of model outcomes, continuous habitat suitability projections were converted into binary maps 
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152 (e.g., suitable/unsuitable) by using a threshold that maximized the TSS value (Guisan et al., 2017; 

153 Liu et al., 2013; Zhang et al., 2020b).

154 The relative importance of each environmental variable in predicting the IPHD distributions 

155 was determined by a randomized approach. This approach computes the Pearson correlations 

156 among predictions using all predictor variables and predictions in which the predictor variable 

157 being evaluated was randomly permutated (Guisan et al., 2017; Thuiller et al., 2020). Low 

158 correlations between the standard predictions and those using the permuted variable indicate the 

159 high importance of a predictor variable(Zhang et al., 2019). A response curve, which describes the 

160 variations in species occurrence probability along the gradient of each important predictor variable, 

161 was plotted.

162 3. Result

163 3.1 Model performances and predictive accuracy of SDMs

164 The different AUC and TSS values indicated the different predictive performances among all 

165 10 modeling algorithms. All of the models except SRE, MAXENT and FDA exhibited good 

166 predictive capacity and were selected to construct the ensemble model (Figs. 3, 4). The AUC and 

167 TSS values of any individual model were lower than those of the ensemble model (AUC: 0.993 ± 

168 0.002, TSS: 0.963 ± 0.001), which demonstrated the superior predictive performance of the 

169 ensemble model.

170 3.2 Response curve and variable importance

171 The six predictor variables made different contributions to the IPHD distributions. Among the 

172 six predictor variables, depth (0.435 ± 0.029) and distance to shore (0.473 ± 0.031) were the two 
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173 most important variables for the model predictions. The contributions of temperature (0.234 ± 

174 0.018), salinity (0.135 ± 0.013) and current velocity (0.080 ± 0.011) were moderate, while ice 

175 thickness (0.003 ± 0.0007) was considered to be nearly irrelevant (Fig. 5). The response curves of 

176 IPHD to the three most important variables from the ten models (except SRE) are shown in Fig. 

177 6. The response curves indicated that the environmental requirements of IPHD in the different 

178 models were generally similar.

179 3.3 Potential distributions under present and future climate scenarios

180 Our prediction of suitable habitat for IPHD under present climate conditions is shown in Fig. 

181 7. All of the occurrence records were within the predicted suitable range. The predictions show 

182 that a large part of the coastal areas of the Southeast Asian countries and northern Australia are 

183 suitable habitats for IPHD. Some of the occurrence records were located in the coastal areas of the 

184 Indian Peninsula.

185 As the model results show, the suitable area for IPHD will decrease under all four assumed 

186 future climate change scenarios. Future habitat projections under different RCP scenarios show 

187 different distribution patterns and consistently suitable range contraction for IPHD (Table 2). The 

188 model projections indicate that the contraction of the suitable range of this species could be from 

189 81.95% (under the RCP2.6 scenario in the 2050s) to 94.10% (under the RCP8.5 scenario in the 

190 2100s). Future predictions for the 2100s show that environmental conditions suitable for IPHD 

191 will shift northward to the East China Sea and south coast of Japan. The equatorial sea area and 

192 coastal area of northern Australia are predicted to be less suitable for this species (Fig. 8).

193 4. Discussion
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194 4.1 Model performance

195 Utilizing georeferenced presence/pseudoabsence data and the corresponding environmental 

196 data, we innovatively developed an ensemble model for IPHD to predict the present and future 

197 potential distributions of this rare species. The results demonstrate that our ensemble model 

198 performed well in predicting the habitat suitability for IPHD under the present environmental 

199 conditions. The model predictions indicated that the potential distribution of IPHD will contract 

200 in the future under different RCP scenarios and that the suitable habitat in the Indo-Pacific Mid-

201 Seas will shift to higher latitudes.

202 There are many mature models that can be used to predict species distributions. The most 

203 commonly used method is to select the best model based on performance indicators such as TSS 

204 and AUC and then use the single best model to predict species distributions. In this study, ten 

205 single-algorithm models exhibited different performances and provided slightly different results. 

206 However, our weighted ensemble model, which integrated the advantages of seven single models 

207 with higher performances, proved to be optimal for predicting IPHD distributions. Due to the 

208 higher accuracy and reliability compared to a single model, we recommend using an ensemble 

209 model to predict potential species distributions and habitat suitabilities (Araújo and New, 2007; 

210 Thuiller et al., 2009; César and Pedro, 2011; Shabani et al., 2016).

211 4.2 Climate change and associated distribution shift

212 The predicted suitable habitats of IPHD include their known distribution range as expected, 

213 for example, the coast of Malaysia, which is also a suitable habitat for white dolphins. Suitable 

214 habitats were also found beyond where the species have been recorded, and this phenomenon can 

PeerJ reviewing PDF | (2021:05:60878:0:0:CHECK 11 May 2021)

Manuscript to be reviewed

Acer
Highlight

Acer
Highlight

Acer
Highlight



215 be caused by many factors, such as biotic interactions, dispersal limitation of species, niche size 

216 (Pulliam 2000) and sampling bias (Goldsmit et al., 2018). Published studies have reached similar 

217 conclusions in predicting species distributions using SDM (Goldsmit et al., 2018; Zhang et al., 

218 2020a). As shown in the binary output of habitat prediction, the main IPHD habitat in China is 

219 located in the Pearl River Estuary in Guangdong Province. The Pearl River Estuary is an 

220 intersection area of brackish and fresh water that results in fertile water quality and high primary 

221 productivity. The suitable temperatures and salinities as well as the low pollution, high biodiversity 

222 and unexploited natural shorelines all make this area a favorite for IPHD.

223 According to the projected layer of future climate that was produced from 3 distinct AOGCMs 

224 provided by CMIP 5, we determined the changes in four available environmental variables. As 

225 shown in Table 1, temperatures will increase with different amplitudes under different RCPs. This 

226 tendency of global warming will severely affect IPHD distributions in terms of range size, i.e., will 

227 probably lead to a reduction of more than four-fifths of its range. Meanwhile, the suitable IPHD 

228 habitat in the future will shift northward. In China, the suitable habitat on the southern coast will 

229 shift to the east Yellow Sea and even to the coastal areas of Bohai Bay. Tan et al. (2020) assessed 

230 the East China Sea and found that climate change caused by increasing greenhouse gas emissions 

231 will induce considerable biological and ecological responses and cause the East China Sea to be 

232 among the ocean areas that are most vulnerable to future climate change. On the other hand, the 

233 habitat in areas around Australia will shift southward, and the areas off the coast of Malaysia will 

234 no longer be suitable for IPHD. This trend toward higher latitudes is similar that described in the 

235 formal research (i.e., Ruiz-Navarro et al., 2016; Zhang et al., 2020c, 2019). Regardless of the 
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236 dispersal scenario, our results highlight the high vulnerability of this critically endangered species 

237 to climate change.

238 4.3 Impact factors of IPHD distribution

239 Due to the intricate relationships among survival, growth and environmental conditions, many 

240 factors may affect the habitat distributions of IPHD. The basic niche that is suitable for the growth 

241 of IPHD, such as water temperature, water depth, and distance from shore, was considered in this 

242 study. The distribution of IPHD is negatively correlated with distance from shore and distance 

243 from the main estuary (Chen et al., 2020); hence, estuaries have been identified as their preferred 

244 habitat (Jefferson and Karczmarski, 2001; Wang et al., 2007; Chen et al., 2008; Jefferson and 

245 Smith, 2016). Because of the data availability, the realized niche of IPHD, such as human activities 

246 and dietary structure, was not considered in this study. Stomach content analyses in previous 

247 studies have found that humpback dolphins consume a wide variety of pelagic and demersal fishes 

248 (Ning et al., 2020). Environmental change induced by climate change may affect the distributions 

249 of these bait fishes and will indirectly affect IPHD distributions (Schickele et al., 2020).

250 Human activities have a great impact on IPHD habitats. The coastal areas of the China Sea, 

251 with many estuaries, bays, coral reefs and fisheries, are not only suitable habitats for IPHD but are 

252 also the most active areas for developing the maritime economy. Fishing behavior and boat travel 

253 have been determined to cause stranding deaths of IPHD (Guo et al. 2020). IPHD proved to be 

254 more acoustically active and prefer locations with lower noise levels (Caruso et al., 2020a, 2020b). 

255 However, human activities often generate underwater noise, which interferes with information 

256 exchange with conspecifics and interaction with the surrounding environment and can even lead 
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257 to behavioral disorders(Xu et al., 2020). Meanwhile, IPHD prefer waters near the natural coastline, 

258 while human activities such as sea reclamation would change the type of coastline and reduce the 

259 length of the natural coastline. Since the middle of the last century, the proportion of natural 

260 coastlines in China has continued to decline (Hou et al., 2016), which makes it more difficult for 

261 IPHD to find their preferred habitats and makes this sensitive species more vulnerable to 

262 extinction.

263 4.4 Conservation suggestions

264 Protected areas have been considered to be an effective in situ strategy for conserving 

265 biodiversity and ecosystem services. As a vulnerable species with great public concern, 

266 conservation attention has been given to IPHD, and seven natural reserves have been set up for 

267 this species (Indo-Pacific Humpback Dolphins Conservation Program (2017-2026)) in China. The 

268 adverse effects of climate change on the protected areas of other animals have been elucidated 

269 (D’Amen et al., 2011; Zhang et al., 2020b). The same situation will possibly occur in the protected 

270 areas for marine mammals such as IPHD. For instance, Hunt et al. (2020) used SDMs to predict 

271 the IPHD distribution in the marine reserve in Australia and evaluated the effect in the established 

272 reserve. The results showed that the projected decline of suitable ranges for IPHD will possibly 

273 diminish the efficacy of these existing nature reserves. The habitat changes induced by climate 

274 change may require adjustment of current reserves, and the results from this study can be used as 

275 references for adjusting the present natural reserves and establishing new reserves. Meanwhile, 

276 implementing biodiversity conservation plans and fishery management strategies in coastal waters 

277 will be beneficial for the protection of IPHD. 
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Figure 1
Study area.
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Figure 2
The six environmental variables selected for building species distribution models.

(A) mean temperature, (B) mean ocean depth, (C) distance to shore, (D) mean current
velocity, (E) mean ice thickness, and (F) mean salinity.
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Figure 3
The area under the receiver operating characteristic curves (AUC) of 10 modeling
algorithms that were used to estimate the habitat suitability of Sousa chinensis.

Dashed line represents the threshold for AUC (0.85) to build the ensemble model. Data are
expressed as means ± standard error.
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Figure 4
The true skill statistics (TSS) of 10 modeling algorithms that were used to estimate the
habitat suitability of Sousa chinensis.

Dashed line represents the threshold for TSS (0.8) to build the ensemble model. Data are
expressed as means ± standard error.
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Figure 5
Variable importance of the six predictor variables from the 10 species distribution
models for Sousa chinensis.

T: temperature, Depth: ocean depth, Dshore: distance to shore, CV: current velocity, Ice: ice
thickness and Sal: salinity. Data are expressed as means ± standard error.
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Figure 6
Sousa chinensis response curves for the nine spatial distribution modeling techniques
against depth, temperature, and distance to shore.

(A) Response curves against depth, (B) Response curves against temperature, (C) Response
curves against distance to shore.
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Figure 7
Binary outputs of habitat suitability and predicted potential distribution under current
climate conditions of Sousa chinensis.

(A) Binary outputs of habitat suitability under current climate conditions. (B) Predicted
current potential distribution. Green colors indicate suitable areas, and gray colors represent
unsuitable ranges on the left; the color gradient indicates variations in habitat suitability on
the right (green = highest and pink = lowest); the red dots show the occurrence points that
were used to develop the species distribution model.
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Figure 8
Range shifts in habitat suitability of Sousa chinensis as projected by the ensemble
species distribution model between current and future climate conditions.

(A) under the RCP2.6 scenario in 2050, (B) under the RCP8.5 scenario in 2050, (C) under the
RCP2.6 scenario in 2100, and (D) under the RCP8.5 scenario in 2100. Red indicates areas
that will become suitable in the future, green areas are projected to be suitable under both
present-day and future climates, and blue represents suitable areas that will become
unsuitable in the future.
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Table 1(on next page)

Current environmental conditions and the averages and ranges of climatic changes for
the future (e.g., 2050s and 2100s) under different scenarios in the study area.

T: temperature, Sal: salinity, CV: current velocity and Ice: ice thickness.
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1

Changes in 2050s Changes in 2100s

Environment

Variable

Current 

value
RCP26 RCP45 RCP60 RCP85 RCP26 RCP45 RCP60 RCP85

T(℃) 22.72
0.72

(0.19,1.89)

0.96

(0.06,2.35)

0.77

(0.81,1.76)

1.10

(0.50,2.30)

0.63

(0.80,1.87)

1.21

(0.24,2.67)

1.68

(0.47,3.42)

2.87

(1.56,5.53)

Sal(PSS) 34.51
-0.061

(-0.12,0.09)

-0.07

(-0.70,0.45)

-0.07

(-0.91,0.23)

-0.07

(-0.88,0.33)

-0.09

(0.88,1.15)

-0.13

(-1.03,0.40)

-0.16

(-1.64,0.42)

-0.26

(-1.97,0.53)

CV(m/s) 0.10
0.00

(-0.06,0.09)

0.24

(-0.84,1.68)

0.25

(-0.84,1.66)

0.00

(-0.12,0.09)

0.24

(-0.85,1.68)

0.13

(-0.84,1.67)

0.13

(-0.84,1.67)

0.23

(-0.84,1.68)

Ice(m) 0.00
0.00

(-0.10,0.00)

0.00

(-0.12,0.00)

0.00

(-0.10,0.00)

0.00

(-0.13,0.00)

0.00

(-0.12,0.00)

0.00

(-0.17,0.00)

0.00

(-0.17,0.00)

0.00

(-0.17,0.00)
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Table 2(on next page)

Range size changes (%) of Sousa chinensis under future climate scenarios.

RCP: representative concentration pathway. Range size changes were calculated as (suitable
range under future climate scenarios – present-day suitable range)/present-day suitable
range.
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1

RCP26 RCP45 RCP60 RCP85

2050s -81.952 -87.725 -85.709 -85.77

2100s -85.349 -89.144 -91.772 -94.104

2
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