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As an IUCN critically endangered species, the Indo-Pacific humpback dolphin, Sousa
chinensis, has attracted great public attention in recent years. The threats of human
disturbance and environmental pollution to this population have been documented
extensively. However, to our knowledge, research on the sensitivity of this species to
climate change is lacking. To understand the effect of climate change on the potential
distribution of Sousa chinensis, we developed a weighted ensemble model based on 83
occurrence records and six predictor variables (e.g., ocean depth, distance to shore, mean
temperature, salinity, ice thickness and current velocity). The ensemble model exhibited
higher prediction accuracy than the single-algorithm model, according to the TSS and AUC
values and indicated that ocean depth and distance to shore were the most important
predictors in shaping the distribution patterns. The projections from our model indicated a
severe adverse impact of climate change on the Sousa chinensis habitat, and over 80% of
the suitable habitat in the present day will be lost in all RCP scenarios in the future. With
the increased numbers of records of stranding and deaths of Sousa chinensis in recent
years, strict management regulations and conservation plans are urgent to safequard the
current suitable habitats. Due to habitat contraction and poleward shifts in the future,
adaptive management strategies, including adjusting the current reserves and designing
new reserves, should be formulated to minimize the impacts of climate change on Sousa
chinensis.
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Abstract: As an [UCN critically endangered species, the Indo-Pacific humpback dolphin, Sousa
chinensis, has attracted great public attention in recent years. The threats of human disturbance
and environmental pollution to this population have been documented extensively. However, to
our knowledge, research on the sensitivity of this species to climate change is lacking. To
understand the effect of climate change on the potential distribution of Sousa chinensis, we
developed a weighted ensemble model based on 83 occurrence records and six predictor variables
(e.g., ocean depth, distance to shore, mean temperature, salinity, ice thickness and current
velocity). The ensemble model exhibited higher prediction accuracy than the single-algorithm
model, according to the TSS and AUC values and indicated that ocean depth and distance to shore
were the most important predictors in shaping the distribution patterns. The projections from our
model indicated a severe adverse impact of climate change on the Sousa chinensis habitat, and
over 80% of the suitable habitat in the present day will be lost in all RCP scenarios in the future.
With the increased numbers of records of stranding and deaths of Sousa chinensis in recent years,
strict management regulations and conservation plans are urgent to safeguard the current suitable
habitats. Due to habitat contraction and poleward shifts in the future, adaptive management
strategies, including adjusting the current reserves and designing new reserves, should be
formulated to minimize the impacts of climate change on Sousa chinensis.

Key words: Sousa chinensis, Species distribution models; Ensemble model; Potential
distribution, Habitat contraction

1. Introduction

Indo-Pacific humpback dolphins (IPHD), Sousa chinensis, belong to the porpoise family of
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cetaceans and are also known as "mermaids" and "water pandas". Due to their preferred inshore
and estuarine habitats, IPHD are typically found in the shallow, coastal waters of the Indian and
western Pacific oceans (Jefferson and Rosenbaum, 2014; Jefferson and Smith, 2016; Parra and
Jefferson, 2018). These areas, which have intensive commercial fisheries, are usually rapidly
developing and are easily polluted by industrial production and the lives of local residents; the
corresponding consequences of habitat degradation may lead to population declines or even put
this species at risk of extinction (Li, 2020). In recent years, the numbers of records on strandings
or deaths of IPHD have increased in China. This species has already been classified as “vulnerable”
by the International Union for Conservation of Nature (IUCN, 2019). Consequently, formulating
a conservation plan for IPHD is urgent under current and future environmental scenarios, and
understanding the species distribution is a prerequisite for plan formulation.

A species lives in a certain environmental niche space, so environmental changes have a great
influence on the species distribution. The distribution of top marine predators is related to a variety
of environmental determinants, such as ocean depth, salinity, distance to the shore and sea surface
temperatures (Nottestad et al., 2015; Chen et al., 2020). Global climate change has caused
significant changes in marine environmental conditions over the past decades. For instance, the
assessment that was made for the coastal China seas over the 21% century shows that the East China
Sea will be simultaneously exposed to enhanced warming, deoxygenation, acidification, and
decreasing net primary productivity (NPP) as a consequence of increasing greenhouse gas
emissions (Tan et al., 2020). According to these facts, understanding how future climate change

will influence IPHD distributions is vital for better protection of this species.
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Species distribution models (SDMs) build species-environment relationships that are typically
based on species location data (e.g., abundance and occurrence) and environmental variables that
are thought to influence species distributions and can provide a useful framework for identifying
and evaluating the habitat suitability for a given species (Guisan and Thuiller, 2005). Currently,
SDMs are applied broadly in the life and environmental science fields. A variety of algorithms are
available to predict the impacts of climate change on species distributions (Zhang et al., 2019), to
understand biological invasions (Zhang et al., 2020a) and to site aquaculture farms (Dong et al.,
2020). Accordingly, the use of SDMs in conservation biology and biodiversity assessments is ever
increasing (Aragjo et al., 2019).

In this study, we developed SDMs and built an ensemble model, which has not, to our
knowledge, been used to identify suitable habitats for [PHD or to estimate the potential
distributions of IPHD under present-day and future climate scenarios. Our ensemble model, which
integrates the advantages of multiple modeling algorithms, can help us to 1) determine the
important environmental variables that affect IPHD distributions, 2) map the environmental
suitability for IPHD under present-day and future climate scenarios, and 3) assess the impacts of
climate change on IPHD habitat distributions. Our study can provide important implications for
formulating current and future protection strategies for IPHD and provides guidance for research
on the potential distributions of other protected species under future climate change scenarios. In
addition, it provides an essential reference to solve marine conservation planning problems.

2. Materials and methods

2.1 Study area and IPHD data collection
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IPHD are mainly distributed in the Western Pacific and Indian Ocean, so our research is
located in these areas (e.g., S0°E to 180°E, 50°S to 50°N) (Fig. 1). Georeferenced species data
(presence/absence) were obtained from the online database: Global Biodiversity Information
Facility (GBIF, https://www.gbif.org) and Ocean Biogeographic Information System (OBIS,
https://obis.org). The cluster samples in a 5 x 5 arc-minute grid that are consistent with the spatial
resolution of environmental data are removed, and only one record per grid unit is used to avoid
overrepresentation of environmental conditions (sampling bias) in densely sampled areas. A total
of 124 incidents were retrieved, 82 of which were within our study area.

2.2 Environmental variables and future projections
The raster data of environmental variable projections in this study were retrieved from the

Bio-ORACLE v2.1 dataset (http://www.bio-oracle.org) (Assis et al., 2018) and Global Marine

Environment Datasets (http://gmed.auckland.ac.nz) (Basheret al., 2014). The mean chlorophyll,
velocity, salinity, temperature, dissolved oxygen content, ice thickness and pH data were obtained
from Bio-ORACLE. The distance to shore and mean ocean depth data were obtained from GMED.
In addition, the annual ranges of chlorophyll, flow rate, salinity, temperature, dissolved oxygen,
and ice thickness were also obtained from Bio-ORACLE. There were a total of 15 environmental
variables with a spatial resolution of 5 x 5 arc-minutes (e.g., 9.2*9.2 km at the equator). Pearson
correlation analysis was conducted for these 15 environmental variables to reduce the influence of
collinearity on the precision of model predictions. By comprehensive consideration of the
availability of current and future environmental data, six low-correlation (pairwise Pearson’s

correlation coefficients were less than |0.7|) (Dormann et al., 2013) environmental variables,
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including mean current velocity, mean salinity, mean temperature, mean ice thickness, mean ocean
depth and distance to shore, were finally selected for the modeling analysis (Fig. 2).

Meanwhile, the projections of the first four environmental variables for the future (e.g., 2040—
2050 (2050s) and 2090-2100 (2100s)) under four representative concentration pathway emission
scenarios (RCPS) were also retrieved from the Bio ORACLE v2.1 dataset. RCPs (e.g., RCP26,
RCP45, RCP65, and RCP85) and are new climate change scenarios on radiation forcing at the end
of the 20th century that were published in the fifth assessment report of the Intergovernmental
Panel on Climate Change (IPCC). RCP26, which is a peak-and-decline scenario ending in very
low greenhouse gas concentration levels by the end of the 21st century; RCP45 and RCP60, in
which these levels stabilize; and RCP85, which is a scenario of increasing emissions over time,
which leads to high levels of greenhouse gas concentrations (Moss et al., 2010). We assumed that
distance to shore and ocean depth remain constant in the future. Projections of future temperature,
salinity, and current velocity from Bio-ORACLE were generated based on the mean simulation
results of three atmosphere-ocean general circulation models (e.g., AOGCMs: CCSM4,
HadGEM2-ES, MIROCS) from the Coupled Model Intercomparison Project 5 (CMIP 5), which is
believed to be capable of reducing the uncertainties among different AOGCMs (Assis et al., 2018).
The changes in the four predictor variables in the future (e.g., 2050s and 2100s) under different
scenarios are shown in Table 1.

2.3 Modeling procedures
We conducted the model analysis on the R platform based on the biomod2 package, and ten

species distribution models were available in this package (Thuiller et al., 2020). The ten models
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include the generalized linear model (GLM) (McCullagh and Nelder, 1989), generalized additive
model (GAM) (Hastie and Tibshirani, 1990), classification tree analysis (CTA) (Breiman et al.,
1984), generalized enhanced regression model (GBM) (Ridgeway, 1999), artificial neural network
(ANN) (Lek and Guégan, 1999), surface range envelope (SRE) (Breiman, 2001a), flexible
discriminant analysis (FDA) (Hastie et al.,1994), multiple adaptive regression splines (MARS)
(Friedman, 1991), random forest (RF) (Breiman, 2001b), and maximum entropy model (Maxent)
(Phillips et al., 2006).

Due to the small number of true absence records, we simulated 5000 pseudoabsence points
randomly in contrasting environmental conditions with the true presence points (Guisan et al.,
2017; Thuiller et al., 2020). A fivefold cross-validation technique with 10 repetitions was used to
assess the model prediction accuracy (Guisan et al., 2017; Thuiller et al., 2020). Based on this
approach, 80% of the dataset was randomly selected for calibration and testing of the models, and
20% was withheld for evaluation of the model predictions. Two indicators were used to evaluate
the predictive ability of each model: the true skill statistic (TSS) (Allouche et al., 2006) and the
area under the receiver operating characteristic curve (AUC) (Swets, 1988). To ensure sufficient
prediction accuracy, the models with mean TSS values above 0.80 and mean AUC values above
0.85 were reserved for further analyses (Zhang et al., 2019).

To integrate the advantage of each model, we built an ensemble model that was based on the
weighted average of the predictions from the selected models and used this ensemble model to
predict IPHD distributions under present and future climate conditions. For a better interpretation

of model outcomes, continuous habitat suitability projections were converted into binary maps
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(e.g., suitable/unsuitable) by using a threshold that maximized the TSS value (Guisan et al., 2017;
Liu et al., 2013; Zhang et al., 2020b).

The relative importance of each environmental variable in predicting the IPHD distributions
was determined by a randomized approach. This approach computes the Pearson correlations
among predictions using all predictor variables and predictions in which the predictor variable
being evaluated was randomly permutated (Guisan et al., 2017; Thuiller et al., 2020). Low
correlations between the standard predictions and those using the permuted variable indicate the
high importance of a predictor variable(Zhang et al., 2019). A response curve, which describes the
variations in species occurrence probability along the gradient of each important predictor variable,
was plotted.

3. Result
3.1 Model performances and predictive accuracy of SDMs

The different AUC and TSS values indicated the different predictive performances among all
10 modeling algorithms. All of the models except SRE, MAXENT and FDA exhibited good
predictive capacity and were selected to construct the ensemble model (Figs. 3, 4). The AUC and
TSS values of any individual model were lower than those of the ensemble model (AUC: 0.993 +
0.002, TSS: 0.963 + 0.001), which demonstrated the superior predictive performance of the
ensemble model.

3.2 Response curve and variable importance
The six predictor variables made different contributions to the IPHD distributions. Among the

six predictor variables, depth (0.435 + 0.029) and distance to shore (0.473 + 0.031) were the two
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most important variables for the model predictions. The contributions of temperature (0.234 +
0.018), salinity (0.135 £ 0.013) and current velocity (0.080 = 0.011) were moderate, while ice
thickness (0.003 + 0.0007) was considered to be nearly irrelevant (Fig. 5). The response curves of
IPHD to the three most important variables from the ten models (except SRE) are shown in Fig.
6. The response curves indicated that the environmental requirements of IPHD in the different
models were generally similar.

3.3 Potential distributions under present and future climate scenarios

Our prediction of suitable habitat for IPHD under present climate conditions is shown in Fig.
7. All of the occurrence records were within the predicted suitable range. The predictions show
that a large part of the coastal areas of the Southeast Asian countries and northern Australia are
suitable habitats for IPHD. Some of the occurrence records were located in the coastal areas of the
Indian Peninsula.

As the model results show, the suitable area for IPHD will decrease under all four assumed
future climate change scenarios. Future habitat projections under different RCP scenarios show
different distribution patterns and consistently suitable range contraction for IPHD (Table 2). The
model projections indicate that the contraction of the suitable range of this species could be from
81.95% (under the RCP2.6 scenario in the 2050s) to 94.10% (under the RCP8.5 scenario in the
2100s). Future predictions for the 2100s show that environmental conditions suitable for IPHD
will shift northward to the East China Sea and south coast of Japan. The equatorial sea area and
coastal area of northern Australia are predicted to be less suitable for this species (Fig. 8).

4. Discussion
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4.1 Model performance

Utilizing georeferenced presence/pseudoabsence data and the corresponding environmental
data, we innovatively developed an ensemble model for IPHD to predict the present and future
potential distributions of this rare species. The results demonstrate that our ensemble model
performed well in predicting the habitat suitability for IPHD under the present environmental
conditions. The model predictions indicated that the potential distribution of IPHD will contract
in the future under different RCP scenarios and that the suitable habitat in the Indo-Pacific Mid-
Seas will shift to higher latitudes.

There are many mature models that can be used to predict species distributions. The most
commonly used method is to select the best model based on performance indicators such as TSS
and AUC and then use the single best model to predict species distributions. In this study, ten
single-algorithm models exhibited different performances and provided slightly different results.
However, our weighted ensemble model, which integrated the advantages of seven single models
with higher performances, proved to be optimal for predicting IPHD distributions. Due to the
higher accuracy and reliability compared to a single model, we recommend using an ensemble
model to predict potential species distributions and habitat suitabilities (Araujo and New, 2007,
Thuiller et al., 2009; César and Pedro, 2011; Shabani et al., 2016).

4.2 Climate change and associated distribution shift

The predicted suitable habitats of IPHD include their known distribution range as expected,

for example, the coast of Malaysia, which is also a suitable habitat for white dolphins. Suitable

habitats were also found beyond where the species have been recorded, and this phenomenon can
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be caused by many factors, such as biotic interactions, dispersal limitation of species, niche size
(Pulliam 2000) and sampling bias (Goldsmit et al., 2018). Published studies have reached similar
conclusions in predicting species distributions using SDM (Goldsmit et al., 2018; Zhang et al.,
2020a). As shown in the binary output of habitat prediction, the main IPHD habitat in China is
located in the Pearl River Estuary in Guangdong Province. The Pearl River Estuary is an
intersection area of brackish and fresh water that results in fertile water quality and high primary
productivity. The suitable temperatures and salinities as well as the low pollution, high biodiversity
and unexploited natural shorelines all make this area a favorite for IPHD.

According to the projected layer of future climate that was produced from 3 distinct AOGCMs
provided by CMIP 5, we determined the changes in four available environmental variables. As
shown in Table 1, temperatures will increase with different amplitudes under different RCPs. This
tendency of global warming will severely affect IPHD distributions in terms of range size, i.e., will
probably lead to a reduction of more than four-fifths of its range. Meanwhile, the suitable [IPHD
habitat in the future will shift northward. In China, the suitable habitat on the southern coast will
shift to the east Yellow Sea and even to the coastal areas of Bohai Bay. Tan et al. (2020) assessed
the East China Sea and found that climate change caused by increasing greenhouse gas emissions
will induce considerable biological and ecological responses and cause the East China Sea to be
among the ocean areas that are most vulnerable to future climate change. On the other hand, the
habitat in areas around Australia will shift southward, and the areas off the coast of Malaysia will
no longer be suitable for IPHD. This trend toward higher latitudes is similar that described in the

formal research (i.e., Ruiz-Navarro et al., 2016; Zhang et al., 2020c, 2019). Regardless of the
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dispersal scenario, our results highlight the high vulnerability of this critically endangered species
to climate change.
4.3 Impact factors of IPHD distribution

Due to the intricate relationships among survival, growth and environmental conditions, many
factors may affect the habitat distributions of IPHD. The basic niche that is suitable for the growth
of IPHD, such as water temperature, water depth, and distance from shore, was considered in this
study. The distribution of IPHD is negatively correlated with distance from shore and distance
from the main estuary (Chen et al., 2020); hence, estuaries have been identified as their preferred
habitat (Jefferson and Karczmarski, 2001; Wang et al., 2007; Chen et al., 2008; Jefferson and
Smith, 2016). Because of the data availability, the realized niche of IPHD, such as human activities
and dietary structure, was not considered in this study. Stomach content analyses in previous
studies have found that humpback dolphins consume a wide variety of pelagic and demersal fishes
(Ning et al., 2020). Environmental change induced by climate change may affect the distributions
of these bait fishes and will indirectly affect [IPHD distributions (Schickele et al., 2020).

Human activities have a great impact on IPHD habitats. The coastal areas of the China Sea,
with many estuaries, bays, coral reefs and fisheries, are not only suitable habitats for [IPHD but are
also the most active areas for developing the maritime economy. Fishing behavior and boat travel
have been determined to cause stranding deaths of IPHD (Guo et al. 2020). IPHD proved to be
more acoustically active and prefer locations with lower noise levels (Caruso et al., 2020a, 2020b).
However, human activities often generate underwater noise, which interferes with information

exchange with conspecifics and interaction with the surrounding environment and can even lead
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to behavioral disorders(Xu et al., 2020). Meanwhile, IPHD prefer waters near the natural coastline,
while human activities such as sea reclamation would change the type of coastline and reduce the
length of the natural coastline. Since the middle of the last century, the proportion of natural
coastlines in China has continued to decline (Hou et al., 2016), which makes it more difficult for
IPHD to find their preferred habitats and makes this sensitive species more vulnerable to
extinction.
4.4 Conservation suggestions

Protected areas have been considered to be an effective in situ strategy for conserving
biodiversity and ecosystem services. As a vulnerable species with great public concern,
conservation attention has been given to IPHD, and seven natural reserves have been set up for
this species (Indo-Pacific Humpback Dolphins Conservation Program (2017-2026)) in China. The
adverse effects of climate change on the protected areas of other animals have been elucidated
(D’Amen et al., 2011; Zhang et al., 2020b). The same situation will possibly occur in the protected
areas for marine mammals such as [PHD. For instance, Hunt et al. (2020) used SDMs to predict
the IPHD distribution in the marine reserve in Australia and evaluated the effect in the established
reserve. The results showed that the projected decline of suitable ranges for IPHD will possibly
diminish the efficacy of these existing nature reserves. The habitat changes induced by climate
change may require adjustment of current reserves, and the results from this study can be used as
references for adjusting the present natural reserves and establishing new reserves. Meanwhile,
implementing biodiversity conservation plans and fishery management strategies in coastal waters

will be beneficial for the protection of IPHD.
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Figure 1

Study area.
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Figure 2

The six environmental variables selected for building species distribution models.

(A) mean temperature, (B) mean ocean depth, (C) distance to shore, (D) mean current

velocity, (E) mean ice thickness, and (F) mean salinity.
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Figure 3

The area under the receiver operating characteristic curves (AUC) of 10 modeling
algorithms that were used to estimate the habitat suitability of Sousa chinensis.

Dashed line represents the threshold for AUC (0.85) to build the ensemble model. Data are

expressed as means =* standard error.
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Figure 4

The true skill statistics (TSS) of 10 modeling algorithms that were used to estimate the
habitat suitability of Sousa chinensis.

Dashed line represents the threshold for TSS (0.8) to build the ensemble model. Data are

expressed as means =+ standard error.
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Figure 5

Variable importance of the six predictor variables from the 10 species distribution
models for Sousa chinensis.

T: temperature, Depth: ocean depth, Dshore: distance to shore, CV: current velocity, Ice: ice

thickness and Sal: salinity. Data are expressed as means * standard error.
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Figure 6

Sousa chinensis response curves for the nine spatial distribution modeling techniques
against depth, temperature, and distance to shore.

(A) Response curves against depth, (B) Response curves against temperature, (C) Response
curves against distance to shore.
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Figure 7

Binary outputs of habitat suitability and predicted potential distribution under current
climate conditions of Sousa chinensis.

(A) Binary outputs of habitat suitability under current climate conditions. (B) Predicted
current potential distribution. Green colors indicate suitable areas, and gray colors represent
unsuitable ranges on the left; the color gradient indicates variations in habitat suitability on
the right (green = highest and pink = lowest); the red dots show the occurrence points that

were used to develop the species distribution model.
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Figure 8

Range shifts in habitat suitability of Sousa chinensis as projected by the ensemble
species distribution model between current and future climate conditions.

(A) under the RCP2.6 scenario in 2050, (B) under the RCP8.5 scenario in 2050, (C) under the
RCP2.6 scenario in 2100, and (D) under the RCP8.5 scenario in 2100. Red indicates areas
that will become suitable in the future, green areas are projected to be suitable under both
present-day and future climates, and blue represents suitable areas that will become

unsuitable in the future.
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Table 1l(on next page)

Current environmental conditions and the averages and ranges of climatic changes for
the future (e.g., 2050s and 2100s) under different scenarios in the study area.

T: temperature, Sal: salinity, CV: current velocity and Ice: ice thickness.
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Changes in 2050s Changes in 2100s
Environment Current
Variable value o cpo6 RCP45 RCP60 RCPS5 RCP26 RCP45 RCP60 RCPS5
TCC) 2979 0.72 0.96 0.77 1.10 0.63 1.21 1.68 2.87
' (0.19,1.89)  (0.06,2.35) (0.81,1.76)  (0.50,2.30) (0.80,1.87) (0.242.67) (0.47,3.42)  (1.56,5.53)
Sal(PSS) 3451 -0.061 -0.07 -0.07 -0.07 -0.09 -0.13 -0.16 -0.26
(-0.12,0.09) (-0.70,0.45) (-0.91,0.23) (-0.88,0.33) (0.88,1.15)  (-1.03,0.40) (-1.64,0.42) (-1.97,0.53)
CV(mss) 0.10 0.00 0.24 0.25 0.00 0.24 0.13 0.13 0.23
(-0.06,0.09) (-0.84,1.68) (-0.84,1.66) (-0.12,0.09) (-0.85,1.68) (-0.84,1.67) (-0.84,1.67) (-0.84,1.68)
Tee(m) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
' (-0.10,0.00) (-0.12,0.00) (-0.10,0.00) (-0.13,0.00) (-0.12,0.00) (-0.17,0.00) (-0.17,0.00) (-0.17,0.00)
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Table 2(on next page)
Range size changes (%) of Sousa chinensis under future climate scenarios.

RCP: representative concentration pathway. Range size changes were calculated as (suitable

range under future climate scenarios - present-day suitable range)/present-day suitable
range.
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RCP26 RCP45 RCP60 RCP8&5
2050s -81.952 -87.725 -85.709 -85.77
2100s -85.349 -89.144 -91.772 -94.104
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