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paired ventro-laterally inserted papillated palps. The present study is the first published
account of inferences of phylogenetic hypotheses within Magelonidae. Members of 72
species of Magelona and two species of Octomagelona were included, with outgroups
including members of one species of Chaetopteridae and four of Spionidae. The
phylogenetic inferences were performed to causally account for 176 characters distributed
among 79 subjects, and produced 2,417,600 cladograms, each with 404 steps. A formal
definition of Magelonidae is provided, represented by a composite phylogenetic hypothesis
explaining seven synapomorphies: shovel-shaped prostomium, prostomial ridges, absence
of nuchal organs, ventral insertion of palps and their papillation, presence of a burrowing
organ, and unique body regionation. Octomagelona is synonymised with Magelona due to
the latter being paraphyletic relative to the former. The consequence is that Magelonidae
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22 Known as shovel head worms, members of Magelonidae comprise a group of polychaetes readily
23 recognised by the uniquely shaped, dorso-ventrally flattened prostomium and paired ventro-

24 laterally inserted papillated palps. The present study is the first published account of inferences
25 of phylogenetic hypotheses within Magelonidae. Members of 72 species of Magelona and two
26  species of Octomagelona were included, with outgroups including members of one species of

27  Chaetopteridae and four of Spionidae. The phylogenetic inferences were performed to causally
28 account for 176 characters distributed among 79 subjects, and produced 2,417,600 cladograms,
29 each with 404 steps. A formal definition of Magelonidae is provided, represented by a composite
30 phylogenetic hypothesis explaining seven synapomorphies: shovel-shaped prostomium,

31 prostomial ridges, absence of nuchal organs, ventral insertion of palps and their papillation,

32 presence of a burrowing organ, and unique body regionation. Octomagelona is synonymised

33 with Magelona due to the latter being paraphyletic relative to the former. The consequence is
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INTRODUCTION

Felix qui potuit rerum cognoscere causas — Virgil, Georgics, Vol. 1, Books I-11

The Magelonidae, known commonly as the shovel head worms, gain their name from their
uniquely flattened, spade-shaped prostomia used in burrowing through soft sediments. They
comprise a relatively small family of marine annelids, with members distributed among 72
species, although many more individuals to which new species hypotheses will refer are likely.
Magelonids are generally found at depths of less than 100 m, although members of deeper water
species at depths of 10004000 m have been recorded (Hartman, 1971; Aguirrezabalaga et al.,
2001). They predominately burrow through sands and muds, although members of several
tubicolous species are known (Mills & Mortimer, 2019; Mortimer, 2019). Individuals feed using
two slender palps (Mortimer & Mackie, 2014), which are unique amongst polychaetes in being
papillated and ventrally inserted.

Magelonids were given the rank of family by Cunningham & Ramage (1888) but their
unusual morphology has often led to difficulties in relating them to other annelid groups.
Johnston (1865), puzzled by their peculiar external form, placed them at the end of his catalogue,
under the family Maeadae. McIntosh, who published extensively on magelonid morphology
(MclIntosh, 18@ 878, 1879, 1911), suggested similarities with spioniforms such as members of
Prionospio Malmgren, 1867, and Heterospio Ehlers, 1874, but also with the chaetopterid
Spiochaetopterus Sars, 1853. He additionally noted that the way the ‘proboscis’ (cf. Character
descriptions below regarding terminology) operated and the structure of the “snout and
circulatory organs” are features sui generis. However, the placement of magelonids with
spioniform polychaetes has continued until semi-recently. The latest studies have proposed

placement alongside the Chaetopteridae, Sipuncula, and Oweniidae (Struck et al., 2015; Weigert
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et al., 2014; Helm et al., 2018), or as sister taxon of all other annelids along with the Oweniidae
(Palaeoannelida) (Weigert et al., 2016). These phylogenetic considerations will be discussed
more fully later in this paper.

Whilst the systematic position of the family may have received some attention,
phylogenetic relationships within have received far less. Perhaps the relatively uniform bodies of
magelonids have been a contributing factor. Currently the family contains two genera: the type
genus Magelona F. Miiller, 1858, and the monotypic Octomagelona Aguirrezabalaga, Ceberio &
Fiege, 2001, differentiated by the number of thoracic chaetigers. All previously introduced
generic names for the group have been synonymised (Maea Johnston, 1865, Rhynophylla
Carrington, 1865, Meredithia Hernandez-Alcantara & Solis-Weiss, 2000). Brasil (2003) inferred
phylogenetic hypotheses among members of the family based on external morphological
characters, confirming the monophyletic status of the group. Her analysis concluded that both
Octomagelona and Meredithia were paraphyletic, but no further conclusions could be made. The
present study aims to expand the unpublished analysis performed by Brasil (2003) to include

additional taxa and characters.

MATERIAL AND METHODS

Methodological considerations

What is and is not contained in the present study is based on several interrelated principles that
initially might not appear consistent with some of today’s thinking regarding biological
systematics. These principles are not of our making, but rather are firmly established
perspectives within philosophy of science, and familiar to many fields of science beyond

systematics. The last several decades have witnessed systematics engaging in a growing
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tendency toward developing insular views that are at odds with basic tenets of logic, reasoning,
and scientific inquiry. For these reasons, we regard it as imperative to present justifications for
what is and is not included in this study from a methodological perspective. The disinterested

reader can ignore this section without damage, but the information provided does offer a useful

summary for those more inclined toward gritical thinking in systematics.

The goal of scientific inquiry
As systematics is a field of science and subfield of evolutionary biology, it should cohere with
the acknowledged goal of scientific inquiry. That goal is to not only describe phenomena but also
pursue causal understanding of what is encountered (Hanson, 1958; Hempel, 1965; Rescher,
1970; Popper, 1983, 1992; Salmon, 1984b; Van Fraassen, 1990; Strahler, 1992; Mahner &
Bunge, 1997; Hausman, 1998; Thagard, 2004; Nola & Sankey, 2007; de Regt et al., 2009;
Hoyningen-Huene, 2013; Potochnik, 2017, 2020; Carrie; 2048 Anjum-&Mumford; 2018). In
the context of systematics that pursuit includes describing the characteristics of organisms, in the
form of differentially shared characters, as well as exploring possible past causal events that
account for those characters, either as matters of proximate and/or ultimate causes sensu Mayr
(1961, 1993; Fitzhugh, 2012, 2016a). As aptly expressed by Uller & Laland (2019: 1),
“Scientific inference typically relies on establishing causation. This is also the case in
evolutionary biology, a discipline charged with providing historical accounts of the properties of
living things, as well as an understanding of the processes that explain the origin of those
properties.”

Whilst it is fashionable to speak of ‘the phylogeny’ of a group of organisms, this is
something of a misnomer. Inferring phylogenetic hypotheses from a set of observed character

data only achieves the objective of explaining those data, with implicit acknowledgement that no
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phylogenetic inference can exhaustively account for all potentially observable characters of
organisms. Phrases of the form ‘the phylogeny of X* incorrectly connote that a final solution is
being offered, when in fact such would be impossible. Emphasising the term phylogeny has the
undesirable consequence of suggesting that this is the objective of systematics, thus
overshadowing the pursuit of causes, which is the real aim of scientific inquiry. The same
critique applies to the commonly used phrase ‘molecular phylogeny.” There can be no
‘phylogeny’ of molecules, just as there can be no separate phylogenies for any arbitrary
subdivisions of classes of characters that are in need of being explained.

The causal objective in systematics is the arena within which taxa are considered. Taxa
are best regarded not as either class constructs, mere groupings, things, entities, or ontological
individuals, but rather as the variety of explanatory hypotheses routinely and purposely inferred.
These hypotheses include species and phylogenetic hypotheses, albeit there are other classes of
explanatory hypotheses that in their own right deserve to be called taxa (Fig. 1; cf. Hennig, 1966:
fig. 6) given that they as well are inferred causal accounts (Fitzhugh, 2012, 2016a; Fitzhugh,
2005b, 2006a, 2008a, 2009, 2013, 2015). Consider for instance the phylogenetic and specific
‘relations’ shown in Fig. 1. Each clearly illustrates that individuals along the top of the diagram
are what exist in the present, and lines connecting to lower individuals indicate past tokogenetic
events. This diagram also implies past, albeit quite vague, causes such as novel character origin
and fixation events among individuals in populations, as well as population splitting events. To
say Fig. 1 shows several ‘lineages’ is just an imprecise way of referring to the totality of past
causal events that account for what are observed of the organisms in the present. A further
consequence is that taxa are neither described, discovered, nor delimited; they are inferred as

reactions to what we observe of the properties of organisms. What are described are individuals
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at specific moments in their life history (Fitzhugh, 2012, 2016a32008a, 2009, 2013, 2015
toperational examples include Fitzhugh, 2010b; Eitzhugh-et-al52015:-Nogueira et al., 2010,
2013, 2017, 2018); what Hennig (1966) termed semaphoronts (Fig. 1; cf. Hennig, 1966: fig. 6).
The interplay between the descriptive and the explanatory will become apparent later (cf.
Phylogenetic inference = abduction).

The present study seeks to infer taxa in the form of phylogenetic hypotheses, which are
subsumed under the more inclusive (composite) phylogenetic hypothesis formally called
Magelonidae. We acknowledge that species hypotheses have been previously and separately
inferred and are not the focus of this paper. Whilst this distinction between phylogenetic and
specific hypotheses has been the typical and inferentially appropriate approach in systematics,
exceptions can be found among some publications (e.g., Nygren et al., 2018; Shimabukuro et al.,
2019; Radashevsky et al., 2020), in which species hypotheses are simultaneously inferred with
phylogenetic hypotheses that only causally account for sequence data, after which morphological
characters are incorrectly introduced in a post hoc manner. Notwithstanding the fact that the
requirement of total evidence (RTE; Fitzhugh, 2006b; see Sequence data and explanatory
hypotheses, below) is violated, such inferences have questionable merits for the fact that
explaining shared nucleotides or amino acids requires, at a minimum, discriminating between
causes such as genetic drift, and selection via downward causation (see Sequence data and
explanatory hypotheses, below). The nature of phylogenetics algorithms is such that they are
agnostic as to detailed causal parameters, requiring that one must give specific consideration to
drift or selection, which can determine whether or not sequence data can be directly explained

via phylogenetic inferences. This is an issue that has been largely ignored in discussions of
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phylogenetic inference (Fitzhugh, 2016b). Once again, the objective of inferring these different

classes of hypotheses is to pursue causal understanding of the properties of organisms.

Characters and observation statements

Scientific inquiry is in reaction to the objects and events we perceive in the universe.
Conceptualising and then communicating our perceptions require accurate conveyance of
observation statements. Systematics has had a long tradition of speaking of organismal
observations in terms of characters and states (Sokal & Sneath, 1963; Sneath & Sokal, 1973).
Fitzhugh (2006¢) remarked on the fact that the character/state distinction as well as other, similar
perspectives in systematics are not accurate representations of observation statements, especially
compared to the established views in epistemology, where observation statements are presented
as relations between subjects and predicates (Strawson, 1971; Alston, 1993; Audi, 1998).
Consider for instance, the statement, ‘These chaetae are bidentate.” The terms ‘chaetae’ and
‘bidentate’ do not refer to character and state, respectively. That one can observe objects they
call chaetae is because of the properties or characters of those objects. Instead of character and
state, the observation statement refers to the subject ‘chaetae,” and the predicate ‘bidentate’ is
applied to that subject, reflecting a particular property or character perceived of the object as
subject (Hanson, 1958; Mahner & Bunge, 1997; Strawson, 1971; Gracia, 1988; Armstrong,
1997).

Whilst observation statements of organisms are often of intrinsic properties, there also are
relational or extrinsic characters (Findlay, 1936; Sider, 1996; Armstrong, 1997; Francescotti,
2014; Allen, 2016). A common example in systematics involves sequence data, e.g., ‘Individuals
to which species hypothesis X-us x-us refer have [subject] nucleotide G at [predicate] position

546.” Being in a particular position is relative to other objects. The character/state distinction
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ignores this relational aspect, leading to nonsensical characterisations, such as, “...if nucleotide
A is observed to occur at position 139 in a sequence, ‘position 139’ is the character [sic] and ‘A’
is the state assigned to that character” (Swofford et al., 1996: 412). Obviously, a position cannot
be a character of an object since the position is dependent upon other objects.

The traditional emphasis on ‘character coding’ leading to compilations of observations in
the form of the data matrix has treated columns as ‘characters’ and each cell as a ‘state.’
Fitzhugh (2006c¢: fig. 1) pointed out, however, that if observations are to be accurately implied
by entries in a matrix then each cell represents a complete observation statement of subject-
predicate relations, such that each column denotes each subject (Fig. 2A). This also
accommodates relational characters (Fitzhugh, 2016b). But with the emphasis on causal inquiry
in systematics, a data matrix is not only a codified representation of observation statements. The
matrix must also imply the why-questions that inquiry seeks to answer in the form of explanatory
hypotheses known as taxa. This necessitates knowing the formal structure of those questions and

how they, like observation statements, are implied by the matrix. This will be addressed next.

Basis for phylogenetic inference: why-questions

The inferences of explanatory hypotheses vis-a-vis taxa do not appear ex nihilo. As a significant
role of scientific inquiry is the pursuit of causal understanding, there is a vital conceptual link
between our observations and explanatory hypotheses. That link exists through the implicit or
explicit why-questions that are prompted by observations, such that the hypotheses we infer are
intended as answers to those questions. The formal structure of why-questions has relevance to
systematics for the fact that those questions are implicitly present in a character data matrix

provided to a computer algorithm that infers phylogenetic hypotheses (Fitzhugh, 2006¢, 2016b).
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Whilst we tend to think of why-questions as having the form, ‘Why (is) ¢ (the case)?,’
such a structure is an incomplete representation. The form of why-questions is instead what is
often referred to as contrastive, ‘Why (is) ¢ (the case) in contrast to p?’ (Salmon, 1984b; Sober,
1984, 1986, 1994; Salmon, 1989; Van Fraassen, 1990; Lipton, 2004; Fitzhugh, 2006a, 2006b,
2006¢; 2016b; Lavelle et al., 2013). A contrastive why-question contains observation statement
g, the fact to be explained, and p, the foil, which is usually a condition ordinarily expected or
previously explained. Asking a why-question often occurs because we are faced with a situation
that is unexpected or surprising (the fact), and it is that element of surprise, against what is
expected (the foil), that leads to the desire for an explanation. The fact/foil distinction associated
with implied why-questions can be found in the data matrices used to infer phylogenetic
hypotheses, when ‘outgroup’ (= foil) and ‘ingroup’ (= fact) taxa are designated (Fitzhugh, 2006c¢,
2016b) (Fig. 2B).

It is often acknowledged (Bromberger, 1966; Sober, 1986, 1988; Barnes, 1994; Marwick,
1999; Sintonen, 2004; Schurz, 2005) that why-questions include the presupposition that fact and
foil statements must be true, otherwise there is no basis for asking such questions. This also
follows from the common-sense notion that we assume the truth of our observation statements;
otherwise, scientific inquiry would not be feasible. This assumption has special implications for
explaining sequence data when rates of substitution are involved, which will be addressed later
(see Sequence data and explanatory hypotheses). Explaining a fact entails also explaining the
foil, and while those explanations are due to separate causal events, they should be due to the
same type of cause (Sober, 1986; Barnes, 1994; see also Cleland, 2001, 2002, 2009, 2011, 20133
Turner, 2007; Jeffares, 2008:Faeker; 2004,20H). Designations of outgroup and ingroup

accommodate this requirement (Fitzhugh, 2006c¢).
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Forms of reasoning

In speaking of inferring phylogenetic hypotheses, or any other class of taxon for that matter, it is
necessary to acknowledge the type of reasoning used to produce those hypotheses as well as the
reasoning available for empirically testing them. This provides a clear basis for establishing
which, if any, of the currently available phylogenetic inference procedures are logically and
scientifically sound.

Three forms of reasoning are often recognised: abduction, deduction, and induction.
Among formal treatments of logic, abduction, if acknowledged at all, is typically subsumed
under induction (e.g., Kneale & Kneale, 1964; Salmon, 1967, 1984a; Copi & Cohen, 1998),
since the purview of logic is to identify and discriminate logically valid (deductive: true premises
give a true conclusion) from invalid or fallacious (inductive: true premises do not guarantee true
conclusions) arguments. For purposes of explicating the processes of scientific inquiry, however,
it is appropriate to regard abduction as distinct from induction. Operationally each form of
reasoning plays a respective role in different stages of inquiry, where those stages include at a
minimum the inferences of theories and hypotheses, and the subsequent empirical testing of
those propositions. The stage of inquiry most associated with systematics is abduction (Peirce,
1878, 1931, 1932, 1933a, 1933b, 1934, 1935, 1958a, 1958b; Hanson, 1958; Achinstein, 1970;
Fann, 1970; Reilly, 1970; Curd, 1980; Nickles, 1980; Thagard, 1988; Josephson & Josephson,
1994; Baker, 1996; Hacking, 2001; Magnani, 2001, 2009, 2017, Psillos, 2002, 2007, 2011;
Godfrey-Smith, 2003; Norton, 2003; Walton, 2004; Gabbay & Woods, 2005; Aliseda, 2006;
Schurz, 2008; Park, 2017), i.e., the inferences of hypotheses as the means of causally accounting
for the various differentially shared characters observed among organisms (Fitzhugh, 2005a,

2005b, 2006a, 2006b, 2008a, 2008b, 2008c, 2009, 2010a, 2013, 2014, 2015, 2016a, 2016b,
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2016¢, 2016d, 2021). Subsequent empirical assessments of explanatory hypotheses rely on
deducing predictions of expected consequences — potential test evidence — if the causal claims in
hypotheses are true. The act of testing, which involves determining manifestations of test
evidence, is inductive. The operational relations between ab-, de-, and induction received
extensive attention in the 19th and early 20th centuries by the polymath, Charles Sanders Peirce
(1835-1914) (Peirce, 1931, 1932, 1933a, 1933b, 1934, 1935, 1958a, 1958b), but full
appreciation of Peirce’s ideas did not become realised until the second half of the 20th century
(Hanson, 1958; Fann, 1970; Reilly, 1970; Thagard, 1988; Josephson & Josephson, 1994;
Magnani, 2001, 2009, 2017; Psillos, 2002, 2011; Walton, 2004; Gabbay & Woods, 2005;
Aliseda, 2006; Schurz, 2008; Park, 2017). As noted by Peirce (1932: 2.106),

Abduction, . 4is merely preparatory. It is the first step of scientific reasoning, as

induction is the concluding step. .., Abduction makes its start from the facts,

without, at the outset, having any particular [hypothesis] in view, though it is

motivated by the feeling that a [hypothesis] is needed to explain the surprising

facts. Induction makes its start from a hypothesis which seems to recommend

itself, without at the outset having any particular facts in view, though it feels the

need of facts to support the [hypothesis]. Abduction seeks a [hypothesis].

Induction seeks for facts.
The “facts’ Peirce refers to in relation to abduction are the various characteristics of organisms in
need of explanation, whereas the ‘facts’ associated with induction are test evidence. Discussions
of relations between these stages of inquiry in systematics can be found in Fitzhugh (2005a,

2006a, 2006b, 2008b, 2010a, 2012, 2013, 20164, 2016c, 20164d).
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Whilst systematics in recent decades, especially beginning with the school of thought
called ‘cladistics,’ has laid great emphasis on the testing of hypotheses, usually at the expense of
conflating testing with hypothesis inference (reviewed by Fitzhugh, 2016¢, 2016d). Actual
testing by way of induction of the variety of hypotheses implied by cladograms is rarely
performed. Instead, the tendency is to merely replace results of previous abductions with new
abductions as new observed effects become available, which is neither an act of testing nor a
basis for claiming that previous hypotheses have been ‘defeated’ or overturned. Associated with
confusing hypothesis inference with testing has been the misconception that character data used
to infer hypotheses also provide evidential support for those hypotheses, leading to false claims
that phylogenetic hypotheses are ‘robust’ or ‘strongly supported’ by the characters used to infer
those hypotheses. We will address this misunderstanding later (see Explanatory hypotheses and
the myth of evidential support).

In the context of phylogenetic hypotheses, examples of each of the stages of inquiry can
be represented by the following abbreviated forms, where the premises lie above the double
(non-deductive) or single (deductive) line, and the conclusion(s) allowed by those premises
below the line(s):

1) Abduction — inferring hypotheses as answers to why-questions:

* background knowledge, b

* theory(ies) ¢, such as ‘common ancestry’

* observed effects, as differentially shared characters, e

» explanatory hypotheses, e.g., cladograms, /

2) Deduction — predictions of consequences given the truth of hypotheses:

* background knowledge, b
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« theory(ies) ¢ relevant to the observed effects
* specific causal conditions presented in explanatory hypothesis via (1)

» proposed conditions needed to perform test

* observed effects e, originally prompting / [cf. (1)]
* predicted test evidence, i.e., effects related as closely as possible with the

specific causal conditions of the hypothesis

A3) Induction — hypothesis testing:
* background knowledge, b
» theory(ies) relevant to observed effects, ¢
* test conditions performed
« confirming/disconfirming evidence, e, [observations of predicted

test evidence in (2), or alternative observations]

* /1 is confirmed/disconfirmed.

A useful way to think of these inferences is as reactions to particular questions. The form
of each question determines what type of inference is used to produce a conclusion that serves as
an answer. Respective questions and inferences are shown in Table 1.

Several points of logic need to be highlighted regarding the three types of reasoning, as
they are relevant to inferences of phylogenetic hypotheses (in fact all taxa, for that matter). For
any inference to be deemed factually correct, premises must be assumed to be true. A deduction
is valid only if true premises guarantee a true conclusion, which is established by particular rules
of logic that can be found in standard logic textbooks. Because of those rules, the content of a

deductive conclusion is already present in the premises, such that information in the conclusion
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cannot go beyond what is already stated in the premises (Salmon, 1984a). Such reasoning is said
to be non-ampliative. By its very nature, deduction cannot introduce new ideas. All non-
deductive reasoning is ampliative, thus does not satisfy the criterion of logical validity. This
makes abduction a fundamentally important mode of reasoning in everyday life as well as all of
science. Abduction is the only type of reasoning from which new ideas are conceived. With true
premises, abductive and inductive reasoning do not guarantee true conclusions. The content of
those conclusions will extend beyond what is provided in the premises. Abductive conclusions
can be regarded as merely plausible: “By plausibility, I mean the degree to which a theory [or
hypothesis] ought to recommend itself to our belief independently of any kind of [test] evidence
other than our instinct urging us to regard it favorably” (Peirce, 1958b: 8.223). Inductive
conclusions, on the other hand, are probable given that they are determined by available test

evidence.

Phylogenetic inference = abduction
Representing phylogenetic inference in a more complete form compared to what is shown in (1),
the following example of abduction is somewhat closer to the actual abductive structure leading
to phylogenetic hypotheses. The basis for this abduction would be to answer the why-question,
‘Why do semaphoronts to which specific hypotheses x-us and y-us refer have ventrolateral
margins with appendages in contrast to smooth as seen among individuals to which other species
hypotheses (a-us, b-us, etc.) refer?’ (Fitzhugh, 2006c, 2012, 2013, 2015, 2016a, 2016b):
“4) * Background knowledge, b
* Phylogenetic theory: If character x(0) exists among individuals of a reproductively
isolated, gonochoristic or cross-fertilising hermaphroditic population and character x(1)

originates by mechanisms a, b, c... n, and becomes fixed within the population by
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mechanisms d, e, f... n (= ancestral species hypothesis), followed by event(s) g, A, i... n,
wherein the population is divided into two or more reproductively isolated populations,
then individuals to which descendant species hypotheses refer would exhibit x(1).

» Observations (effects): Individuals to which specific hypotheses x-us and y-us refer
have ventrolateral margins with appendages in contrast to smooth as seen among

individuals to which other species hypotheses (a-us, b-us, etc.) refer.

* Causal conditions (phylogenetic hypothesis X-us): Ventrolateral margin appendages
originated by some unspecified mechanism(s) within a reproductively isolated population
with smooth ventrolateral margins, and the appendage condition became fixed in the
population by some unspecified mechanism(s) (= ancestral species hypothesis), followed
by an unspecified event(s) that resulted in two or more reproductively isolated

populations.

Background knowledge b, as auxiliary theories and hypotheses, is generally not listed as a
premise, but instead is established knowledge accepted as true that is needed for the other
premises in an inference. Background knowledge is specified here for reference later when
considering abduction in relation to sequence data. The major premise, Phylogenetic theory, is
intentionally vague regarding causal specifics. This reflects the near-complete absence of causal
information that goes into the development of phylogenetic algorithms as well as the lack of
explanatory content in phylogenetic hypotheses implied by cladograms (Fitzhugh, 2012, 2013,
2016b). The theory as presented here is intentionally limited to gonochoristic or cross-fertilising
hermaphroditic organisms (Fitzhugh, 2013) since population-splitting events (‘speciation’) are

not relevant to asexually reproducing, obligate parthenogenetic, or self-fertilising hermaphroditic
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organisms. The theory states a common cause, which is consistent with the necessary
presupposition that observation statements are true, mentioned earlier; if we assume the truth of
our observations, then we should pursue explanations of those observations in a manner that
maximises the truth element as much as possible in those explanatory accounts. The minor
premise in this example, Observations (effects), presents only one set of observation statements,
as subject-predicate relations, i.e., ventrolateral body margins. This premise can be expanded to
include other relevant characters to be explained, as is typical of the standard character data
matrix. A data matrix implies both why-questions as well as the totality of observation
statements comprising this second premise (Fitzhugh, 2006c, 2016b). The conclusion, Causal
conditions, is the result of applying the Phylogenetic theory to Observations of effects. Such
conclusions, often represented by cladograms, serve as answers to the why-questions. The
limited causal details provided in the conclusion is a consequence of what little is offered in the
theory in terms of causal particulars. For this reason, cladograms are largely devoid of
explanatory information. As part of the ampliative nature of abduction, the premises can lead to a
single conclusion or multiple, mutually exclusive conclusions. Any valid deduction, on the other
hand, being non-ampliative, will only produce a single conclusion.

Whilst we often refer to a cladogram as a phylogenetic ‘hypothesis,’ they are in fact
composite constructs, implying a minimum of three classes of hypotheses: previously inferred
species hypotheses, hypotheses of character origin/fixation among members of ancestral
populations, and population splitting events (‘speciation’) (Fig. 3). A fourth, ad hoc class of

hypothesis is typically invoked, called homoplasy (Lankester, 1870).
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To manifest abductive inferences in a phylogenetics computer algorithm that emulate
what is presented in (4), the inferential form would be akin to the following (cf. Josephson &
Josephson, 1994),

5 * d is a collection of (presumed true) observation statements of differentially-
shared characters

* hypotheses, implied by cladograms X}, X;... X,, are possible composite

explanations of d
* select subset of cladograms with score S, (minimal ‘tree length’ = minimise

ad hoc hypotheses of homoplasy)

* cladograms with score S, are most plausible, mutually exclusive explanations of
d.

The algorithm functions in a manner that produces conclusions as if the common cause
Phylogenetic theory in (4) were operative. Notice as well that the first premise in (5) contains the
assumption that observation statements regarding shared characters are true; the necessary
presupposition of truth associated with implied why-questions in data matrices, if one accepts
that the intent of these inferences is to explain observations. The phrase in the conclusion,
‘cladograms with score S, are most plausible,’ is intentional. Plausibility indicates hypotheses are
worthy of further consideration:

By Plausible, I mean a theory [or hypothesis] that has not yet been subjected to

any test, although more or less surprising phenomena have occurred which it

would explain if it were true, is in itself of such a character as to recommend it for

further examination or, if it be highly plausible, justify us in seriously inclining
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toward belief in it, as long as the phenomena be inexplicable otherwise (Peirce,

1932: 2.662, emphasis original; Kapitan, 1997: 481).

Epistemically, a plausible hypothesis is far weaker than a hypothesis that has been successfully
tested with the introduction of test evidence, i.e., (2), (3); a distinction that is too often ignored in
the systematics literature because of the general misunderstanding of the meaning of evidential
support (see Phylogenetic hypotheses and the myth of evidential support).

At first sight, the algorithmic representation of abduction in (5) might appear to be what
has often been called ‘parsimony analysis.” The difficulty with this perspective is that parsimony
is not a form of reasoning that produces explanatory hypotheses. That responsibility resides with
abduction. Parsimony is a comparative measure, where for instance of two hypotheses that
predict the same results, the hypothesis that requires fewer assumptions is the simpler of the two.
The third premise in (5) invokes this principle. That intended action of selection, based on
minimising ad hoc hypotheses of homoplasy, is implemented for the sole purpose of serving as a
surrogate for the application of the Phylogenetic theory in (4). This is not tantamount to a
parsimony analysis or method. It is an instance of abductive reasoning.

It was noted earlier that abduction is the only type of reasoning that produces explanatory
hypotheses; it is the only form of reasoning that introduces new ideas. The depiction of
abduction in (4), or its algorithmic form in (5), is not only at odds with ‘parsimony’ being an
inference procedure but also contrary to claims in systematics that so-called ‘likelihood’ or
‘Bayesian’ methods can infer explanatory hypotheses. With his introduction of the likelihood
principle, Fisher (1934; see also Hacking, 1965, 2001, Edwards, 1972) was clear that it is only
relevant to considerations of test evidence subsequent to inferring hypotheses. Evidence e in

representations of likelihood, e.g., p(h | ) = I(h | ), refer to test evidence [cf. (2), (3)].
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Probability p quantifies anticipation of an outcome of testing, whereas likelihood / quantifies
trust in the hypothesis as a consequence of testing. Characters used to abductively infer
phylogenetic hypotheses [cf. (1), (4), (5)] do not constitute test evidence, and likelihood does not
provide the means to infer explanatory hypotheses (contra e.g., Felsenstein, 1981, 2004y
Huelsenbeck & Crandall, 1997; Swefferd-et-al;1996-Haber, 2011).

The intent of Bayes Theorem is to quantify changes in belief in hypotheses following the
introduction of test evidence (Salmon, 1967; Howson & Urbach, 1993; Hacking, 2001; contra
e.g., Huelsenbeck & Ronquist, 2001; Huelsenbeck et al., 2001; Archibald et al., 2003;
Felsenstein, 2004; Ronquist et al., 2009). Bayesianism is inductive sensu [3]; it has no relevance
to abduction. The attempt to force Bayes’ Theorem into phylogenetic inference (e.g.,
Huelsenbeck et al., 2001: fig. 1) is represented as,

pltree | characters) = p(characters | tree) * p(tree)

p(characters).
This is not a meaningful implementation of the Theorem (Fitzhugh, 2010a, 2012, 2016a, 2016c,
2016d). The supposed prior probability, p(tree), refers to all possible ‘tree topologies’ for taxa
considered. Such topologies are nothing but branching diagrams devoid of the empirical content
typical of cladograms that imply the several classes of causal events discussed earlier (Fig. 2).
Tree diagrams disconnected from characters explained by those diagrams cannot be assigned
prior probabilities. More problematic is the use of differentially shared characters as ‘evidence’
to determine posterior probabilities. Character data cannot serve as test evidence for the
hypotheses intended to explain those data (see Phylogenetic hypotheses and the myth of
evidential support). As with ‘parsimony’ and ‘likelihood’” methods, the ‘Bayesian’ approach in

systematics fails to live up to its name.
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In sum, neither ‘parsimony,’ ‘likelihood,” nor ‘Bayesianism’ are valid forms of reasoning
or methods for inferring explanatory hypotheses. Unfortunately, wider recognition of the
fundamental importance of abductive reasoning did not take hold among scientists until Hanson
(1958) pointed out its significance in his Patterns of Discovery, and later acknowledgment of its
importance in artificial intelligence (Thagard, 1988) and science in general were embraced
(Fann, 1970; Reilly, 1970; Thagard, 1988; Josephson & Josephson, 1994; Magnani, 2001, 2009,
2017; Psillos, 2002, 2011; Walton, 2004; Gabbay & Woods, 2005; Klienhans et al., 2005;
Aliseda, 2006; Schurz, 2008; Klienhans et al., 2010; Park, 2017; Anjum & Mumford, 2018). In
the absence of awareness about abduction, systematics since the 1960°s was left with an
inferential void that was filled with incorrect applications under the false dichotomy of
parsimony versus induction vis-a-vis statistics, where the latter led to incorrectly applying
likelihood and Bayesianism. What is actually being performed in phylogenetic inference under
these labels is abductive reasoning, albeit in a most peculiar and not entirely philosophically or
scientifically acceptable manner.

Regarding abductive inferences of phylogenetic hypotheses to explain sequence data,
there are two significant issues to consider. One issue will be discussed here, while the other will
be addressed later (see Sequence data and explanatory hypotheses). The treatment of sequence
data has often been seen as requiring the assumption of rates of substitution as part of the
inferences of phylogenetic hypotheses, along with ‘branch lengths’ (i.e., number of substitutions
or character changes that have occurred ‘along’ the branches of phylogenetic trees) (Swofford et
al., 1996; Felsenstein, 2004; Schmidt & von Haeseler, 2009). Once we acknowledge that trees
are only graphic devices for implying the various classes of explanatory hypotheses accounting

for observed characters (Fig. 2), it becomes apparent that those trees cannot have properties like
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lengths of branches. The need to consider substitution rates has warranted the development of so-
called ‘model-based’ approaches (Jukes & Cantor, 1969; Felsenstein, 1978, 2004; Farris, 1983;
Swofford et al., 1996; Sullivan & Joyce, 2005; Rindal & Brower, 2011; Kapli et al., 2020), under
the guises of ‘likelihood’ and ‘Bayesian,’ versus the ‘model-free’ method of ‘parsimony
analysis.’ It should be apparent by now that this distinction, just like the methods, is without
merit. If we accept that phylogenetic inferences are abductive, then the inclusion of substitution
rates within abduction would have the following form (Fitzhugh, 2021):
(6) Background knowledge (partim): Observation statements assumed true, per alignments of
sequence data
Theories: (a) Rates of sequence substitution, applied to sequence data;
(b) Common cause Phylogenetic theory of common ancestry, cf. (4), per
Background knowledge
Observation statements: Represented in data matrix as why-questions

=
S

Phylogenetic hypotheses: Diagrammatically implied by graphic devices called

cladograms.

Notice that this inference relies on theories that are contradictory. The theory of rates of
sequence substitution is at odds with the Background knowledge of true observation statements
of aligned sequences, and by extension also at odds with the implied why-questions one would
ask for which the abduction seeks answers using a common-cause theory. Correcting for this
contradiction would necessitate removing the theory of substitution rates as a premise in the
abduction and placing it within the Background knowledge, such that originally aligned sequence

data would be modified to take substitution rates into consideration. By doing this, revised
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observation statements could be presented, which re-establish assumptions that observation
statements are true. The Background knowledge in (6) would then have the following revised

form (Fitzhugh, 2021),

@) Background knowledge, revised:
(a) observation statements of differentially shared characters, are initially assumed
true, per alignments of sequence data;
(b) rates of sequence substitution taken into consideration;
(c) per (b), the assumption of truth of observation statements in (a) is not
necessarily correct;
(d) per (b) and (c), observation statements are revised such that apparent
shared nucleotides are renamed as different observation statements where
applicable to re-establish true statements.
With the revised Background knowledge in (7), the ensuing abductive inference would then have
the form shown in (4), which again provides answers to why-questions by way of common
cause; there is no need to consider substitution rates within the inference. The inherent difficulty
of accomplishing step (7)(d), however, will likely preclude even proceeding forward with
causally accounting for those sequence data given that there are no empirical criteria for
discerning identical nucleotides or amino acids as not being identical. This is a matter that has
been overlooked in systematics. The alternative solution is to simply accept the truth of shared
characters obtained through alignment, in which case abduction would again be as shown in (4)
and neither substitution rates nor branch lengths would be considered.
We have emphasised that cladograms or phylogenetic trees satisfy the goal of scientific

inquiry if they are interpreted as composite explanatory hypotheses (Fig. 3). Whilst the
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explanatory nature of cladograms is sometimes explicitly acknowledged (e.g., Farris, 1983;
Swofford et al., 1996, Schmidt & von Haeseler, 2009; Kapli et al., 2020), often the greater focus
of phylogenetic studies is on just obtaining ‘trees,” with little to no causal considerations given
(e.g., Felsenstein, 1981, 2004; Sullivan & Joyce, 2005; Kapli et al., 2020). Consequences of this
emphasis on trees as opposed to explanations includes an erroneous method called character
mapping (Fitzhugh, 2014). Mapping most often involves obtaining phylogenetic trees using
sequence data, then ‘optimising’ other characters, usually morphological, onto these diagrams,
from which are determined vague evolutionary conclusions regarding the mapped characters.
This approach has become popular among polychaete phylogenetic studies (e.g., Struck et al.,
2011; Borda et al., 2012; Glasby et al., 2012; Goto et al., 2013; Weigert et al., 2014; Aguado et
al., 2015; Andrade et al., 2015; Struck et al., 2015; Goto, 2016; Weigert & Bleidorn, 2016;
Kobayashi et al., 2018; Nygren et al., 2018; Langeneck et al., 2019; Shimabukuro et al., 2019;
Radashevsky et al., 2020; San Martin et al., 2020; Tilic et al., 2020). Much credence has been

given to mapping, albeit without foundation. For instance, Kapli et al. (2020) state that,

Mapping heritable character states (phenotypic or genotypic) onto a tree is the
basis of different evolutionary analyses: it allows us, for example, to make
inferences [sic] about character homology and also to gain insights into
character loss and convergent evolution, .., Whereas trees were initially based to
a great extent on morphological characters, biological molecules — nucleic acids
and proteins — provide a far more powerful [sic] and plentiful source of

information for reconstructing trees.

Mapping is flawed for a simple reason. That phylogenetic inference is abductive means inferring

hypotheses, implied by a cladogram, for one set of characters produces conclusions relevant only
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to those characters. Any subsequent ‘mapping’ of additional characters on that cladogram is not
a legitimate form of inference, abductive or otherwise. The premises of a ‘mapping inference’
make this apparent:

8 * tree topology, (a-us (b-us (c-us (d-us, e-us))))

* observed effects, as differentially shared characters, e

*77?
As a premise, a tree topology is an empirically empty statement since it would have been
previously inferred to account for characters other than those in the second premise. Attempting
to apply that first premise to the second is pointless since this cannot lead to any interpretable
conclusion — certainly not explanatory hypotheses. As such it is impossible to speak of
explanations of mapped characters. Like the past and present uncritical advocacy of phylogenetic
methods called ‘parsimony,’ ‘likelihood,” and ‘Bayesian,’ the popularity of character mapping is

a further testament to the lack of consideration of formal reasoning in systematics.

Phylogenetic hypotheses and the myth of evidential support

The present study does not assess the veracity of either the Magelonidae or less inclusive
phylogenetic hypotheses in terms of evidential ‘support,” nor are there attempts to use popular
methods such as the bootstrap or Bremer analysis to assert that hypotheses are either ‘strongly
supported’ or ‘robust.” Such perspectives have become all too common in systematics research,
including those on annelids (e.g., Struck et al., 2011; Borda et al., 2012; Weigert et al., 2014;
Aguado et al., 2015; Andrade et al., 2015; Struck et al., 2015; Weigert et al., 2016; Gonzalez et
al., 2018; Nygren et al., 2018; Shimabukuro et al., 2019; San Martin et al., 2020; Stiller et al.,
2020; Tilic et al., 2020). Reasons for not speaking of support in the present study follow from the

basics of reasoning described above. More detailed treatments of misconceptions regarding
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567 evidence of, and support for phylogenetic hypotheses can be found in Fitzhugh (2012, 2016b,
568 2016¢).

569 First, to correctly speak of evidence means to refer to the premises that allow for a certain
570 conclusion (Longino, 1979; Salmon, 1984a; Achinstein, 2001). Whilst that evidence is said to
571 ‘support’ a given conclusion, it is only inductive, i.e., test evidence or support (cf. [3]) that

572 matters in the pursuit of empirical evaluation, whether in matters of everyday life or during

573 scientific inquiry. An emphasis on test evidence certainly permeates all of evolutionary biology
574 and by extension it is understandable that it would be of concern in systematics. But this requires
575 Dbeing clear about (1) what is meant by the test evidence, (2) if that evidence is being used in the
576 proper context, and (3) whether or not bootstrap and Bremer ‘support’ values are meaningfully
577 interpretable in relation to phylogenetic hypotheses.

578 Recall that the examples of ab-, de-, and induction in (1)—(3) draw clear distinctions

579 Dbetween premises and conclusions derived from those premises. Those premises constitute the
580 evidence for the respective conclusions [see also (4)—(6)]. Beyond basic matters of logic, we
581 need to be cognisant of the way evidence is interpreted in the separate stages of inquiry.

582 Evidence in relation to abduction is unremarkable in the sense that conclusions must be as they
583 are because of the premises [cf. (1), (4), (5)] (Fitzhugh, 2010a, 2012, 2016a, 2016¢, 2016d). As
584 well, abductive conclusions cannot be changed or ‘defeated’” with the introduction of additional
585 effects to be explained. Adding those effects as premises only results in the inference of a new
586 set of hypotheses that have no relevance to previously inferred hypotheses.

587 A related misconception is that statistical consistency applies to phylogenetic inference
588 (e.g., Felsenstein, 1978, 2004; Swofford et al., 1996; Heath et al., 2008; Assis, 2014; Brower,

589 2018). When correctly interpreted, consistency is the view that as more and more test evidence is
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590 introduced in support of a hypothesis, the closer one is supposedly getting to a true proposition.
591 The mistaken interpretation of consistency in systematics has led to the popular yet erroneous
592 view that sequence data are beneficial for discerning ‘phylogenies’ because of the vast increase
593 in characters that are available (e.g., Goto, 2016; Tilic et al., 2020). For example, in relation to

594 phylogenetic inference, Felsenstein (2004: 107, 121, respectively) states,

595 “An estimator is consistent if, as the amount of data gets larger and larger
596 (approaching infinity), the estimator converges to the true value of the

597 parameter with probability 1...”

598 “The inconsistency of parsimony [sic] has been the strongest challenge to its
599 use. It becomes difficult to argue that parsimony methods have logical and
600 philosophical priority, if one accepts that consistency is a highly desirable
601 property.”

602 Contrary to claims that consistency is relevant to phylogenetic inference, it has been

603 acknowledged since the early 20th century that continued additions of effects to abductive

604 inferences provides no indication that a true, as opposed to plausible, set of explanatory

605 hypotheses has been attained (Peirce, 1902, 1932: 2.774—777; Rescher, 1978; Fitzhugh, 2012,
606 2016b). As new effects in need of explanation are sequentially added to abductive premises, each
607 subsequent conclusion will only offer a new set of hypotheses that have no relevance to

608 previously inferred hypotheses. The emphasis on consistency in systematics is yet another

609 consequence of abduction not being recognised in lieu of a misplaced statistical (inductive)

610 mindset.

611 Deduction serves to conclude predictions of potential test evidence [cf. (2)] that might be

612 later sought during the process of testing. Much like premises-as-evidence in abduction, the
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premises in deduction do not warrant any special attention in terms of ‘support.” Where evidence
is of importance is during the act of testing, i.e., induction [cf. (3)]. For instance, a conclusion
that test evidence supports or confirms a hypothesis can be subsequently revised if additional
support through further testing is obtained, or additional test evidence might eventually lead to a
conclusion of disconfirmation. As noted by Lipton (2005), the process of testing puts hypotheses
at risk of being disconfirmed since there is no guarantee predicted test evidence, via (2) and (3),
will be found. Obtaining contrary evidence is always a possibility. It is test evidence that matters
when speaking of support. Abductive ‘support’ lacks that qualification, and character data are
not test evidence.

Because an emphasis on causality has been largely wanting in recent decades in relation
to inferences of taxa-as-explanatory-hypotheses, references to support for phylogenetic
hypotheses has centered on support [sic] for ‘groups’ or ‘clades’ within cladograms (Fitzhugh,
2012). Such claims of support are misleading for two reasons. First, as mentioned above,
‘support’ for any abductive conclusion is trivial since the conclusion could not be otherwise
given the premises. In other words, unlike test evidence associated with induction, observations
of characters do not present any risk to the hypotheses explaining those characters. To assert, for
example, that characters ‘support’ some phylogenetic hypothesis verges on circularity: the
conclusion(s) is/are determined by the premises and the premises support the conclusion(s).
Second, our concern is not for groups, but rather various explanatory hypotheses. As all
phylogenetic hypotheses are composite (Fig. 3), an emphasis on groups is both artificial and
denies consideration of the variety of explanatory accounts implied by cladograms. Support in

relation to groups is epistemically meaningless.
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There is a third difficulty, faced by the two popular ‘support’ measures for phylogenetic
hypotheses [sic] (Efron, 1979; Efron & Gong, 1983; Felsenstein, 1985, 2004; Bremer, 1988,
1994; Efron & Tibshirani, 1993; Davis, 1995; Efron et al., 1996; Holmes, 2003; Soltis & Soltis,
2003; Fitzhugh, 2006a, 2012, 2016c; Lemoine et al., 2018). Neither method provides
epistemically meaningful values regarding evidential support, contrary to the popularity of their
use, or claims that they provide a basis to say phylogenetic hypotheses are ‘robust.” The
bootstrap was originally developed to test statistical hypotheses through a process of random
resampling from an original set of random samples taken from a population. The intent is to test
the hypothesis that a statistical parameter, inferred from the original samples, has the
hypothesised value, without having to perform additional sampling from the population. It is
important to note that the bootstrap approach is designed to test statistical, not explanatory
hypotheses. Phylogenetic hypotheses are not statistical constructs, as clearly shown in (4) and
(5). Like explanatory hypotheses, however, hypotheses of statistical estimates are inferred by
way of abduction. Such estimates are generalisations that account for observed instances as
representative of the population from which the sample was drawn. For example,

8) » Some balls in this bag are red

* 25% of balls in this random sample are red

* Hypothesis: 25% of all balls in this bag are red.
Testing the hypothesis would proceed by predicting what should be observed if additional
random samples are taken. Such an inference could not be deductive, but rather what Peirce
(1932: 2.268) called a ‘statistical deduction,’
9 * Hypothesis to be tested: 25% of all balls in this bag are red

* A random sample of balls will be taken from the bag
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* Predicted test evidence: 25% of balls in the sample will be red.
Notice that the prediction of test evidence in (9) is different from what is shown for the
explanatory hypothesis in (2). Statistical hypotheses are tested by seeking the same class of data
used to originally infer the hypotheses, whereas testing explanatory hypotheses requires test
evidence that is different from the effects originally used to infer the hypotheses (Fitzhugh,
2016¢, 20164d).

As suggested by Felsenstein (1985, 2004), the bootstrap method applied to phylogenetic
hypotheses involves randomly sampling characters from an original character data matrix to
create contrived data sets of the same size from which new cladograms are produced. Keep in
mind that these cladograms, as ‘bootstrap replicates,’ are not explanatory hypotheses; they are
merely branching diagrams derived from artificial data sets. Yet, it is claimed that the more often
‘clades’ (actually only branching patterns) are obtained among these ‘replicates’ that match the
original groupings indicates higher ‘support’ for those clades. This claim is, however, entirely
incorrect. The ‘bootstrap replicates’ have no epistemic relation to the original phylogenetic
hypothesis(es) under consideration, such that any measure of ‘support’ would be impossible to
ascertain. Along with the statistical, i.e., inductive, mindset that was introduced into phylogenetic
inference in the 1970’s, the bootstrap method applied to phylogenetic hypotheses was largely an
exercise in filling a perceived methodological void. Had the abductive nature of systematics been
recognised early on, and character data not confused with test evidence, the state of the field
might have avoided so many scientifically questionable schemes. The only support relevant to
cladograms is valid test evidence produced in the process of testing the various classes of

hypotheses within a (composite) phylogenetic hypothesis [Fig. 3; cf. (2), (3)]. But as noted
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earlier, such testing virtually never occurs, making the need for talk of support both gratuitous
and positively deceptive.

Just as the bootstrap provides results that cannot be interpreted as support for
phylogenetic hypotheses, the Bremer Index produces values that are equally impossible to
defend. Like the bootstrap, Bremer Index is claimed to determine support for groups, as opposed
to any particular hypotheses implied by cladograms. This support is based on the extent to which
groups or ‘clades’ are present in cladograms of ever-increasing ‘length’ beyond the original
minimum-length tree. The greater the tree length with a particular group still present is supposed
to represent greater ‘support’ for or resiliency by that group. The problem is that trees of greater
length can only be interpreted as sets of explanatory hypotheses that have no epistemic relation
to the originally inferred hypotheses. The consequence is that values provided by the Bremer
Index offer no indication of support. Once again, in the absence of actually testing hypotheses, as
indicated in (2)—(3), no evidential test support is possible for hypotheses.

Finally, an oblique yet equally specious approach to garnering support comes from
comparisons of cladograms inferred from different sets of characters, sometimes referred to as
taxonomic congruence (Fitzhugh, 2014, 2016c¢). The idea is that if tree topologies are identical,
or nearly so, this justifies a sense of greater confidence or belief in those topologies (not the
implied explanatory hypotheses). Just as was noted earlier with regard to the error of character
mapping, comparisons of cladograms are an inferentially indefensible approach. Cladograms
inferred to explain separate sets of characters are distinct compilations of explanatory constructs
that have no epistemic relevance to each other. A popular, somewhat related approach is to speak
of comparisons of past and present cladogram topologies inferred from updated compilations of

observations, remarking on the degree of similarities between groups in those topologies. The
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same basic criticism against taxonomic congruence applies here. For example, previous
abductive inferences using data set D, give composite phylogenetic hypothesis H;. With
subsequent characters added, D.,, a new composite phylogenetic hypothesis, H», is inferred. It
might seem reasonable to speak of topological similarities and differences between H, and H, but
this is a mistake. Again, H, and H, are distinct sets of explanatory hypotheses from different sets
of abductive premises. Just as there are no meaningful comparisons to be made between the
actual explanatory hypotheses implied by the different cladograms (cf. Fig. 2), there are no
relevant conclusions to be made regarding topological similarity or difference. In the absence of
recognising the nature of abduction or associated intent of those inferences, focusing on

phylogenetic tree comparisons offers no scientifically meaningful evaluation.

Sequence data and explanatory hypotheses
The pursuit of sequence data was not given consideration in this study. The reasoning behind this
decision will be outlined in this subsection. A more complete account is presented in Fitzhugh
(2016Db; see also Nogueira et al., 2017: 683-684, Lovell & Fitzhugh, 2020: 270 and Fitzhugh,
2021). Contrary to a claim made by a reviewer of an earlier draft of this paper, what is presented
in this section should not be interpreted as the assertion that we ‘do not believe in sequence data.’
Rather, our intent is to point out inherent and significant difficulties that generally preclude
causally accounting for differentially shared nucleotides or amino acids via inferences of
phylogenetic hypotheses.

The line of argument developed in this more inclusive section — establishing the basis for
systematics — follows from the fact that the goal of scientific inquiry is to continually acquire
causal understanding of phenomena, in the form of differentially shared characters of organisms,

that we encounter as well as describe. The pursuit of that understanding begins with reactions to
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those effects, in the form of implicit or explicit why-questions, and subsequently inferring
answers to those questions by way of abductive reasoning. As discussed earlier, abduction
produces hypotheses that posit possible past causal events/conditions that account for observed
effects, as shown in (1), (4), and (5). And, almost all actions in systematics are centered around
abduction as opposed to testing hypotheses via induction (Fitzhugh, 2005a, 2006a, 2006b, 2008a,
2009, 2010a, 2012, 2013, 2014, 2015, 2016a, 2016b, 2016¢, 20164d).

We pointed out earlier that composite phylogenetic hypotheses provide almost no causal
specifics among the four classes of hypotheses implied by cladograms (Fig. 3). This is a
consequence of the fact that phylogenetics computer algorithms emulate a vague form of
abduction [e.g., (4), (5)]. Consider again what the Phylogenetic theory in (4) offers regarding

character origin/fixation:

character x(1) originates by [unstated] mechanisms a, b, c... n, and becomes
fixed within the population by [unstated] mechanisms d, e, f... n (= ancestral
species hypothesis), followed by [unstated] event(s) g, 4, i... n, wherein the

population is divided into two or more reproductively isolated populations.

The cause of character fixation in an ancestral population could at a minimum be assumed to be
natural selection or genetic drift. In the absence of explicit causal specifics being presented in the
Phylogenetic theory, it would have to be assumed that either selection or drift are reasonable
causal alternatives. This equivalence is plausible for explaining phenotypic characters but cannot
be applied to sequence data. For selection to operate, whether purifying or directional, variation
among heritable traits within a population must be identified that directly result in differential
fitness among individuals. Nucleotides and amino acids lack emergent properties that could

directly manifest fitness differences (for important nuances, cf. Linquist et al., 2020). Whilst
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there are tests that can indicate whether selection has occurred in relation to sequence data, such
as the McDonald—Kreitman test (McDonald & Kreitman, 1991; Sawyer, 1994; Hey, 1999; Hurst,
2002; Biswas & Akey, 2006; Zhang & Yu, 2006; Koonin, 2012; Petrov, 2014), these tests cannot
discriminate at what organizational level selection might have been directed. It is at higher
organisational levels that phenotypic characters can result in fitness variation. If selection is a
causal factor, it comes into play due to phenotypic effects at these higher levels. Alternatively,
since there is no direct selection for sequence data, phenotypic characters have the potential to
lead to differential fitness and intergenerational selection that can influence the occurrences of
those sequence data that produce the selected characters. The result is a form of indirect
selection, termed downward causation by Campbell (1974: 180),

“Where natural selection operates through life and death at a higher level of

organisation, the laws of the higher-level selective system determine in part the

distribution of lower-level events and substances.”
Since the 1970’s the importance of downward causation has become increasingly recognised
(e.g., Vrba & Eldredge, 1984; Salthe, 1985; Lloyd, 1988; Auletta et al., 2008; Ellis, 2008, 2012,
2013; Ellis et al., 2011; Jaeger & Calkins, 2011; Laland et al., 2011; Martinez & Moya, 2011;
Davies, 2012; Okasha, 2012; Walker et al., 2012; Griffiths & Stotz, 2013; Martinez & Esposito,
2014; Walker, 2014; Mundy, 2016; Callier, 2018; Pouyet et al., 2018; Salas, 2019; Yu et al.,
2020), but its relevance to how sequence data are explained via phylogenetic hypotheses has
only recently been considered (Fitzhugh, 2016b).

If there can be no direct selection for sequence data, the issue then becomes one of
deciding to explain individual nucleotides or amino acids either directly via drift or indirectly

through downward causation. If the latter, it is first necessary to associate those sequence data
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with the higher-level phenotypic characters to which selection is the hypothesised causal
condition. Those associated sequence data would then be excluded from phylogenetic inferences
since they would already be explained in conjunction with higher-level characters (Fitzhugh,
2016b). On the other hand, it might be argued that one could avoid the issue altogether by
assuming all sequence data should be explained by drift. This would be unrealistic as it
necessitates that selection at higher organisational levels never occurs. In the absence of being
able to discriminate between drift versus selection by downward causation, the only sensible
option is to forgo altogether attempts to causally account for shared nucleotides or amino acids
by way of phylogenetic inference. Otherwise, to explain shared nucleotides or amino acids with
phylogenetic hypotheses inferred under an entirely agnostic perspective [i.e., the Phylogenetic
theory in (4)] would be epistemically and scientifically unwarranted.

The inherent limitations for inferring explanatory hypotheses for sequence data have
associated relevant consequences for mapping morphological characters on cladograms only
inferred for sequence data. As discussed earlier (Phylogenetic inference = abduction; see also
¢Fitzhugh, 2014), mapping is an epistemically unfounded approach to explaining characters. This
problem is compounded by the fact that not discriminating between genetic drift and natural
selection as possible causal factors when explaining sequence data yet again precludes rational
acceptance of phylogenetic hypotheses accounting for mapped characters.

Finally, it might appear at first sight that the exclusion of sequence data on either the
basis of downward causation or inability to distinguish drift from selection is at odds with the
requirement of total evidence (RTE; cf. Fitzhugh, 2006b, for a discussion of the RTE in relation
to systematics). Such is not the case. The RTE is a recognised maxim for all non-deductive

reasoning (the requirement is automatically satisfied in deduction), wherein rational acceptance
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of a conclusion is based on considering all relevant evidence that can affect support (either
negative or positive) for that conclusion (Carnap, 1950; Barker, 1957; Hempel, 1962, 1965,
1966, 2001; Salmon, 1967, 1984a, 1984b, 1989, 1998; Sober, 1975; Fetzer, 1993; Fetzer &
Almeder, 1993): “All that the requirement of total evidence says is that one’s confidence in a
hypothesis must be proportional to the support that that hypothesis receives from one’s
evidence...” (Neta, 2008: 91). Nearly all of the philosophical literature on the RTE has focused
on test evidence in relation to induction [cf. (3)], which is understandable given that, for
instance, to exclude known test evidence that could enhance or compromise acceptance of a
theory or hypothesis would be less than rational.

Whilst abductive reasoning has almost never figured into discussions of the RTE, the
non-deductive nature of abduction necessitates its attention (Fitzhugh, 2006b). Consider the
following example. For members of three species, a-us, b-us, and c-us, there are characters
distributed among subjects 1-3 (cf. Fitzhugh, 2006c¢):

Subjects: 1 2 3

Outgroup 0 0 0

a-us 0 1 1
b-us 1 0 1
c-us 1 1 0.

If the characters among members of a-us, b-us, and c-us are explained separately, there would be
three sets of explanatory hypotheses (outgroup is excluded), represented here in parenthetical
form:

Subject 1: (a-us (b-us, c-us))

Subject 2: (b-us (a-us, c-us))
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Subject 3: (c-us (a-us, b-us)).
The three sets of hypotheses are contradictory, and while each is supported by abductive
evidence [cf. (1)], choosing among them based on the information provided would be
problematic. This is the sort of situation the RTE is intended to address, as well as those
instances that involve other degrees of data partitioning in relation to inferring phylogenetic
hypotheses and character mapping. The nature of the abductive inferences involves explaining
features of semaphoronts, such that the observed characters are part of the integrated network
that makes up those individuals. The various phylogenetic theories applied to those characters
[cf. (1)] assume that past causes operated on individuals, not distinct characters. Thus, explaining
the characters under each subject would be relevant to explaining the other characters. The
plausibility for any of the phylogenetic hypotheses would be based on an abductive inference
where all the characters are treated as part of the premises.

Related to the topic highlighted in this subsection, it would not be a violation of the RTE
to exclude from phylogenetic inferences those sequence data for which no empirical basis is
available for discriminating drift from selection-via-downward-causation for sequence data. The
difficulty faced is not a matter that falls under the purview of the RTE, but rather an inability to

engage in abductive reasoning for a particular class of characters.

Sequence data are not more objective than other classes of observations

Consider the following statements,
“Molecular data are more objective and subject to considerably more rigor than
morphological data. DNA sequence contains four easily identified and mutually
exclusive character states—; Morphological and embryological character

definitions and scoring of character states are far more subjective, and most
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characters have been repeatedly used without critical evaluation, calling into
question the utility of morphological cladistic studies that span Metazoa-—.”

(Halanych, 2004: 230).

“As we move forward with the deep-animal tree [sic], we should not employ
morphology and developmental data to reconstruct the tree. There is too much
historical baggage and subjectivity with these data. We should reconstruct the tree
with molecular data and then use that tree to independently interpret the

morphology and development in light of that tree—” (Halanych, 2016: 325).

“We present the view that rigorous and critical anatomical studies of fewer

morphological characters, in the context of molecular phylogenies, is a more

fruitful approach to integrating the strengths of morphological data with those of

sequence data—, We argue—; that a main constraint of morphology-based

phylogenetic inference concerns the limited number of unambiguous characters

available for analysis in a transformational framework™ (Scotland et al., 2003:

539).
Taken at face value, each statement appears damning of all or most observations of features of
organisms other than sequence data in relation to inferring phylogenetic hypotheses. We have
seen throughout this section, however, that the disconnect between principles of scientific
inquiry and recent views on phylogenetic inference have led to perspectives that cannot be
defended. This outcome extends to the notion that sequence data are somehow ‘more objective,’
‘more fruitful,” or more reliable than other observations. Asserting that one class of observations
is more effective than other classes presumes that the objective of phylogenetic inference is to

obtain ‘phylogenies’ or ‘trees,” which is at odds with pursuing explanations of all relevant
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observations. If the objective of systematics is causal explanation, thus consistent with all of
scientific inquiry, then the pursuit of ‘phylogenies’ or ‘trees’ is not only contrary to that objective
but has led to erroneous inclinations in addition to the largely contrived objective/subjective
dichotomy. These erroneous pursuits include, but are not limited to (1) inferring phylogenetic
hypotheses for separate classes of characters, especially sequence data versus morphology, and
drawing comparisons between tree ‘topologies’ (cf. Phylogenetic hypotheses and the myth of
evidential support), and (2) inferring phylogenetic hypotheses for sequence data, then ‘mapping’
morphological characters on the ‘tree’ and making evolutionary claims regarding the latter
characters (cf. Phylogenetic inference = abduction). To address the claim that sequence data are
more objective or less ambiguous requires that we first consider what is meant by scientific
objectivity. Then there are several additional issues in the above quotes that need to be
addressed.

As might be expected, objectivity has multiple meanings. Useful overviews can be found
in Daston & Galison (2007), Gaukroger (2012), Reiss & Sprenger (2017), and Wilson (2017).
Common interpretations of objectivity range from the view that judgements should be (a) free of
prejudice or bias, (b) free of assumptions, and/or (¢) an accurate representation of, or
‘faithfulness’ to facts (Gaukroger, 2012). Each meaning can be applied to everyday life as well
as within fields of science. Regarding freedom from prejudice or bias, this is to speak of limiting
levels of distortion beyond what is perceived. Freedom from assumptions would be impossible to
accomplish given the theory-laden nature of observation statements and other types of
propositions: “Every instance of scientific inquiry, every study, rests on a vast submerged set of
political, moral, and ultimately metaphysical assumptions” (Wilson, 2017). Scientific objectivity

has often been interpreted along the lines of ‘faithfulness to facts’ (Daston & Galison, 2007;
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Reiss & Sprenger, 2017), where we attempt to minimise arbitrary judgements; we want to
answer questions on the basis of the most appropriate evidence we have available. Objectivity
occurs in degrees — there is no absolute objectivity, which is why objectivity cannot be equated
with truth, which is absolute. Ultimately, “While we can strive for objectivity, inquiry is
inherently subjective” (Spencer, 2020).

Reiss and Sprenger (2017) distinguish ‘product” and ‘process’ objectivity. Product
objectivity regards the products of scientific inferences, such as theories, laws, and observation
statements, as accurate representations of the external world. Process objectivity refers to
processes and methods that are not dependent on social or ethical values, or the individual biases
of the scientist. It is product objectivity that is of concern when it comes to assessing the quotes
given above, claiming sequence data are in some way more objective or less ambiguous than
other classes of observations.

There is nothing in the conception of product objectivity that would support the claim
that observation statements of morphological features are less objective than sequence data,
much less that such a contrived distinction warrants the exclusion of an entire class of
observations from the goal of systematics. Indeed, that biologists hold different interpretations of
what they perceive of the properties of organisms is not tantamount to proffering less objective
observation statements. Those statements are themselves products of abductive reasoning
(Peirce, 1935; Hoffman, 1995; Burton, 2000; Magnani, 2009; Anjum & Mumford, 2018),
constrained by one’s background knowledge, and like all hypotheses, are open to empirical
evaluation. If anything, it can be argued that sequence data are less than objective relative to
other classes of characters given the fact that attempted phylogenetic inferences explaining

differentially shared nucleotides or amino acids typically operate under the assumption that rates
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of substitution must be imposed within abductive inferences (cf. Phylogenetic inference =
abduction). That assumption carries with it the implication that observation statements of shared
characters must be treated as potentially false, hence the need to interject substitution rates
within inferences, as indicated by the all too common emphasis on branch lengths. Considering
the rule for valid reasoning — that we should assume the truth of premises, discussed earlier — the
treatment of sequence data with ‘likelihood’ and ‘Bayesian’ methods pales against any criterion
of objectivity.

Rather than focusing on the false argument from objectivity as a basis to eliminate
observations of morphological characters in need of explanation, systematists should embrace as
much as possible all relevant observations per the goal of scientific inquiry discussed earlier and
the requirement of total evidence (Fitzhugh, 2006b). Two notable exceptions to considering
explaining differentially shared characters by way of phylogenetic hypotheses come from
conditions discussed earlier: (1) why-questions addressing some characters might not be
amenable to being answered by phylogenetic hypotheses, but instead one of the other classes of
explanatory hypotheses applied in systematics (Fig. 1); (2) epistemic limitations to explaining
sequence data because of an inability to discern explanations due to genetic drift versus selection
by way of downward causation (cf. Sequence data and explanatory hypotheses). Pursuing
causality is the intent — not producing ‘trees’ or ‘phylogenies,” which are typically devoid of

causal considerations in relation to sequence data.

Outgroup and ingroup taxa

Outgroup and ingroup taxa considered in thus study include the following:
outgroups — Chaetopteridae: Phyllochaetopterus limicolus Hartman, 1960

Spionidae: Spio filicornis (Miiller, 1776)
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Prionospio ehlersi Fauvel, 1928

P. lighti Maciolek, 1985

Laonice cirrata (Sars, 1851)

ingroup —  Magelona (72 species)
Octomagelona (2 species)

The choice of outgroups ideally would follow from more inclusive phylogenetic studies from
which the immediate sister groups to Magelonidae have been ascertained. In this regard, the
merits of recent phylogenetic hypotheses are questionable. In her review of the Magelonidae,
Mortimer (2019) summarised past studies of phylogenetic relationships of magelonids to other
groups within Polychaeta. As would be expected for a group as moderately disparate as
magelonids, earlier conclusions were that they exhibit close relations with other spioniforms.
Recent phylogenetic studies based exclusively on morphological (Capa et al., 2012; Chen et al.,
2020) or sequence characters (Weigert et al., 2014; Helm et al., 2018) have, however, allied
Magelonidae with Oweniidae, while Weigert et al.’s (2016) use of mitochondrial sequences had
Magelonidae and Chaetopteridae as sister taxa. Each approach has aspects that call into question
the respective conclusions. For instance, Capa et al. (2012; see also Capa et al., 2019) cautiously
suggested a Magelonidae-Oweniidae clade based on the absence of nuchal organs, fusion of pro-
and peristomium, presence of a ventral buccal organ, and monociliated cells. The absence of
nuchal organs is not exclusive to magelonids and oweniids (Purschke, 1997, 2005). Mortimer
and Mackie (2014) and Mortimer (2019) have shown that pro- and peristomium are not entirely
fused, and the magelonid ‘burrowing organ’ is not homologous to the oweniid buccal organ
[Mortimer, 2019; see also Character descriptions, Burrowing organ (subject 14), below].

Monociliated cells have only been recorded from among members of Magelona mirabilis;
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(Bartolomaeus, 1995, N.B. fig. 1A in this publication is not M. mirabilis; Patrick et al., 2019). As
part of their description of a fossil magelonid, Chen et al. (2020: fig. 8a; see also Parry et al.,
2016) presented phylogenetic hypotheses also suggesting Oweniidae and Magelonidae are
exclusive sister taxa, but their inferences are based on an overly broad taxon coverage and the
compilation of characters is inadequate to address phylogenetic relationships of magelonids to
other polychaetes. As discussed in the previous section (Methodological considerations —
Sequence data and explanatory hypotheses), the inherent problems associated with attempting
to explain shared nucleotides or amino acids undermine the plausibility of phylogenetic
hypotheses inferred from those premises. With the emphasis on an extensive treatment of
magelonid morphological characters in this study, the greatest number of characters is shared
with members of Spionidae, making them an appropriate outgroup. Members of several genera
and species were included to accommodate variation within Spionidae. An additional spioniform
representative from the Chaetopteridae, Phyllochaetopterus limicolus, was also included.
Ideally, all currently recognised magelonid taxa would be included in inferences of the
phylogenetic hypotheses. This, however, relies on several factors. Initially, taxa were chosen
based on access to specimens, preferably type material, some of which had been observed
previously during descriptions and re-descriptions by the present authors. Specimens were
borrowed from the following institutions:
BMNH — Natural History Museum, London
MB — Museu Nacional de Historia Natural, Lisboa
MNCN - Museo Nacional de Ciencias Naturales, Madrid
MNHM - Muséum National d’Histoire Naturelle, Paris

NHMG - Gothenburg Museum of Natural History
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NHMLAC — Natural History Museum of Los Angeles County
NMW — Amgueddfa Cymru — National Museum Wales
PMBC — Phuket Marine Biological Center
SMF — Senckenberg Research Institute and Natural History Museum, Frankfurt
USNM - Smithsonian National Museum of Natural History
ZMBN — University Museum of Bergen
ZMHB — Museum fiir Naturkunde der Humboldt-Universitét zu Berlin
ZMUC - Zoological Museum, University of Copenhagen
ZUEC — Museu de Zoologia, Universidade de Campinas

Where specimens were not available for observation, the remaining taxa were chosen
based on the level of information and detail in the original descriptions. It is only comparatively
recently that the importance of illustrating and fully describing all thoracic chaetigers has been
realized for the treatment of taxa for example, and further characters defined. Thus, many of the
earliest descriptions lack much of the detail required for the current analysis. All ingroup taxa
included in the analyses are listed in Table 2, including which specimens were observed and the
institution from which they were borrowed. Table 2 also indicates whether observations were

based solely on published material.

Character descriptions

A total of 176 characters distributed among 79 subjects (Table 3; Table S1) were used to infer

phylogenetic hypotheses. Descriptions of characters are presented here.

Characters of the anterior end: prostomium (subjects 1-9)
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The form of the magelonid prostomium (subject 1) is considered a synapomorphy of the group,
the name ‘shovel head worms’ coined due to its peculiar shape. The dorso-ventrally flattened,
shovel-shaped prostomium [character 1(1), Figs. 4 and 5] is a feature not observed among
members of the outgroups or any other polychaete group. Nuchal organs (subject 2) have not
been recorded among adult members of any magelonid species [character 2(0)] but are present
among all members of the outgroups [character 2(1)].

The distal margin of the magelonid prostomium (subject 3) can vary from smooth
[character 3(0), Figs. 4A and 4F], crenulate [character 3(1), Figs. 4B and 4@ medially
indented [character 3(2), Fig. 4D]. Uebelacker & Jones (1984) stated that the presence of a
crenulated prostomial margin is an excellent character for separation of species, although the
degree of crenulation present shows great intraspecific variability. The crenulations may differ in
number and form, for example, the distinct, triangular crenulations of Magelona sp. L of
Uebelacker & Jones (1984) or M. crenulifrons (Fig. 4B), in comparison to the numerous minute
crenulations observed for M. longicornis or M. wilsoni (Fig. 4C). The crenulations among
members of some species are difficult to discern and this is perhaps the reason they have been
previously overlooked in some descriptions and erroneously reported as absent in others. The
prostomial distal margin (subject 4) may additionally vary in shape, from triangular [character
4(0), Fig. 4E], to rounded [character 4(1), Figs. 4A and 4F] or straight [character 4(2), Figs. 4G,
4H, 5C and 5E]. As subjects 3 and 4 relate directly to the shovel-shaped prostomium,
characteristic of magelonids, it does not apply to any members of the outgroups.

Horns are the distal projections of the prostomium (subject 5) that occur among members
of some species of magelonids [character 5(1)], such as Magelona pacifica (Fig. 5A), or M.

montera (Fig. 5B). Uebelacker & Jones (1984) drew attention to this character for the initial
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separation of magelonid species. When present, horns can vary in size/shape (subject 6), from
rudimentary [character 6(0), Figs. 4G, 4H, 5C and 5E], such as those observed among members
of M. variolamellata and M. alleni (often described as a squared anterior margin), or
conspicuous structures as seen among members of species such as M. posterelongata [character
6(1), Fig. 5D]. In the latter case, these are often very distinct from the distal prostomial margin.
Prostomial horns do not occur in the outgroups, thus subjects 5 and 6 are not applicable.

Several authors have identified dimensions of the prostomium (subject 7) as an important
feature in the separation of magelonid species (Hartman, 1944; Wilson, 1958, 1959; Jones, 1963,
1971, 1978; Uebelacker & Jones, 1984; Bolivar & Lana, 1986; Blake, 1996; Mortimer, 2019).
According to Uebelacker & Jones (1984), the general shape and relative dimensions are fairly
constant within each species, something which the current authors are in agreement.
Consequently, the ratio of width to length was used to recognise three prostomial characters:
prostomium longer than wide [character 7(0), Figs. 4A, 4F, 5B and 5D], as wide as long
[character 7(1), Figs. 4B, 4D and 4G], and wider than long [character 7(2), Figs. 4C, 4H and 5E].
Members of three species within the outgroups (Spio filicornis, Prionospio lighti and P. ehlersi)
are considered to possess prostomia which are longer than wide [character 7(0)], whilst members
of Phyllochaetopterus limicolus and Laonice cirrata have prostomia which are wider than long
[character 7(2)].

Magelonid prostomia carry paired ‘muscular’, dorsal longitudinal ridges (subject 8),
which extend from the base of the prostomium towards the distal tip [character 8(1)]. Jones
(1968) stated that their “inner surfaces, particularly dorsally and ventrally, are provided with
longitudinal muscles,” describing them as hollow, cylindroid structures, which he presumed were

fluid filled. The number of prostomial ridges (subject 9) varies from one pair [character 9(0),
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Fig. 4H], such as members of Magelona equilamellae or two pairs [character 9(1), Figs. 4A—C,
4E and 5B], as observed among members of M. pacifica (Fig. 5A). The ridges may vary in size
and distinctiveness, the outer pair among members of some species being more difficult to
discern, e.g., M. alleni (Fig. 4G), to the distinct and transversely ridged structures seen in, for
example, members of M. wilsoni (Fig. 4C). Prostomial ridges are not present among members of

the outgroups [character 8(0)] and thus subject 9 is not applicable.

Characters of the palps (subjects 10—13)

Magelonids possess two long palps, considered to be peristomial, arising from the larval
prototroch (Wilson, 1982). There has been much discussion about palp origin (subject 10), since
they are ventrally inserted [character 10(1), Figs. 4F and 5G], rather than dorsally [character
10(0)], the latter of which is seen among members of all other polychaete groups with palps,
including the outgroups. In addition, the palps do not have the characteristic feeding groove seen
among members of other taxa such as spionids and Myrioweni%@wever, an inconspicuous
ventral line devoid of papillae is generally present. According to Orrhage (1966), palps among
members of the Spionidae and Magelonidae are homologous because they are innervated by
nerves from the same part of the brain. More recently Beckers et al. (2019) stated that two nerves
innervate the palps of members of the Magelonidae, Spionidae, Chaetopteridae and Oweniidae,
indicating the purported plesiomorphic condition in Annelida.

Magelonid palp surfaces (subject 11) are uniquely papillated, with ampulliform to
digitiform papillae arranged in rows along the longitudinal axis [character 11(1), Figs. 4H, 5B
and SF—H]. Members of the outgroups, along with all other polychaetes possess non-papillated
palps [character 11(0)]. Although the number of rows of papillae varies among members of

magelonid species, it is relatively stable among members of any particular species. As papillae
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are involved in obtaining food (Jones, 1968; Fauchald & Jumars, 1979; Mortimer & Mackie,
2014), variations in number of papillae may reflect different feeding strategies. In general, the
number of rows of papillae are fewer distally in comparison to proximally (Jones, 1963, 1971,
1978). The number of rows of papillae in the proximal region of the palp (subject 12) were
coded as three characters: two rows of papillae [character 12(0)], 4-8 rows [character 12(1)], and
10—14 rows [character 12(2)]. The number of rows of papillae at the distal end (subject 13) were
coded for 2 [character 13(0)], 4 [character 13(1)], or more than 4 rows [character 13(2)]. Where a
range was observed among members of a species, the maximum number of rows was the value
used. As with palps in other polychaete groups, those of magelonids are easily lost upon
collection. Many descriptions do not include information about them, whilst others do not detail
differences in number of papillae along the palp length. Many authors have undervalued the
importance of palp characteristics in the descriptions of members of species. These two factors
present the largest problem in coding these subjects. It should be noted that the number of rows
of papillae may vary in animals with regenerating palps, particularly at the distal tips, thus
affecting the ranges observed. Subjects 12 and 13 are not applicable to members of the outgroups

since papillated palps are unique to magelonids.

Burrowing organ (subject 14)

Magelonids have long been described to possess a ventral eversible proboscis. A heart-
shaped sac (when fully everted; oval when only partially everted), carrying longitudinal ridges
(Mortimer, 2019: fig. 4.2.4). However, recent studies show that this structure plays no part in
feeding (and is not connected to the buccal region) but functions in burrowing only (Mortimer,

2019). The term ‘burrowing organ’ should be applied to this structure. The burrowing organ is
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present in members of all known magelonid species [character 14(1)] but not present in any

members of the outgroups [character 14(0)].

Characters of body regionation (subjects 15-16)

The body of magelonids (subject 15) is divided into an anterior region comprising the
head and ‘thorax’ (the latter of which is characterised by the presence of capillary chaetae), and
an ‘abdomen’ comprising many segments with hooded hooks [character 15(1)] (Figs. 6A and
11A). As an aside, the terms thorax and abdomen are ill-defined when applied to polychaetes
overall, other than to vaguely indicate anterior-posterior distinctions along the body.
Unfortunately, the characters associated with these regions are not uniformly applied across all
of Polychaeta.

The body of members of the outgroups do not have this regionation [character 15(0)].
Behind the head region (subject 16), the thorax carries an achaetous first segment, followed by
either eight [character 16(0), Octomagelona; Fig. 6] or nine [character 16(1), Magelona; Figs.

11, 15 and 16] chaetigers (Fig. 11A). Subject 16 does not apply to members of the outgroups.

Characters of thoracic parapodia (subjects 17-30)

Unique terminology introduced and later modified by Jones (1963, 1971, 1978) has been applied
to the family, particularly related to parapodial structures (Fig. 7). Brasil (2003: fig. 4) provided
a comprehensive review of this terminology and problems related to inconsistencies in applying
terms. Consequently, several authors have suggested its abandonment (Rouse, 2001; Mortimer &
Mackie, 2003). Magelonid chaetigers possess biramous parapodia with lamellae in both the noto-
and the neuropodia. Lamellae are generally postchaetal, flattened structures that range from
filiform to foliaceous in shape. They encircle the chaetal bundle, attaching to a low, triangular or

rounded prechaetal lamella, almost cuff-like (Fig. 8A). However, among members of some
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species, the lamellae are somewhat subchaetal in position, underneath the chaetal bundle and
appearing somewhat U-shaped when viewed laterally (Figs. 8B, 8D). All members of all species
in the ingroup and outgroups have postchaetal noto- and neuropodial lamellae in
thoracic/anterior chaetigers (subjects 17 and 19, respectively) except for Phyllochaetopterus

limicolus, in which they are absent [characters 17(0) and 19(0)].

S

The development of notopodial (subject 18) and neuropodial lamellae (subject 20) along
the anterior chaetigers may be similar in all chaetigers [characters 18(0) and 20(0), respectively],
such as among members of Magelona papillicornis, and M. minuta (Fig. 7A), or vary along the
thorax [characters 18(1) and 20(1), respectively]. Subjects 18 and 20 are considered inapplicable
to members of all species in the outgroups. The variation in degree of development can be easily
observed among members of M. obockensis (Fig. 7C), and M. conversa (Fig. 7D), in both the
noto- and neuropodia, whilst among members of Octomagelona bizkaiensis it is evident only in
the neuropodia (Fig. 6E). The lamellae of chaetigers eight and nine often vary in comparison to
those of the first seven chaetigers, e.g., M. crenulifrons, and M. johnstoni (Fig. 91). Thus,
characters of the lamellae of the first seven chaetigers were coded separately (subjects 21-30) to
those for chaetiger eight (subjects 34—40), and chaetiger nine (subjects 41—49).

The notopodial lamellae in chaetigers 1-7 (subject 21) may be postchaetal [character
21(0); noted also for members of the outgroups, except Phyllochaetopterus limicolus, for which
the subject is not applicable] or subchaetal [character 21(1)], whilst neuropodial lamellae

(subject 26) may be postchaetal [character 26(0); observed for members of the outgroups, except
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P. limicolus, for which the subject is not applicable], subchaetal [character 26(1)] or prechaetal
[character 26(2)]. Prechaetal neuropodial lamellae, such as are observed among members of
Magelona conversa and M. mirabilis (Figs. 7D and 8C), are less frequent than both post- (Fig.
7A) or subchaetal (Fig. 9E). The position of the thoracic neuropodial lamellae (subject 27) may
be consistent throughout the thorax [character 27(0)], or may vary [character 27(1)], e.g., being
prechaetal on chaetiger 1, occurring in a ventral position in the mid-thorax, and distinctly
postchaetal in the posterior thorax (Figs. 8F and 8G). This subject was not considered applicable
to members of the outgroups.

Thoracic notopodial lamellar shape (subject 22) may be filiform, having a long, tapering
structure [character 22(0), Figs. 9A, 9B and 9G] or more foliaceous [character 22(1), Figs. 9C—
F]. The margins of the latter (subject 23) may be smooth [character 23(0)], crenulate [character
23(1), e.g., M. montera, Figs. 9D and 9E] or biebe [character 23(2), e.g., M. obockensis, Fig.
9F]. All members of the outgroups are considered to have foliaceous [character 22(1)], smooth-
edged [character 23(0)] anterior notopodia, except for members of Phyllochaetopterus limicolus
for which subjects 22 and 23 are not applicable. Above the notopodial lamellae and in a slightly
prechaetal position, superior dorsal lobes (subjects 24, 25, 37, 45) (dorsal medial lobes ef Jones)
may be present (Figs. 7C, 7D, 8D, 8E and 9C—F) or absent [characters 24(0), 37(0), 45(0)].
These structures are generally smaller than the notopodial lamellae and somewhat cirriform to
digitiform in shape. However, among members of some species they may be larger and distinctly
foliaceous. When present, superior dorsal lobes may be present on all thoracic chaetigers
[characters 25(1), 37(1), 45(1)], on chaetigers 1-8 only [characters 25(1), 37(1), 45(0)], or only
occurring on a small number of thoracic chaetigers [often starting in the mid-thoracic region,

e.g., M. johnstoni or M. conversa, character 25(0), Fig. 7D]. Superior dorsal lobes are absent
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among all members of the outgroups on chaetigers 1-9 (thus subject 25 is not applicable), and
subjects 24, 25, 37 and 45 are considered inapplicable for Phyllochaetopterus limicolus.

The shape of thoracic neuropodial lamellae (subject 28) may be filiform [character 28(0),
Figs. 7C, 8F and 8G] or foliaceous [character 28(1), Fig. 9C, also seen in members of the
outgroups, excluding Phyllochaetopterus limicolus, for which the subject is not applicable]. The
distal ends (subject 29) of whieh may be pointed [character 29(0)], as among members of M.
equilamellae (Figs. 8F and 8QG), or distally expanded and scoop-shaped [character 29(1)] as
observed among members of M. cincta (Figs 9H). The latter subject is not applicable to members
of the outgroups. The lengths of noto- and neuropodial lamellae (subject 30) may be equivalent
[character 30(0), Fig. 9G], the notopodial lamellae may be longer [character 30(1), Figs. 9D-F],
or the neuropodial lamellae may be longer [character 30(2), Fig. 7D], e.g., chaetiger 8 of M.
conversa. The thoracic notopodial lamellac among members of the outgroups, Prionospio lighti
and P. ehlersi are longer than neuropodial lamellae [character 30(1)], whilst for members of Spio
filicornis and Laonice cirrata they are equivalent [character 30(0)]. Subject 30 is not applicable

to P. limicolus.

Characters of the chaetae from chaetigers 1-8 (subjects 31-33)

Capillary chaetae (subject 31) occur only in the thorax of magelonids (Figs. 6, 11, 15 and 16),
but many authors have undervalued the differences between them, describing them simply as
limbate capillary chaetae (Hartman, 1944, 1961, 1965; Nateewathana & Hylleberg, 1991). Jones
(1977) was one of the few authors who referred to the presence of unilimbate [character 31(0),
Fig. 10C] and bilimbate capillary chaetae [character 31(1)] in descriptions of members of
species. For some individuals, both unilimbate and bilimbate chaetae have been recorded,

however, the predominate form in each case was coded in the current analysis. Bolivar & Lana
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(1986) and Blake (1996) additionally noted some members of species possess bilimbate chaetae
(subject 32) with an irregular blade [character 32(1)], such as Magelona variolamellata (Fig.
10E), and Brasil (2003) additionally noted it to occur among members of species such as M.
riojai (Fig. 10D), M. pacifica and M. pitelkai. Members of the outgroups possess unilimbate
capillary chaetae [character 31(0)], whilst subject 32 is not applicable. Additional to the
limbations of capillary chaetae, the relative lengths of noto- and neurochaetae may vary (subject
33). Either being equivalent in length [character 33(0)] e.g., M. nonatoi, longer in the notopodia
[character 33(1)], e.g., M. sacculata, or longer in the neuropodia [character 33(2)], e.g., M.
variolamellata. For members of Phyllochaetopterus limicolus, Spio filicornis and Prionospio
lighti, chaetae are longer in the notopodia [character 33(1)], whilst for members of Laonice
cirrata and P. ehlersi they are equivalent in length [character 33(0)]. In some members of
magelonid species chaetae of all thoracic chaetigers are similar, however, in others the chaetae of
the ninth chaetiger are modified. For this reason, the chaetae were coded collectively for the first

eight chaetigers, and separately for chaetiger nine (see below).

Characters of parapodia of chaetiger 8 (subjects 34—40)

As described above, development of lamellae in the magelonid thorax may be similar on all
chaetigers or vary between them. For members of species in which they vary, the parapodia of
chaetigers 8 and 9 in particular may show larger differences in comparison to preceding
chaetigers. However, the same characters that were coded for the first seven chaetigers can be
applied to the posterior-most thoracic chaetigers. The notopodial lamellae (subjects 34—36) of
chaetiger 8 may be postchaetal [character 34(0)] or subchaetal [character 34(1)] in position
relative to the chaetal bundle, filiform [character 35(0)] or foliaceous [character 35(1)] in shape,

with smooth [character 36(0)], crenulate [character 36(1)] or bilobg[character 36(2)] margins.
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Subjects 3436 are considered not applicable to members of Phyllochaetopterus limicolus.
However, remaining members of the outgroups possess postchaetal [character 34(0)], foliaceous
[character 35(1)] parapodia with smooth margins [character 36(0)]. Superior dorsal lobes
(subject 37) may be absent [character 37(0)] or present [character 37(])]. The neuropodial
lamellae (subjects 38—40) of chaetiger 8 may be postchaetal [character 38(0)], subchaetal
[character 38(1)] or prechaetal [character 38(2)] in position relative to the chaetal bundle, and
may be filiform [character 40(0)] or foliaceous [character 40(1)] in shape. However, an
additional postchaetal expansion (subject 39), often triangular in shape, as is seen among
members of Magelona montera (Fig. 9D) is sometimes observed in the neuropodia of chaetiger 8
(and 9, see below) [character 39(1)]. Subjects 38—40 are considered not applicable to members of
Phyllochaetopterus limicolus. Members of Spio filicornis, Prionospio lighti, P. ehlersi and
Laonice cirrata have postchaetal [character 38(0)], foliaceous [character 40(1)] neuropodia in

chaetiger 8, without an additional postchaetal expansion [character 39(0)].

Characters of the parapodia of chaetiger 9 (subjects 41-49)

For chaetiger 9, observed characters were coded in the same way as for chaetiger 8. The
notopodial lamellae pf chaetiger 9 may be postchaetal [character 41(0)], or subchaetal [character
41(1)] in position in comparison to the notochaetae, and may be filiform [character 43(0)] or
foliaceous [character 43(1)] in shape, with smooth [character 44(0)], crenulate [character 44(1)]
or bilobg [character 44(2)] margins. Members of the outgroups possess postchaetal [character
41(0)] notopodia chaetiger 9 which are foliaceous [character 43(1)], with smooth margins
[character 44(0)]. However, subjects 41, 43 and 44 are not applicable to Phyllochaetopterus

limicolus. Superior dorsal lobes may be present [character 45(1)] or absent [character 45(0)].
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The neuropodial lamellae pf chaetiger 9 may be postchaetal [character 46((y], subchaetal
[character 46(1)] or prechaetal [character 46(2)] in position in comparison to the chaetal bundle,
and filiform [character 48(0)] or foliaceous [character 48(1)] in shape. As with chaetiger 8, an
additional postchaetal expansion may be absent [character 49(0)] or present [character 49(1)].
Members of the outgroups possess foliaceous [character 48(1)], postchaetal [character 46(0]
lamellae without an additional postchaetal expansion [character 49(0)], except for P. limicolus
for which these subjects are not applicable.

The parapodia in chaetiger 9 among members of some magelonid species may be
markedly different in comparison to preceding chaetigers. For example, the lamellae in chaetiger
9 among members of Magelona johnstoni (Fig. 91) are much broader and lower [characters 42(0)
and 47(0)] in comparison to the elongate lamellae of chaetigers 1-8 in both the noto- and
neuropodia, and the elongate lamellae of chaetiger 9 amongst members of other species, e.g., M.
equilamellae [characters 42(1) and 47(1), Fig. 7B]. For this reason, additional subjects were
added to accommodate the height of lamellae in both rami of chaetiger 9 (subjects 42 and 47).
As members of Octomagelona species only possess eight thoracic chaetigers these subjects were
coded as inapplicable for these taxa and additionally for members of Phyllochaetopterus
limicolus. Members of Spio filicornis possess broad and low parapodia in chaetiger 9 [characters
42(0) and 47(0)], whilst for members of Prionospio lighti, P. ehlersi and Laonice cirrata they are

more elongate [characters 42(1) and 47(1)].

Characters of the chaetae of chaetiger 9 (subjects 50-51)
The chaetae of chaetiger 9 in magelonids may be similar to or vary from those of chaetigers 1-8
(subjects 50 and 51). They may be the same length [character 50(0), as in the outgroups],

shorter than [character 50 (1)], or longer than those of chaetigers 1-8 [character 50(2)]. The
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distal ends of chaetiger 9 chaetae may be gently tapered as is seen in the preceding chaetigers
[character 51(0), Figs. 8F and 8G] (observed also for members of the outgroups), or have
distinctly mammiform, expanded, mucronate tips [character 51(1), Figs. 7C, 7D, 91 and 10F—H]
such as among members of Magelona johnstoni and M. mirabilis. In members of other species,
the distal ends are pennoned [character 51(2), Fig. 101], such as M. pitelkai, M. hobsonae, and M.

hartmanae.

Characters of the thoracic region (subjects 52—-53)

Whilst many authors have noted the often-marked difference between thoracic and abdominal
regions in magelonids (Figs. 8B and 15A), other characteristics of the thoracic region have been
largely overlooked. Mortimer (2019) noted that among members of certain magelonid species,
the thoracic interparapodial margins (subject 52) may be characteristically bulbous and rounded
[character 52 (1), Fig. 11A], as seen among members of Magelona alleni, whilst among
members of others, such as M. johnstoni, they are straight [character 52(0), Fig. 11B]. Members
of the outgroups possess straight thoracic interparapodial margins [character 52(0)].

Uebelacker & Jones (1984) first coined the phrase ‘oblique lateral slits’ (subject 53) in
relation to members of their undescribed species Magelona sp. I from the Gulf of Mexico. Later,
Bolivar and Lana (1986) described ‘sulcos latero-dorsais’ (dorso-lateral slits) and ‘sulcos
transversais’ (transverse slits) for members of M. variolamellata (Fig. 11C). Brasil (2003) used
the term dorsal furrows/grooves, highlighting them to be present also among members of M.
polydentata [character 53(1)], whilst herein, the term dorso-lateral grooves is utilised. Brasil
(2003) stated that they vary in number, position, and location, and they were noted to be absent
in the majority of members of magelonid species [character 53(0)] and are additionally absent

among members of the outgroups.
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Dimensions of post-chaetiger 9 segments (subject 54)

Uebelacker & Jones (1984) described posterior segments that are much longer than wide
[character 54(1), Fig. 12A] among members of an undescribed species, Magelona sp. H, from
the Gulf of Mexico. Later, M. posterelongata was the first species with individuals formally
described with this feature. Many authors have ignored this characteristic, a problem
compounded by the difficulty in collecting entire specimens. A further problem in coding this
character is that abdominal chaetigers may vary in proportion along the length of the posterior, It
is believed, however, that the majority of magelonid species possess abdominal chaetigers equal
in length and width, or only marginally longer than their width; a characteristic shared with

members of the outgroups [character 54(0)].

Characters of the parapodia of post-chaetiger nine segments (subjects 55-59)

The abdominal region of magelonids consists of many chaetigers carrying biramous parapodia.
In contrast to the thorax, the abdominal lamellae of the notopodia and neuropodia are generally
symmetrical and of similar size and shape in both rami. The abdominal region starts at chaetiger
9 for members of Octomagelona (Fig. 6) and chaetiger 10 for members of Magelona (Fig. 11A)
and 1s marked by a change in chaetal type, from capillary chaetae to hooded hooks. Abdominal
lamellar shape (subject 55) varies among members of species, from triangular to rounded. They
may be basally constricted [those with rounded lamellae, character 55(1), Figs. 12C, 12H], or
without a basal constriction, being broad based [character 55(0), Fig. 12B]. The latter situation
being generally observed among members of species possessing more triangular lamellae,
tapering to pointed tips (Fig. 12D). Subject 55 is not applicable to members of
Phyllochaetopterus limicolus, however all other members of the outgroups have lamellae without

a basal constriction [character 55(0)].
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At the inner margins of chaetal rows, triangular to digitiform processes (subject 56) may
be present [character 56(1), Figs. 12C, 12F, 12H, 121I]. Jones termed these structures dorsal
medial lobes (DML) for notopodia and ventral medial lobes (VML) for neuropodia. Uebelacker
and Jones (1984) believed that they may occur universally throughout the family, but this is a
viewpoint not shared by the current authors. They are absent [character 56(0)] in members of the
outgroups, however, this subject is considered not applicable to Phyllochaetopterus limicolus. In
members of magelonid species, the size of the medial lobes in the abdomen vary widely, from
minute and difficult to discern, to long and conspicuous structures, e.g., among members of
Magelona montera. For comparison, the medial lobes were coded depending on their height
relative to abdominal hooded hooks (subject 57): character 57(0) for members of species in
which they are smaller than the hooks and character 57(1) when they are larger than the hooks.
The latter subject is not applicable to the outgroups.

The abdominal lamellae may extend behind chaetal rows (subject 58). This postchaetal
expansion (previously termed the interlamella) is often more conspicuous in the anterior
abdomen and when present [character 58(1), Figs. 12C, 12E and 12H] it may be rounded to
triangular. Among members of species in which it is absent [character 58(0), Figs. 12B, 13D and
14B], the abdominal hooded hooks arise from a distinct ridge (Figs. 12B and 13E). Postchaetal
expansions are absent among members of the outgroups, whilst in members of
Phyllochaetopterus limicolus the subject is considered inapplicable.

As stated above, abdominal lamellae (subject 59) in magelonids are generally
symmetrical in size and shape [character 59(0), Figs. 12D and 12H] as in members of the

outgroups. However, in some magelonids, such as members of Magelona alleni, the lamellae are

Peer] reviewing PDF | (2021:05:61394:0:1:NEW 20 May 2021)



PeerJ

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

sub-equal between the two rami [character 59(1), Fig. 12G]. This subject is inapplicable to

members of Phyllochaetopterus limicolus.

Characters of lateral abdominal pouches (subjects 60—65)

Lateral pouches (subject 60) are present among members of some species of magelonids, located
laterally between the parapodia of certain abdominal chaetigers [character 60(1)]. Their presence
[character 60(1)] or absence [character 60(0)] is often a key diagnostic feature, although their
function is currently unknown (Jones, 1968; Mortimer & Mackie, 2014). Pouches vary in
morphology, direction of opening, number, and location. However, descriptions of these
structures have generally been limited, often only indicated as being present or absent. Fiege et
al. (2000) described two types of lateral pouch: Z-shaped occurring in the anterior abdomen,
generally paired, and opening anteriorly, whilst C-shaped pouches were noted to occur on
median and posterior abdominal chaetigers, opening posteriorly and occurring in pairs or singly.
Mortimer (2010) suggested these terms should be abandoned to enable variations to be better
understood, and subsequently, Mortimer & Mackie (2014) and Mortimer (2019) detailed further
pouch morphologies. Following the latter authors, lateral pouches when present, were coded
based on six subjects: arrangement of pouches (subject 61), direction of pouch openings
(subject 62), posteriorly open lateral pouch arrangement (subject 63), lateral pouch distribution
(subject 64), and margins of posteriorly open pouches (subject 65). Firstly, pouches are either
all paired [character 61(0), Fig. 13C] or unpaired [character 61(1), Fig. 13B], or both types are
present [character 61(2), Fig. 13A]. Secondly, both anteriorly and posteriorly opening pouches
are present [character 62(1), Figs. 13A, 13E and 13G], e.g., members of Magelona johnstoni, or
only posteriorly open pouches are present [character 62(0), Figs. 13B and 13C]. Posteriorly open

pouches may occur on alternate segments [character 63(1), Fig. 13B], or on consecutive
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segments [character 63(0), Fig. 13C], or alternatively, they may be present on both consecutive
and alternating chaetigers at varying points along the abdomen [character 63(2)], e.g., members
of M. pulchella. Fiege et al. (2000) described the first occurrence of lateral pouches on the body
as an important distinguishing character between members of species and is relatively easy to
observe. In members of some species, lateral pouches are present throughout most of the
abdomen [character 64(0)], whilst in others they are present only on median and posterior
chaetigers [character 64(1)], and in others restricted to the posterior abdomen only [character
64(2)] (Mortimer & Mackie, 2014). Whilst the margins of most posteriorly open pouches are
smooth [character 65(0)], in members of some species, such as M. pacifica, they are medially slit
[character 65(1), Fig. 13H]. One of the biggest problems in coding these characters is the lack of
information known about the posterior regions of many magelonids, whilst some pouches are
present throughout most of the abdomen and are therefore likely to be recorded even in
posteriorly incomplete specimens. For members of species in which pouches only occur in the
extreme posterior region, pouches are likely to be recorded as absent if individuals are described
from anterior fragments only. Lateral pouches are present [character 60(1)] in members of
outgroups, Laonice cirrata and Prionospio ehlersi. These are paired [character 61(0)],
posteriorly open [character 62(0)] and with smooth margins [character 65(0)]. They occur on
consecutive segments [character 63(0)] on median and posterior chaetigers [character 64(1)].

Lateral pouches are absent [character 60(0)] in the remaining members of the outgroups.

Characters of post-chaetiger 9 chaetae (subjects 66—74)
Magelonids possess hooded hooks in the abdominal region (subject 66), located between the
lamellae and medial lobes (when present). They are present [character 66(1)] in members of all

magelonid taxa and members of the outgroup except Phyllochaetopterus limicolus [character
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66(0)]. In magelonids, hooded hooks generally occur in one row per ramus, but recent studies
suggest that they can occur in two rows, at least in the medial part of the rami (Mortimer et al.,
2020) (Fig. 14B for members of M. equilamellae). Although, this may prove to be an important
characteristic in future studies, due to lack of information for the majority of species this was not
considered in this study.

The dentition of abdominal hooks (subject 67) may be bidentate [character 67(0), e.g.,
members of Magelona minuta and M. papillicornis, Figs. 14C and 14D] with one secondary
tooth above the man fang, tridentate [character 67(1), Fig. 14E], with two secondary teeth above,
or polydentate [character 67(2)], having three or more secondary teeth above the main fang.
Quadridentate, pentadentate, and hexodont hooks (Figs. 14F—H) have been recorded among
Magelonidae, with some polydentate individuals carrying more than one type of hook. Where
members of species have been recorded with more than one, the dentition which predominates
was coded. For example, members of M. minuta are recorded to possess the odd sporadic
tridentate hook (Mills & Mortimer, 2018), but carry predominately bidentate hooks. Members of
the outgroup Spio filicornis possess bidentate [character 67(0)] hooded hooks, whilst members of
Prionospio lighti, P. ehlersi and Laonice cirrata possess polydentate hooded hooks [character
67(2)]. This subject is not applicable to members of Phyllochaetopterus limicolus, which have
uncini.

Jones (1971) was the first author to draw attention to the fact that in members of some
species the hook at the base of the lamellae (subject 68) may be smaller than the others
[character 68(1), Figs. 12E and 141]. Later it has been suggested that not only their size but also
their appearance may indicate groups of closely related species (Magelona pitelkai, M.

hobsonae, M. hartmanae, M. dakini, M. filiformis, M. capensis). However, Brasil (2003), upon
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re-examination of the holotypes of the first four species, observed no differences in shape, only
differences in size. Among members of other magelonid species, the hook at the base of the
lamellae is of equivalent size to the rest [character 68(0), Fig. 13D]. The subject is not applicable
to members of the outgroups.

Uebelacker & Jones (1984) first reported the presence of enlarged chaetae (subject 69) in
the abdominal region of members of four undescribed species from the Gulf of Mexico;
Magelona sp. C, possessing an enlarged recurved hook with a minute apical tooth in each ramus;
Magelona sp. D, with enlarged hooded apical spines (Fig. 12F); Magelona sp. E, possessing
large bidentate hooks akin to ‘ordinary’ hooks; and lastly Magelona sp. H, with large unidentate
recurved spines. Hernandez-Alcantara & Solis-Weiss (2000) formally described members of two
of these species (Magelona spp. D and H) as Meredithia spinifera and M. uebelackerae,
respectively, erecting the new genus based on this distinctive feature. The authors stated that
“although this character is the only one that differentiates this group from the other species
described in this monogeneric group, it is sufficiently distinctive to make it a valid generic level
character.” However, Mortimer & Mackie (2003) felt that stronger evidence for recognising
other genera within the family was needed, preferring to follow Uebelacker & Jones (1984) by
including species with enlarged abdominal chaetae in Magelona, and synonymising Meredithia
with Magelona. Two additional species with enlarged abdominal chaetae have since been
described: Magelona magnahamata and Magelona falcifera. For the current analysis, the
presence [character 69(1)] and absence [character 69(0)] of enlarged chaetae in the abdomen was
noted as well as the morphology of the distal ends (subject 70), i.e., recurved [character 70(0),

Fig. 14K], spine-like [character 70(1)], or an enlarged normal hook [character 70(2)]. Enlarged
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hooks are not present in members of the outgroups [character 69(0)], therefore subject 70 is not
applicable (together with subject 69 for Phyllochaetopterus limicolus).

The number of hooded hooks per ramus in abdominal chaetigers (subject 71) is variable
and characters distinguished as eight or more hooks per ramus [character 71(0), e.g., members of
Magelona equilamellae, Fig. 14B, and members of outgroups Prionospio lighti, P. ehlersi and
Laonice cirrata], and less than eight [character 71(1), Fig. 14]J], such as among members of M.
papillicornis and members of outgroup Spio filicornis. This separation in number was based on
the examinations of specimens from a number of different species and assessing several
chaetigers of the same specimen. As variations in the number of hooks have been observed along
the length of the abdomen (e.g., members of M. papillicornis have a higher number of hooks in
the mid-abdominal region), the number of hooks was counted in the anterior abdomen. Subject
71 is not applicable for members of Phyllochaetopterus limicolus. Hooks may be arranged in two
formations (subject 72): occurring in two groups per ramus with main fangs arranged face-to
face (vis-a-vis) [character 72(0), Figs. 12C, 12G, 12H, 14B and 14J], or in unidirectional rows
(vis-a-dos) with main fangs pointing in one direction [character 72(1), Fig. 13D]. Vis-a-vis
orientation is more common among members of the Magelonidae, whilst vis-a-dos is present for
all members of the outgroups (subject 72 is not applicable to P. limicolus).

Neuropodia with sabre chaetae (subject 73) are present [character 73(1)] among
members of the spionid outgroups. Such chaetae are absent [character 73(0)] among members of
Phyllochaetopterus limicolus and all ingroup species.

Internal support chaetae, or aciculae (subject 74), have been reported among members of
several magelonid species. These curved and slender chaetae support the bases of the lamellae,

and it is possible that they are more prevalent among members of species with larger abdominal
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lamellae. The proximal ends of the aciculae may overlap in the junction between the noto- and
neuropodia (Figs. 12C and 12H). Notes on their presence [character 74(1)] or absence [character
74(0)], as well as their description, are poorly reported in the literature. Jones (1978) stated that
all magelonid abdominal chaetigers are supported by these structures, although this is not an
observation supported by the current authors. Aciculae are generally more conspicuous in larger
specimens, whilst slide preparations of parapodia may be necessary for smaller individuals. The
relative obscurity of aciculae may be a factor in the limited inclusion in descriptions of

specimens. Aciculae are absent in all members of the outgroups [character 74(0)].

Characters of body pigmentation (subjects 75-76)

Among members of some species pigmentation in the posterior thorax (subject 75) is evident
even in fixed material [character 75(1)], often deep reddish to brown in colour. Very little is
known about this character beyond presence or absence [character 75(0)]. When pigment is
present, there are two patterns of distribution (subject 76). Among members of some species,
such as Magelona alleni and M. equilamellae, the pigment forms a distinct band [character
76(0), Figs. 15A and 15C], often from chaetigers 4/5 to 8; among members of other species only
light, dispersed pigmentation in posterior chaetigers is noted [character 76(1)], e.g., members of
M. symmetrica. Moreover, members of Magelona sp. 5 from West Africa are noted to have
distinct stripy pigmentation over much of the body (Fig. 15B). Pigmentation on the palps of
members of some species, such as M. mirabilis, has been noted (see Mills & Mortimer, 2019:
fig. 4.2.6). However, insufficient information is currently available to enable coding of this

character. Relevant pigmentation is absent in members of the outgroups [character 75(0)].

Characters of granular bodies (subjects 77-78)
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The surfaces of segments can have granular bodies (subject 77) appearing as spots, distributed in
a variety of patterns on both the thorax and abdomen, and remain upon fixation and preservation
of material [character 77(1), Figs. 6A, 9H and 15C]. Jones (1971) felt that this characteristic had
no systematic significance. However, patterns appear to be species specific, particularly those of
the thoracic region. The latter may appear as transverse stripes (Fig. 16A) or distinct smaller
circular regions adjacent to the parapodia (Fig. 16B). Abdominal interparapodial areas
commonly have granular bodies occurring in patches (subject 78) [character 78(1), Figs. 16C
and 16D] among members of Magelonidae and may cover a large part of the lateral region
between parapodia of adjacent chaetigers. Both thoracic and abdominal bodies may stain with
dyes such as Rose Bengal, or be highlighted by methyl green, in which the granules appear white
against the contrasting stain (Figs. 16B and 16C). Whilst staining patterns can be extremely
useful in separating members of species (Figs. 11D, 11E and 16A), it was not included in the
current study. However, it may prove useful in the future, as more methyl green patterns are
described. Granular bodies and abdominal interparapodial areas are absent in members of the

outgroups [character 77(0), character 78(0)].

Tube construction (subject 79)

In general, magelonids are relatively motile, burrowing more or less continually through
sediments (Jumars et al., 2015), without constructing tubes [character 79(0)]. However, members
of several species are known to build distinct multi-layered tubes covered in sand [character
79(1), Fig. 16E]. Mills & Mortimer (2019) investigated the permanency of these tube-lined
burrows among members of the European species, Magelona alleni. Members of some species,
such as M. filiformis, have been described living in fragile tubes of a secretion to which sand

grains adhere. These are not considered as tubes per se, but are believed to be the worm’s
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response to removal from its habitat. Members of the outgroups, Spio filicornis and
Phyllochaetopterus limicolus, are known to build distinct tubes [character 79(1)], whilst the

situation is unknown for members of Prionospio lighti, P. ehlersi and Laonice cirrata.

Characters not included, but of possible future consideration

Prostomial features

Magelonid prostomia may carry distinct markings on either side of the dorsal muscular ridges
(Figs. 4A, 4C-E, 5A, 5B and 5E), the pattern of which is generally species specific, whilst
members of other species show no obvious markings (Figs. 4G and 4H). Although this can be an
important diagnostic feature, this was not included in the current analysis due to difficulties in

adequately describing this character.

Thoracic chaetae

Mills & Mortimer (2018) highlighted differences in the number of thoracic chaetae among
members of different species, and additionally observed variations in number of chaetae on
different chaetigers of the same animal for members of several magelonid species. They noted
that members of some species, such as Magelona cincta, have distinctly splayed chaetae in the
posterior thorax when compared to members of other species. Whilst these three characteristics
may prove to be useful, limited information is currently available, prohibiting their use in the

current study.

Features of the thoracic region
More recently, several additional characteristics of the thoracic region have been noted.

Mortimer & Mackie (2009) and Mortimer (2019) described distinct V- and X-shaped ventral
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markings in the mid-thoracic region of members of species such as Magelona crenulifrons and
M. pulchella (Figs. 11D and 11E). Among members of other magelonid species, thoracic ventral
pads/swellings have been recorded, such as those observed among members of M. mirabilis
(Mortimer & Mackie, 2014) or M. obockensis (Mortimer, 2010). These swellings may be oval to
reniform in shape (Figs. 11F and 11G). However, occurrence of these two features in members
of the majority of species is unknown.

Although, the constriction at the thorax/abdomen junction can be marked and may vary
between species, the extent to which it is constricted can be greatly influenced by preservation
and fixation and was not considered herein. Despite this, however, it is a character worthy of
further study, and should be detailed more fully in future descriptions. Brasil (2003) indicated
that members of Octomagelona present a constriction despite lacking a 9th ‘thoracic’ chaetiger,
suggesting that the character may not simply indicate a transition between the thorax and the

abdomen.

Whilst average length and the average number of chaetigers appear to be species specific,
the lack of information for members of many species prohibits this as a character in the analysis
at the present time. Many individuals of magelonid species are described from anterior fragments
only. The breadth of individuals, however, may prove an important character. Members of
species like Magelona minuta, true to their name, rarely attain widths greater than 0.5 mm, being
somewhat long and slender. Members of species such as M. alleni are distinctly broad and stout,
often measuring over 1 mm in width (Mortimer et al., 2021). Additionally, Mills & Mortimer
(2019) indicate that stouter magelonid species generally are shorter in comparison to width and

have a fewer number of chaetigers. This is something which warrants further investigation.

Abdominal hooded hooks
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Mills & Mortimer (2018) highlighted differences in the angle between the main fang and
secondary teeth in abdominal hooded hooks of members of several magelonid species and
further suggested characteristics such as the width and roundedness of the main fang, and the
angle between it and the axis of the hook shaft, as noted for example by Jones (1963, 1977), may

prove useful in future studies.

Pygidium

Magelonids possess a pair of digitiform pygidial cirri on either side of the pygidium (Figs. 16F
and 16G). Uebelacker & Jones (1984) noted the presence of three pygidial cirri on individuals of
an undescribed species, Magelona sp. B, from the Gulf of Mexico, however, it is believed that
the third cirrus may actually represent the elongated, rounded tip of the pygidium itself. As this is
the only magelonid that has been described with this feature, the number of pygidial cirri was not
included in this study. Mills & Mortimer (2019) noted that pygidial cirri of members of M. alleni
were more truncate and triangular (Fig. 16H) in comparison to other magelonids, however, this is
something that warrants further investigation.

Whilst Rouse (2001) stated that the magelonid anus is terminal, early illustrations from
Mclntosh (1878) of members of Magelona mirabilis (possibly M. johnstoni; see Fiege et al.,
2000) clearly show the anus in a distinctly ventral position. Unfortunately, for members of many
species the pygidium is unknown, or the amount of information provided by authors has been
relatively limited. When included in descriptions, the pygidium is often drawn from a dorsal
perspective, thus conclusions about the position of the anus are often difficult to make. Mills &
Mortimer (2019) investigated the situation among members of five European species, concluding
that the anus was ventral in members of four species, whilst in the latter, M. alleni, it was

distinctly terminal in position (Fig. 16H). Subsequently, Mortimer et al. (2021) have noted that
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members of Magelona sp. 5 from West Africa also have a terminal anus. Whilst this may prove
to be a valuable character in subsequent studies, the lack of information among individuals of

many species precludes inclusion in the current study.

Inferring phylogenetic hypotheses

Phylogenetic inferences were performed using PAUP* 4.0b10 (Swofford, 2001), with all
observations weighted equally and multiple subject—predicate relations (‘multistate characters’)
treated as non-additive (Table S1). The following command string was executed (Larkin et al.,
2006; Fitzhugh, 2010b; Fitzhugh et al., 2015; Nogueira et al., 2010; Nogueira et al., 2013):
hsearch enforce = no start = stepwise addseq = random nreps = 100000 nchuck = 5 chuckscore =
1; hsearch enforce = no start = current chuckscore = no. As noted earlier in Methodological
considerations, the commands used are not tantamount to what has been incorrectly called
‘parsimony analysis.” Rather, implementation of these commands is consistent with abductive
reasoning for the purpose of causally accounting for differentially shared characters by way of
common causes as fully as possible. Character transformation series were examined using

Mesquite 3.61 (Maddison & Maddison, 2011).

RESULTS

The phylogenetic inference using data in Table S1 produced 2,417,600 cladograms of 404 steps
each. The consistency index for each is 0.243 and retention index is 0.744. The strict consensus
tree for all cladograms is shown in Fig. 17. What is notable is the mix of clades and grades
within the monophyletic Magelonidae. A consequence of the overall arrangements of these
phylogenetic hypotheses is that there can be no generic-level phylogenetic hypotheses that can

be formally named without also incurring paraphyletic taxa. The result, as will be pointed out in
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the DISCUSSION, is that the only (composite) phylogenetic hypothesis that can be formally
recognised is Magelonidae. The Magelonidae clade involves seven phylogenetic hypotheses
referring to the following respective characters:

1. Shovel-shaped prostomium: absent (0) — present (1)

2. Nuchal organs: present (1) — absent (0)

8. Prostomial ridges: absent (0) — present (1)

10. Palp origin: dorsal (0) — ventral (1)

11. Palp surface: non-papillate (0) — papillate (1)

14. Burrowing organ: absent (0) — present (1)

15. Body regionation: non-magelonid (0) — magelonid-like (1).

The present results indicate that Octomagelona cannot be maintained, given that the clade
is nested within Magelona. And while the arrangements of the phylogenetic hypotheses among
all the cladograms impose severe limits that only allow for formally recognising Magelonidae,
there are no phylogenetic hypotheses to which the type genus Magelona refer. The implications
of these results will be addressed in the DISCUSSION.

In addition to the Magelonidae, there are 20 additional clades, indicated by letters a
through t in Fig. 17, from which phylogenetic hypotheses deserve mention. None of these clades
can be formally named, given the various grade groups also present among the cladograms.
Whilst serving as synapomorphies for these clades, those characters that are homoplasious
(including reversals and convergence) are denoted by an asterisk (*):

Clade a — 22. Chaetigers 1-7 notopodial lamellae shape: foliaceous (1) —

filiform (0)*

26. Chaetigers 1-7 neuropodial lamellae position relative to 5
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1590 postchaetal (0) — subchaetal (1)*

1591 28. Chaetigers 1-7 neuropodial lamellae shape: foliaceous (1) —

1592 filiform (0)*

1593 Clade b — 5. Prostomial horns: present (1) — absent (0)*

1594 20. Development of neuropodia along thorax: different in some chaetigers,
1595 (1) — all similar (0)*

1596 26. Chaetigers 1-7 neuropodial lamellae position relative to s

1597 subchaetal (1) — postchaetal (0)*

1598 30. Chaetigers 1-7 lengths of noto- and neuropodial lamellae: notopodial
1599 longer (1) — equivalent (0)*

1600 Clade ¢ — 4. Prostomium distal shape: straight (2) — triangular (0)*

1601 6. Shape of prostomial horns: rudimentary (1) — distinct (0)*

1602 46. Chaetiger 9 neuropodial lamellae position: postchaetal (0) —

1603 subchaetal (1)*

1604 Clade d — 67. Post-chaetiger 9 noto- and neuropodial hooded hooks dentition:

1605 bidentate (0) — tridentate (1)*

1606 Clade e — 16. Number of anterior body region chaetigers: nine (1) — eight (0)

1607 18. Development of notopodia along thorax: all similar (0) — different in
1608 some chaetigers (1)*

1609 Clade f — 29. Chaetigers 1-7 neuropodial filiform lamellae shape distal ends:

1610 pointed (0) — distally expanded/scoop shaped (1)

1611 60. Post-chaetiger 9 lateral pouches: absent (0) — present (1)*

1612 Clade g — 22. Chaetigers 1-7 notopodial lamellae shape: filiform (0) — foliaceous (1)*
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1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634

1635

35. Chaetiger 8 notopodial lamellae shape: filiform (0) — foliaceous 35(1)*

55. Post-chaetiger 9 lamellae shape: without basal constriction (0) — with

basal constriction (1)*

Clade h — 12. Number of rows of proximal palp papillae: 10-14 (2) — 4-8 (1)*

Cladei —

43. Chaetiger 9 notopodial lamellae shape: filiform (0) — foliaceous (1)*
75. Pigmentation in posterior thorax: present (1) — absent (0)*

18. Development of notopodia along thorax: different in some chaetigers (1)

— all similar (0)*

45. Chaetiger 9 dorsal superior lobes: absent (0) — present (1)*

Clade j — 38. Chaetiger 8 neuropodial lamellae position: subchaetal (1) — prechaetal

Clade k -

Clade ] -

Clade m —

2)*

60. Post-chaetiger 9 lateral pouches: absent (0) — present (1)*

22. Chaetigers 1-7 notopodial lamellae shape: foliaceous (1) — filiform (0)*

57. Post-chaetiger 9 dorsal medial lobes length: smaller than hooks (0) —
longer than hooks (1)*

68. Post-chaetiger 9 hooded hooks adjacent to notopodial subchaetal
or neuropodial suprachaetal lamellae: same size (0) — smaller than rest
(D*

46. Chaetiger 9 neuropodial lamellae position: subchaetal (1) — prechaetal
2)*

4. Prostomium distal shape: straight (2) — rounded (1)

5. Prostomial horns: present (1) — absent (0)*

42. Chaetiger 9 notopodial lamellae height: elongate (1) — low (0)*
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50. Lengths of chaetiger 9 fascicles relative to chaetigers 1-8 fascicles:
same length as chaetae in chaetigers 1-8 (0) — shorter than chaetae in
chaetigers 1-8 (1)
51. Distal ends of chaetae in chaetiger 9: gently tapered, similar to
chaetigers 1-8 (0) — mucronate (1)
55. Post-chaetiger 9 lamellae shape: with basal constriction (1) —
without basal constriction (0)*
61. Post-chaetiger 9 lateral pouch arrangement: unpaired (1) — both
paired and unpaired (2)*
62. Direction of lateral pouch openings: posteriorly (0) — posteriorly
and anteriorly (1)*
Clade n— 13. Number of rows of distal palp papillae: four (1) — two (0)*
Clade 0 — 36. Chaetiger 8 margins of foliaceous notopodial lamellae: smooth (0) —
bilobe (2)
44. Chaetiger 9 notopodial foliaceous lamellae margins: smooth (0) —
crenulate (1)*
Clade p— 72. Post-chaetiger 9 arrangement of hooded hooks: vis-a-vis (0) — vis-a-dos
(H*
Clade q — 52. Shape of thoracic interparapodial margins: straight (0) — rounded,
bulbous (1)*
60. Post-chaetiger 9 lateral pouches: present (1) — absent (0)*

Clade r — 26. Chaetigers 1-7 neuropodial subchaetal lamellae position relative to

ael varying in position along thorax (1) — same position
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along thorax (0)*
41. Chaetiger 9 notopodial lamellae positions: postchaetal (0) — subchaetal
(D*
Clade s — 57. Post-chaetiger 9 dorsal medial lobes length: smaller than hooks (0) —
longer than hooks (1)*
Clade t— 7. Prostomium dimensions: longer than wide (0) — wider than long (2)*
33. Chaetigers 1-8 lengths of noto- and neuropodial capillary chaetae:

equivalent (0) — neuropodial longer (2)*

DISCUSSION

A point mentioned in the RESULTS is that only one composite phylogenetic hypothesis can be
formally recognised, i.e., Magelonidae. There can be no phylogenetic hypothesis(es) to which
the name Magelona refers that is not redundant with Magelonidae. From a nomenclatural, as
opposed to strictly scientific perspective, this assertion is contrary to what is required by the
International Code of Zoological Nomenclature (ICZN; 1999): at least one formal name at the
rank of genus must be established relative to the ranks of family and species. The present results
offer another good example (see also Fitzhugh, 2008a, 2010b; Nogueira et al., 2010; Nogueira et
al., 2017) of the conflict that can occur between the science of biological systematics and a
mandated international nomenclature system that is not entirely aligned with the goal of that
science. Compromise between these two positions currently favours the nomenclatural system,
but by properly acknowledging that formal taxon names should be defined in terms of being
explanatory hypotheses (cf. Methodological considerations), the conflict between naming and

scientific practice can be somewhat mitigated. Emendations of the formal names Magelonidae,
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Magelona, and Octomagelona in relation to the phylogenetic hypotheses inferred in this study

are presented below.

Morphological characters in future specimen descriptions

Various authors have discussed the ‘crucial morphological characters’ in differentiating members
of magelonid species. Jones (1963), in his review of magelonids of the Gulf of Mexico listed six:
(1) the fine structure of the hooded hooks of the posterior region (subject 67); (2) the presence or
absence of prostomial horns (subject 5); (3) the presence or absence of medial lamellae in the
posterior region (subject 56); (4) the presence or absence of specialised chaetae of various types
on chaetiger 9 (subject 51); (5) the morphology of the anterior lateral lamellae (subjects 18-30,
34-49); and (6) the relative dimensions of the prostomium (subject 7). Blake (1996) listed seven
‘principal diagnostic characters important in differentiating species,” adding to Jones’ list the
following: (7) presence or absence of dorsal median lobes on thoracic notopodia (subjects 24, 37,
45, superior dorsal lobes); (8) presence and location of lateral pouches between abdominal
segments (subjects 60, 64); and (9) the presence/absence and form of interlamellae on abdominal
parapodia (herein termed the postchaetal expansion behind chaetal rows, subject 58). Brasil
(2003: fig. 23) concluded that the position and form of noto- and neuropodial lamellae, and the
division of the thorax into three different blocks of segments (i.e., A — all anterior chaetigers with
identical morphology; B — first eight chaetigers being identical but possessing a ninth chaetiger
having a distinct morphology; and C — in which the first seven identical chaetigers differ from
chaetigers eight and nine) reflected the relationships found within clades and sub-clades within
the family.

Of the characters previously mentioned, the current results suggest those of particular

importance to be included in future descriptions of members of species argthe presence/absence
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of prostomial horns (in addition to their form, i.e., distinct or rudimentary; the relative
dimensions of the prostomiumgthe morphology of the anterior lamellae, including
presence/absence of superior dorsal lobesgthe presence/absence of specialised chaetae on
chaetiger 95 and the presence of lateral abdominal pouches. As highlighted by Brasil (2003), the
thoracic lamellae are extremely diagnostic. Great care must be taken to fully describe and
illustrate all thoracic chaetigers in descriptions, taking into account the size, shape and position
of thoracic lamellae and whether/how they vary along the thorax. Often variations in position of
the lamellae may be subtle between thoracic parapodia, particularly that of filiform subchaetal
neuropodial lamellae. It is particularly important to examine the parapodia of chaetigers 8 and 9.
In addition to the characters already highlighted, the prostomial distal shape (subject 3),
the number of prostomial ridges (subject 9), the shape of thoracic interparapodial margins
(subject 52), the arrangement of abdominal lateral pouches (subject 63) and the arrangement of

abdominal hooded hooks (subject 72) warrant further investigation and inclusion in descriptions.

Systematics

Magelonidae Cunningham & Ramage, 1888, emended

Type genus. Magelong, by monotypy.

Definition. A composite phylogenetic hypothesis (Fig. 17), causally accounting for (a) presence
of a shovel-shaped prostomium, (b) absence of nuchal organs, (¢) presence of prostomial ridges,
(d) ventral palps with (e) papillate surfaces, (f) presence of a burrowing organ, and (g)

magelonid-like body regionation.
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Within a reproductively isolated population of individuals in the past, the following
causal events occurred: (a") the presence of a shovel-shaped prostomium [character 1(1)]
originated by unspecified mechanism(s) among individuals with a rounded prostomium
[character 1(0)], subsequent to which the novel character became fixed in the population by an
unspecified mechanism(s); (b") the loss of nuchal organs [character 2(1)] originated by
unspecified mechanism(s) among individuals with nuchal organs [character 2(0)], subsequent to
which the novel character became fixed in the population by an unspecified mechanism(s); (c’)
the presence of prostomial ridges [character 8(1)] originated by unspecified mechanism(s)
among individuals with no ridges [character 8(0)], subsequent to which the novel character
became fixed in the population by an unspecified mechanism(s); (d") the presence of ventrally
inserted palps [character 10(1)] originated by unspecified mechanism(s) among individuals with
dorsal palps [character 10(0)], subsequent to which the novel character became fixed in the
population by an unspecified mechanism(s); (e") the presence of palps with papillae [character
11(1)] originated by unspecified mechanism(s) among individuals with smooth palps [character
11(0)], subsequent to which the novel character became fixed in the population by an unspecified
mechanism(s); (f') the presence of a burrowing organ [character 14(1)] originated by unspecified
mechanism(s) among individuals without such an organ [character 14(0)], subsequent to which
the novel character became fixed in the population by an unspecified mechanism(s); (g’) the
magelonid-like body [character 15(1)] originated by unspecified mechanism(s) among
individuals without such body regionation [character 15(0)], subsequent to which the novel
character became fixed in the population by an unspecified mechanism(s). Following character
origin/fixation events (a')—(g') was a population splitting event by unspecified mechanism(s)

leading to individuals to which subsequent phylogenetic and specific hypotheses refer.
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Remarks. Results of the phylogenetic inferences by Brasil (2003: figs. 45 and 46; Fig. 18)
acknowledged the monophyly of Magelonidae based on three of the synapomorphies also
referred to in this study (cf. RESULTS): presence of a spade-shaped prostomium [character
1(1); phylogenetic hypothesis a’ in the above Definition] and ventral insertion of papillated palps
[characters 10(1), 11(1); phylogenetic hypotheses d" and ¢', respectively, in the above
Definition]. Fauchald and Rouse (1997: 103) stated evidence for monophyly of the Magelonidae
as “Palps with rounded cross-section and a subdistal expanded area covered with papillae.
Prostomium shovel-shaped.” They additionally added that “chaetiger 9 often modified with
unusual postchaetal lobes or different chaetae from those segments in front or behind it or both.”
This does not, however, follow for all members of species within the Magelonidae.
The most basal group in the phylogenetic study by Brasil (2003) (Fig. 18: eladed) was

that containing members of five species: Magelona californica, M. minuta, M. pettiboneae, M.
papillicornis and Magelona sp. C of Uebelacker & Jones (1984). Members of these species
possess postchaetal lamellae [characters 21(0), 26(0), 34(0), 38(0), 41(0), 46(0)] of equivalent
size [character 30(0)] in both rami of thoracic chaetigers. Clade b in the current study (Fig. 17)
contains the same five species, along with members of five additional species: M. falcifera, M.
fauchaldi, M. magnahamata, M. phyllisae and M. pygmaea. As well as the characters highlighted
by Brasil (2003), individuals in this clade possess smooth [characters 23(0), 36(0), 44(0)],
filiform [characters 22(0), 28(0), 35(0), 40(0), 43(0), 48(0)] lamellae without superior dorsal
lobes [characters 24(0), 37(0), 45(0)]. They also have prostomia the widths approximately
equivalent to their lengths [character 7(1)], with straight [character 4(2)] and smooth [character
3(0)] prostomial anterior margins, but only one pair of prostomial ridges [character 9(0)]. As the

names of two species within the clade highlight, i.e., M. minuta and M. pygmaea, members of
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these species rarely attain the sizes seen in members of other magelonid species and are slender
and thread-like. No lateral abdominal pouches have been recorded among members of these
species [character 66(0)], although as noted above (cf. Character descriptions) this should be
accepted with caution since lateral abdominal pouches are likely underreported within the
family. As noted by Mills & Mortimer (2018) for members of M. minuta, granular bodies
[subject 77(1)] appear as distinct transverse stripes in the thoracic region, and spots or stripes of
this kind are certainly reported in over half of these species. This is a character worthy of further
investigation.

The analysis by Brasil (2003: fig. 47; Fig. 18) highlighted a elade- V-2 containing
members of eight species: Magelona mirabilis, M. johnstoni, M. riojai, M. crenulata, Magelona
sp. B of Uebelacker & Jones (1984), M. obockensis, M. jonesi and M. sacculata. The
synapomorphies of the clade include the presence of mucronate chaetae [character 51(1)] and
abdominal hooded hooks in a vis-a-dos orientation [character 72(1)], the latter of which is
uncommon amongst members of Magelonidae. Clade m (Fig. 17) in the present study includes
all the above species (except M. jonesi which will be discussed below) and additionally members
of M. conversa, M. debeerei, M. parochilis, Magelona sp. A of Uebelacker & Jones (1984) and
M. tinae. Members of these species possess longer than wide prostomia [character 7(0)], with
rounded [character 4(1)], smooth anterior margins [character 3(0)], carrying two pairs of
prostomial ridges [character 9(1)] but lacking prostomial horns [character 5(0)]. The
development of lamellae along the thorax is different [characters 18(1), 20(1)], particularly the
lamellae of chaetiger 9 which are low and broad [characters 42(0), 47(0)] in comparison to the
elongate lamellae of preceding chaetigers. In addition to the chaetae of chaetiger 9 being

mucronate, they are shorter than those occurring on chaetigers 1-8 [character 50(1)]. Lateral
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abdominal pouches are always present [character 60(1)] and whilst members of several species
within the clade possess both anteriorly and posteriorly open pouches [characters 62(1)], only the
latter is present in members of other species [character 62(0)]. Clade m is further divided into
clades o and p (Fig. 17), separating the species based on arrangement of abdominal hooks (clade
0 with vis-a-vis and clade p with vis-a-dos).

As noted above, Magelona jonesi in the present study is plesiomorphic to all magelonid
species in clade a (Fig. 17). However, despite possessing tapering chaetae in chaetiger 9

[character 51(0)], similar to preceding chaetigers, in the analysis of Brasil (2003) members of M.

Jjonesi occurred in e synapomorphies of which were the presence of mucronate
chaetae [character 51(1)] and abdominal hooded hooks in vis-a-dos orientation. Members of this
species are in need of redescription and this may help to resolve the situation in a future study. It
is perhaps the orientation of the abdominal hooded hooks which is in most need of examination.
Whilst Hartmann-Schroder (1980) illustrated the abdominal hooks in a vis-a-dos orientation, she
made no mention of that orientation in her description. Looking at her neuropodial figures
(Hartmann-Schréder, 1980: figs. 116 and 117), several hooks are drawn facing anteriorly. It has
been recently highlighted by Mortimer et al. (2020) that M. filiformis, a species also originally
recorded as possessing vis-a-dos hooks and occurring in elade-VHE3, of Brasil (2003: fig. 47;
Fig. 18) along with M. pacifica, has in fact a vis-a-vis orientation. This misinterpretation of
orientation can happen in members of species in which the hooks are not split equally between
the two groups of a ramus, particularly if the quality of the material is poor. This warrants further
clarification for M. jonesi and also M. pacifica. Unfortunately for the latter species, the

abdominal hooks in the type material are mostly all broken (Mortimer et al., 2012) making it

extremely difficult to discern. This may explain why these three species, M. jonesi, M. filiformis

Peer] reviewing PDF | (2021:05:61394:0:1:NEW 20 May 2021)


user
Tachado

user
Texto de reemplazo
clade VIII.3 
[in bold]


user
Tachado

user
Texto de reemplazo
clade VIII.3
[in bold]

user
Nota adhesiva
Above it is said that it occurred in clade VIII.2. In Brasil (2003) it is also stated to occur in clade VIII.2, and in a secondary clade designated as clade VIII.4. Please, revise this, and write the correct designation of the clade using bold. 


PeerJ

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

and M. pacifica were part of clade VIII.2 with members of species possessing mucronate chaetae
in Brasil’s (2003) study.

Clade Kk in the current results (Fig. 17) contains members of five species: Magelona
dakini, M. filiformis, M. hartmanae, M. hobsonae and M. pitelkai. They share similarities in
possessing prostomia which are longer than wide [character 7(0)], with straight [character 4(2)],
smooth anterior margins [character 3(0)] formed into rudimentary horns [character 6(0)], and
which carry two pairs of prostomial ridges [character 9(1)]. Individuals have similar
development of lamellae along the thorax in the notopodia [character 18(0)] but varying
development in the neuropodia [character 20(1)]. They possess smooth edged [characters 23(0),
36(0), 44(0)], filiform thoracic lamellae [characters 22(0), 28(0), 35(0), 40(0), 43(0), 48(0)]
which are larger in the notopodia [character 31(1)], and basally constricted abdominal lamellae
[character 55(1)]. Posteriorly open lateral abdominal pouches are reported [character 60(1)] in all
but one species, M. hobsonae, however members of this species are only known from short
anterior fragments, so this character needs verification. Members of three species, M. hartmanae,
M. hobsonae and M. pitelkai, within this clade also possess pennoned chaetae of chaetiger 9
[character 51(2)].

Perhaps worth of noting is clade n (Fig. 17), which includes members of species
possessing prostomia with distinct horns [character 6(1)], triangular anterior margins [character
4(0)] and two pairs of prostomial ridges [character 9(1)]. Specimens also possess foliaceous
notopodial thoracic lamellae [characters 22(1), 35(1), 43(1)] which are larger than the
neuropodial lamellae [character 30(1)]. Superior dorsal lobes are present on chaetigers 1-8
[characters 24(1), 37(1)]. The thoracic neuropodial lamellae are filiform [characters 28(0),

40(0),48(0)] with additional postchaetal expansions on chaetigers 8 and 9 [characters 39(1),
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49(1)] (N.B. the latter needs verifying in Magelona anuheone). Abdominal lamellae are rounded
with basal constrictions [character 55(1)]. Whilst nothing more can be concluded from clade r
(Fig. 17), which contains numerous polytomies, characters such as prostomial width may prove
to be important characters in other clades. Clade t contains members of four species (Fig. 17),
M. berkeleyi, M. lenticulata, M. wilsoni and Magelona sp. J of Uebelacker & Jones (1984),
which all have wide prostomia [character 7(2)], rounded bulbous thoracic interparapodial

margins [character 52(1)], and lack abdominal lateral pouches [character 60(0)].

Magelona F. Miiller, 1858, emended

Meredithia Hernandez-Alcantara & Solis-Weiss, 2000EJ

Octomagelona Aguirrezabalaga, Ceberio & Fiege, 2001

Definition. There is no phylogenetic hypothesis to which this genus-rank name refers (Fig. 17).
The consequence is that ICZN (International Commission on Zoological Nomenclature, 1999)
Article 13.1.1, where a name must be ‘accompanied by a description or definition that states in

words characters that are purported to differentiate the taxon,” cannot be reasonably applied.

Remarks. The name Magelona, lacking any associated phylogenetic hypothesis, is an empty
placeholder that is only recognised to satisfy the requirement that species names be binomial. If
one wishes to insist on a definition for the name Magelona or list of characters that ‘differentiate
the taxon,’ those would have to be identical to what is provided for Magelonidae.
Hernandez-Alcéntara & Solis-Weiss (2000) introduced the genus Meredithia for
members of species possessing large hooded recurved spines on abdominal chaetigers [Table 3:
character 69(1)], adding the two species M. spinifera and M. uebelackerae. However, the nature

of the enlarged chaetae differ among members of the two species; members of M. spinifera
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possessing enlarged spines [Table 3: character 70(1)], whilst members of M. uebelackerae
possess unidentate, enlarged re-curved hooks [Table 3: character 70(0)]. The descriptions of
specimens with enlarged abdominal chaetae, but which differ greatly in other aspects (e.g.,
lacking prostomial horns and in the nature of the thoracic lamellae), called the validity of the
genus into question (Mortimer & Mackie, 2003). Subsequently in the phylogenetic analysis
performed by Brasil (2003) it was concluded that Meredithia is paraphyletic, which is in
agreement with the current results. Herein, members of species possessing enlarged chaetae
appear in three separate clades (Fig. 17: clades b, ¢ and r), and the two species originally
assigned to Meredithia are split between clades ¢ and r. Magelona falcifera, M. magnahamata
and Magelona sp. C of Uebelacker & Jones (1984) (clade b) are all species with members
lacking prostomial horns, whilst M. uebelackerae, Magelona sp. E of Uebelacker & Jones (1984)
(clade c) and M. spinifera (clade r) all possess distinct prostomial horns. The present results
further support the synonymisation of Meredithia with Magelona.

Results of the phylogenetic inferences by Brasil (2003: fig. 45) additionally shed doubt
on the validity of Octomagelona, with O. bizkaiensis and an undescribed species from Mexico as
a paraphyletic group nested within Magelona and closely related to species such as My
variolamellata, M. equilamellae, Magelona sp. 1 of Uebelacker & Jones (1984) and M.
polydentata. This finding is in agreement with the current analysis, indicating that Octomagelona
cannot be maintained (Fig. 17). Whilst members of Octomagelona may differ from other
members of Magelona in possessing only eight thoracic chaetigers, they share similarities with
members of some species in terms of possessing a prostomium which is wider than long
[character 7(2)], with rudimentary horns [character 6(0)], but with only one pair of prostomial

ridges [character 9(0)], filiform subchaetal thoracic lamellae in the noto- and neuropodia
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[characters 21(1), 22(0), 26(1), 28(0)], without superior dorsal lobes [characters 24(0), 37(0),

45(0)] and abdominal lamellae without basal constrictions [character 55(0)].
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Table 1. Forms of questions leading to ab-, de-, and inductive inferences, and respective

answers provided by those inferences.

Question Inferential Reaction Conclusion (= answer)

‘Why is Y the case in contrast to

Abduction, cf. (1) Explanatory hypothesis
X?’
‘What consequence(s) are
Deduction, cf. (2) Potential test evidence
expected if hypothesis 4 is true?’
‘Should hypothesis / be Hypothesis confirmation /
Induction, cf. (3)
accepted as true?’ disconfirmation
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Sources from which character data were obtained for this study. Museum abbreviations
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1 Table 2. Sources from which character data were obtained for this study. Museum

2 abbreviations are explained in the text.

Species

Material

M. alexandrae Magalhaes, Bailey-

Brock & Watling, 2018

Original description plus photos provided by

the authors

M. alleni Wilson, 1958

Holotype: BMNH
1958.5.2.1 Paratypes: BMNH

1958.5.2.2-10

M. annulata Hartmann-Schroder, 1962

Original description

M. anuheone Magalhdes, Bailey-Brock

& Watling, 2018

Original description plus photos provided by

the authors

M. berkeleyi Jones, 1971

Original description

M. californica Hartman, 1944

Original description

M. cepiceps Mortimer & Mackie, 2006

Holotype: NMW.Z.2000.020.0209 paratype:

NMW.Z.2000.020.0208

M. cerae Hartman & Reish, 1950

Original description

M. cincta Ehlers, 1908

Holotype (ZMHB 4531)

M. cinthyae Magalhaes, Bailey-Brock

& Watling, 2018

Original description plus photos provided by

the authors

M. conversa Mortimer & Mackie, 2003

Holotype: NMW.Z.2000.020.0001

Paratypes: NMW.Z.2000.020.0002-0007

M. cornuta Wesenberg-Lund, 1949

Holotype, (ZMUC-POL-969; ZMUC-POL—

963)
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M. crenulata Bolivar & Lana, 1986

Original description

M. crenulifrons Gallardo, 1968

Paratypes: (ZMUC-POL-1416- 1421)

M. dakini Jones, 1978

Original description

M. debeerei Clarke, Paterson, Florence

& Gibbons, 2010

Original description

M. equilamellae Harmelin, 1964

Syntypes: (SMF 4675

M. falcifera Mortimer & Mackie, 2003

Holotype: NMW.Z.2000.020.0009
Paratypes: NMW.Z.2000.020.0008,

NMW.Z.2000.020.0010-0017

M. fauchaldi Shakouri, Mortimer &

Dehani, 2017

Holotype: NMW.Z.2015.012.0002a
Paratypes: NMW.Z.2015.012.0001-0002;

NMW.Z.2010.037.0002-0006

M. filiformis Wilson, 1959

Holotype: BMNH 1959.4.2.1

Paratypes: BMNH 1959.4.2.2-10

M. gemmata Mortimer & Mackie, 2003

Holotype: NMW.Z.2000.020.0019
Paratypes: NMW.Z.2000.020.0018;

NMW.Z.2000.020.0020

M. hartmanae Jones, 1978

Original description

M. hobsonae Jones, 1978

Original description

M. johnstoni Fiege, Licher & Mackie,

2000

Cited material from original description from

NMW collections

M. jonesi Hartmann-Schroder, 1980

Original description

M. lenticulata Gallardo, 1968

Original description
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M. lusitanica Mortimer, Gil & Fiege,

2011

Holotype: SMF 9246/1
Paratypes: MB29-000176-000181;

NMW.Z.2010.010.0001-0006; SMF 9245/1

M. magnahamata Aguado & San

Martin, 2004

Original description

M. mahensis Mortimer & Mackie, 2006

Holotype: NMW.Z.2000.020.0188
Paratypes: NMW.Z.2000.020.0176-0187;

NMW.Z.2000.020.0189-0193

M. marianae Hernandez-Alcantara &

Solis-Weiss, 2000

Original description

M. minuta Eliason, 1962

Holotype: NHMG Polych. 11491

Additional material: USNM 52510

M. mirabilis (Johnston, 1865)

Cited material from original description from

NMW collections

M. montera Mortimer, Cassa, Martin &

Gil, 2012

Holotype: MNHN A895

M. nonatoi Bolivar & Lana, 1986

Original description

M. obockensis Gravier, 1905

Syntypess MNHN Type 1357

M. pacifica Monro, 1933

Syntypes: BMNH Type 1933.7.10.65/70

M. papillicornis F. Miiller, 1858

Redescription [242]

M. parochilis Zhou & Mortimer, 2013

Holotype: ECSFRI100532
Paratypes: ECSFRI100533-535;

NMW.Z.2012.033.0001
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M. paulolanai Magalhaes, Bailey-Brock

& Watling, 2018

Original description plus photos provided by

the authors

M. pettiboneae Jones, 1963

Original description

M. phyllisae Jones, 1963

Original description

M. pitelkai Hartman, 1944

=)
Original descriptyor

M. polydentata Jones, 1963

Original description

M. posterelongata Bolivar & Lana,

1986

Original description

M. pulchella Mohammad, 1970

Holotype: BMNH 1969.391

M. pygmaea Nateewathana &

Hylleberg, 1991

Paratype: PMBC 4220
Additional material: PMBC 4234; PMBC

4227; PMBC 4241

M. riojai Jones, 1963

Original description

M. sacculata Hartman, 1961

Holotype: NHMLA: LACM-AHF POLY 596

M. sinbadi Mortimer, Cassa, Martin &

Gil, 2012

Holotype: NMW.Z.2010.037.0001

M. spinifera (Herndndez-Alcantara &

Solis-Weiss, 2000)

Original description

M. symmetrica Mortimer & Mackie,

2006

Holotype: NMW.Z.2000.020.0175

M. tehuanensis Hernandez-Alcantara &

Solis-Weiss, 2000

Original description

M. tinae Nateewathana & Hylleberg,

Paratypes: PMBC 3180; PMBC 4251; PMBC
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1991

4253; PMBC 4254

M. uebelackerae (Hernandez-Alcantara

& Solis-Weiss, 2000)

Original description

M. variolamellata Bolivar & Lana,

1986

Original description

M. wilsoni Glémarec, 1966

Paratypes: MNHN Poly Type 1415

Magelona sp. A

Uebelacker & Jones, 1984

Magelona sp. B

Uebelacker & Jones, 1984

Magelona sp. C

Uebelacker & Jones, 1984

Magelona sp. D

Uebelacker & Jones, 1984

Magelona sp. E

Uebelacker & Jones, 1984

Magelona sp. F

Uebelacker & Jones, 1984

Magelona sp. G

Uebelacker & Jones, 1984

Magelona sp. H

Uebelacker & Jones, 1984

Magelona sp. 1

Uebelacker & Jones, 1984

Magelona sp.J

Uebelacker & Jones, 1984

Magelona sp. K

Uebelacker & Jones, 1984

Magelona sp. L

Uebelacker & Jones, 1984

Magelona sp. 4 (West Africa) Mortimer

et al. (in prep)

ZMBN; AC-NMW

Magelona sp. 4B (West Africa)

Mortimer et al. (in prep)

ZMBN; AC-NMW

Magelona sp. 4C (West Africa)

ZMBN; AC-NMW
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Mortimer et al. (in prep)

Magelona sp. SA (West Africa) ZMBN; AC-NMW

Mortimer et al. (in prep)

Magelona sp. 5B (West Africa) ZMBN; AC-NMW

Mortimer et al. (in prep)

O. bizkaiensis Aguirrezabalaga, Ceberio Holotype: MNCN 16.01/6887

& Fiege, 2001 Paratype: SMF 10025

Octomagelona sp. (West Africa) AC-NMW
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Characters, as observation statements represented by subject-predicate relations, not
‘characters’ and ‘states’ (Fitzhugh, 2006¢, 2008c), used in this study.
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Table 3. Characters, as observation statements represented by subject-predicate relations,

not ‘characters’ and ‘states’ (Fitzhugh, 2006c, 2008c), used in this study.

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Shovel-shape prostomium: (0) absent; (1) present.
Nuchal organs: (0) absent; (1) present.
Prostomium distal margin: (0) smooth; (1) crenulate; (2) medially indented.

Prostomium distal shape: (0) triangular; (1) rounded; (2) straight.

. Prostomial horns (including rudimentary): (0) absent; (1) present.

Shape of prostomial horns [cf. character 5(1)]: (0) rudimentary; (1) distinct.

Prostomium dimensions: (0) longer than wide; (1) as wide as long; (2) wider than long.

. Prostomial ridges: (0) absent; (1) present.

Number of prostomial ridges [cf. character 8(1)]: (0) a pair; (1) two pairs.

Palp origin: (0) dorsal; (1) ventral.

Palp surface: (0) non-papillate; (1) papillate.

Number of rows of proximal palp papillae [cf. character 11(1)]: (0) 2; (1) 4-8; (2) 10-14.
Number of rows of distal palp papillae [cf. character 11(1)]: (0) 2; (1) 4; (2) more.
Burrowing organ: (0) absent; (1) present.

Body regionation: (0) non-magelonid; (1) magelonid-like.

Number of anterior body region chaetigers [cf. character 15(1)]: (0) 8; (1) 9.

Notopodial postchaetal lamellae: (0) absent; (1) present.

Development of notopodia along thorax: (0) all similar; (1) different in some chaetigers.
Neuropodial postchaetal lamellae: (0) absent; (1) present.

Development of neuropodia along thorax: (0) all similar; (1) different in some chaetigers.

Chaetigers 1-7 position of notopodial lamellae relative to notochaetae: (0) postchaetal; (1)
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22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

subchaetal.

Chaetigers 1-7 notopodial lamellae shape: (0) filiform; (1) foliaceous.

Chaetigers 1-7 margins of foliaceous notopodial lamellae [cf. character 22(1)]: (0) smooth;
(1) crenulate; (2) bilo@

Chaetigers 1-7 dorsal superior lobes: (0) absent; (1) present.

Superior dorsal lobes [cf. character 24(1)]: (0) absent on some chaetigers between 1-7; (1)

present on chaetigers 1-7.

Chaetigers 1-7 neuropodial lamellae position relative to n

(1) subchaetal; (2) prechaetal.

Chaetigers 1-7 neuropodial subchaetal lamellae position relative to 1
character 26(1)]: (0) same position along thorax; (1) varying in position along thorax.

Chaetigers 1-7 neuropodial lamellae shape: (0) filiform; (1) foliaceous.

Chaetigers 1-7 neuropodial filiform lamellae shape distal ends [cf. character 28(0)]: (0)
pointed; (1) distally expanded/scoop shaped.

Chaetigers 1-7 lengths of noto- and neuropodial lamellae: (0) equivalent; (1) notopodial
longer; (2) neuropodial longer.

Chaetigers 1-8 limbations of capillary chaetae: (0) unilimbate; (1) bilimbate.

Chaetigers 1-8 margins of bilimbate capillary chaetae [cf. character 31(1)]: (0) smooth;
(1) irregular blade.

Chaetigers 1-8 lengths of noto- and neuropodial capillary chaetae: (0) equivalent; (1)
notopodial longer; (2) neuropodial longer.

Chaetiger 8 notopodial lamellae position relative to notochaetae: (0) postchaetal;

(1) subchaetal.
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35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Chaetiger 8 notopodial lamellae shape: (0) filiform; (1) foliaceous.

Chaetiger 8 margins of foliaceous notopodial lamellae [cf. character 35(1)]: (0) smooth; (1)
crenulate; (2) bilob[?

Chaetiger 8 superior dorsal lobes: (0) absent; (1) present.

Chaetiger 8 neuropodial lamellae position: (0) postchaetal; (1) subchaetal; (2) prechaetal.

Chaetiger 8 neuropodia: (0) without additional postchaetal expansion; (1) with an additional
postchaetal expansion.

Chaetiger 8 neuropodial lamellae shape: (0) filiform; (1) foliaceous.

Chaetiger 9 notopodial lamellae positions: (0) postchaetal; (1) subchaetal.

Chaetiger 9 notopodial lamellae height [cf. character 41(0)]: (0) low; (1) elongate.

Chaetiger 9 notopodial lamellae shape: (0) filiform; (1) foliaceous.

Chaetiger 9 notopodial foliaceous lamellae margins [cf. 43(1)]: (0) smooth; (1) crenulate; (2)
bilo@

Chaetiger 9 superior dorsal lobes: (0) absent; (1) present.

Chaetiger 9 neuropodial lamellae position: (0) postchaetal; (1) subchaetal; (2) prechaetal.

Chaetiger 9 neuropodial lamellae height [cf. character 46(0)]: (0) low; (1) elongate.

Chaetiger 9 neuropodial lamellae shape: (0) filiform; (1) foliaceous.

Chaetiger 9 neuropodia: (0) without additional postchaetal expansion; (1) with additional
postchaetal expansion.

Lengths of chaetiger 9 fascicles relative to chaetigers 1-8 fascicles: (0) same length as
chaetae in chaetigers 1-8; (1) shorter than chaetae in chaetigers 1-8; (2) longer than
chaetae in chaetigers 1-8.

Distal ends of chaetae in chaetiger 9: (0) gently tapered, similar to chaetigers 1-8; (1)
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52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

mucronate; (2) pennoned.

Shape of thoracic interparapodial margins: (0) straight; (1) rounded, bulbous.

Dorso-lateral grooves, anterior chaetigers: (0) absent; (1) present.

Dimensions of post-chaetiger 9 segments: (0) as long as wide; (1) longer than wide.

Post-chaetiger 9 lamellae shape: (0) without basal constriction; (1) with basal constriction.

Post-chaetiger 9 dorsal and ventral medial lobes: (0) absent; (1) present.

Post-chaetiger 9 dorsal and ventral medial lobes sizes [cf. character 56(1) partim]: (0) smaller
than hooks; (1) longer than hooks.

Post-chaetiger 9 postchaetal expansion behind chaetal rows: (0) absent; (1) present.

Relative sizes of post-chaetiger 9 noto- and neuropodial postchaetal lamellae: (0) same size;
(1) different size.

Post-chaetiger 9 lateral pouches: (0) absent; (1) present.

Post-chaetiger 9 lateral pouch arrangement [cf. character 60(1)]: (0) paired; (1) unpaired; (2)
both paired and unpaired.

Direction of lateral pouch openings [cf. character 60(1)]: (0) posteriorly; (1) posteriorly and
anteriorly.

Post-chaetiger 9 posteriorly open lateral pouch arrangement [cf. character 62(0)]: (0) on
consecutive segments; (1) on alternating segments; (2) on both consecutive and
alternating segments.

Post-chaetiger 9 lateral pouches distribution [cf. character 60(1)]: (0) throughout most
abdominal chaetigers; (1) median and posterior abdominal chaetigers only; (2) posterior
abdomen only.

Margins of posteriorly-open pouches [cf. character 62(0)]: (0) smooth; (1) medially split.
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67.
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79.

Post-chaetiger 9 noto- and neuropodial hooded hooks: (0) absent; (1) present.

Post-chaetiger 9 noto- and neuropodial hooded hooks dentition [cf. character 66(1)]: (0)
bidentate; (1) tridentate; (2) polydentate.

Post-chaetiger 9 hooded hooks adjacent to notopodial subchaetal or neuropodial suprachaetal
lamellae [cf. character 66(1)]: (0) same size; (1) smaller than rest.

Post-chaetiger 9 enlarged hooded hooks: (0) absent; (1) present.

Post-chaetiger 9 enlarged hooded hooks distal ends [cf. character 69(1)]: (0)
recurved; (1) spine-like; (2) enlarged normal hook.

Post-chaetiger 9 number of hooded hooks per ramus [cf. character 66(1)]: (0) 8 or more; (1)
less than 8.

Post-chaetiger 9 arrangement of hooded hooks [cf. character 66(1)]: (0) vis-a-vis; (1) vis-a-
dos.

Neuropodial sabre chaetae: (0) absent; (1) present.

Post-chaetiger 9 noto- and neuropodial internal ‘aciculae’: (0) absent; (1) present.

Pigmentation in posterior thorax: (0) absent; (1) present.

Pigmentation pattern in posterior thorax [cf. character 75(1): (0) discreet band; (1) dispersed,
not forming band.

Granular bodies on surfaces of segments: (0) absent; (1) present.

Granular bodies within segments as abdominal interparapodial patches: (0) absent; (1)
present.

Tube construction: (0) absent; (1) present.
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Figure 1

Classes of hypotheses in systematics. Relations between the eight classes (A-H) of
explanatory hypotheses commonly inferred in biological systematics (adapted from
Fitzhugh, 2013: fig. 1, 2016b: fig. 1; based on Hennig, 1966: fig. 6).
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Figure 2

Observation statements, why-questions, and data matrix.

A data matrix used to infer phylogenetic hypotheses implies the why-questions to which
inferences lead to answers as phylogenetic hypotheses, implied by cladograms (Fig. 1). (A)
Observation statements, as subject-predicate relations, and contrastive why-questions
implied by a data matrix. (B) The contrastive form of why-questions is maintained in a data
matrix through the inclusion of outgroups, distinguishing foil and fact. Modified from Fitzhugh

(2016b: fig. 3).
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Figure 3

Explanatory hypotheses implied by cladograms.

Cladograms imply two general classes of explanatory hypotheses (see also Fig. 1) - specific
and phylogenetic - causally accounting for differentially shared characters. Inferences of
specific hypotheses are distinct from phylogenetic inferences (cf. Fitzhugh, 2005b, 2009,
2013, 2015), but both typically offer vague explanations with largely unspecified causes.
Modified from Fitzhugh (2016b: fig. 2).

0 1 1 Individuals (semaphoronts sensu Hennig
— €—] (1966) observed in the present, to which

a_ u s b_ u s c_ u S species hypotheses a-us, b-us, c-us refer.

Specific hypothesis: Past tokogenetic events referring to
unspecified causes of character origin and fixation, leading
to individuals observed in the present, represented by
species hypothesis c-us.

| Unspecified cause(s) of population splitting. |

Past tokogenetic events among members of an ancestral i
population, during which character 1 originated and became :hyl(:ﬁen.etlc
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| ad hoc hypotheses, i.e. homoplasy. |
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Figure 4

Magelonid prostomial characters.

(A) smooth distal margin of Magelona obockensis%l/INH:ZB.1971.5iphoto by J. Turner); (B)
distinctly crenulate distal margin of M. crenulifrons from Hong Kong (NMW.Z.2007.033.0001);
(C) minutely crenulate margin of M. wilsonlrgi.n the Gulf of Lions (NMW.Z.2010.010.0008);
(D) medially indented distal margin of M. symmet%ﬁolotype); (E) triangular distal margin
of M. si%di (holotype); (F) rounded distal margin of M. johnstoni from Berwick-upon-
TweedA(NMW.Z.ZO13.037.0008); (G—H) straight distal margins (often termed ‘rudimentary
horns’) of M. alleni from Morocco (ZMBN, MIWA project) and M. equilamellae from the-Ebro
Delta, Catalonia. {A-E, G, H, dorsal views; F, ventral view; A, E, G, stained with methyl green;
H, stained with Rose Bengal}. BO = burrowing organ, IM = indented margin, IR = inner
ridges, OR = outer ridgiPB = palp base, PH = prostomial horns, Pp = palp, Pr =

prostomium, RH = rudimentary horns.
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Figure 5

Magelonid anterior end and palp characters.

(A) prostomium and first chaetiger of Magelona paciﬁ@yntype, dorsal view); (B)
prostomium and first three chaetigers of M. mon@ (holotype, dorso-lateral view, stained
with methyl greeiphoto by J. Turner); (C) prostomium and first three chaetigers of M.
ﬁliforrr%gparatype, BMNH 1959.4.2.6-10, dorso-lateral view); (D) prostomium of M.
posterelonga@orsal view); (E) prostomium and first chaetiger of an undescribedﬁpecies
from Nigeria (dorsal view, ZMBN, MIWA project); (F) mid-paln region of M. johnstoni from
Berwick-upon-Tweed (NMW.Z.2013.037.0008¢); (G) prostomium and anterior thorax, showing
ventrally inserted papillate palps, and partially everted burrowing organ
(NMW.Z.2013.037.0008b); (H) distal palp end of M. fg%ni (SEM by K. Mills). Ach = achaetous
first segment, BO = burrowing organ, IR = inner ridges, OR = outer ridgiPH = prostomial

horns, Pp = palp, Pr = prostomium, RH = rudimentary horns. Numbers indicate chaetigei
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Figure 6

Octomagelona.

Octomagelona: (A, C-F) anterior of an undescribed species from West Africa (dorsal, ventral,
antero-dorsal, postero-dorsal and lateral views respectiverA(B) Octomagelona bizkaiensis @
(holotype, dorsal view). Ab = abdomen, Ach = achaetous first segment, Pr = prostomium, Th

= thoraxj}.
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Figure 7

Development of magelonid thoracic parapodia.

(A) left-hand parapodia of chaetigers 1, 5, 8 and 9 of Magelona minuteE%SNM 52510,
anterior views); (B) parapodia of chaetigers 1, 6, 8 and 9 of M. equilamel@(syntype,
anterior views); (C) parapodia of chaetigers 2, 3, 4 and 9 of M. obocken@(syntype, anterior
views); (D) left-hand parapodia of chaetigers 1, 5, 8 and 9 of M. convers%#an;
NMW.Z.2010.037.0007, anterior views).
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Figure 8

Magelonid thoracic parapodia.

(A) thoracic postchaetal notopodial lamellae of Magelona mira@ (anterior view, SEM by K.
Mills); (B) chaetigers 7-10 of M. alleni from Morocco (ZMBN, MIWA project, lateral view,
stained with methyl green); (C) thoracic prechaetal neuropodial lamellae of M. mirab/%]
(posterior view, SEM by K. Mills); (D) subchaetal notopodial lamellae of M. riojai;%)] left-hand
parapodia of chaetiger 8 of M. COI’)VGI’S&A(#F&H,—NMW.Z.2010.037.0007, anterior view); (F)
right-hand parapodia of chaetigers 2-4 of M. equilamellaeA(Eb%e—DePea,—GaieaLema,—lateral
vie\%SEM by K. Mills); (G) left-hand parapodia of chaetigers 7-9 of same specimen (SEM by
K. Mills). Noto = notopodial, Neuro = neuropodia, Pre = prechaetal, Post = postchaetal, SDL

= superior dorsal lobe. Numbers indicate chaetigei
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Figure 9

Magelonid thoracic parapodia.

(A) right-hand parapodia of chaetiger 4 of Magelona faucha%a?zrgparatype,
NMW.Z.2015.012.0002b, antero-lateral view); (B) right-hand notopodia of M. equilamellag_

( ; fa—-anterior vie\iSEM by K. Mills); (C) foliaceous thoracic lamellae of M.
sp. Z@rasiterior view); (D-E) parapodia of chaetigers 8 and 4 of M.
montels_p?ectively (holotype, anterior views); (F) right-hand parapodia of chaetiger 2 of M.
obocken@holotype, anterior view); (G) right-hand parapodia of chaetiger 8 of M.
symmetr@holotype, anterior view); (H) distally expanded and scoop-shaped neuropodial
lamellae of chaetigers 1-3 of Magelona sp. cf. M. cinct%#an,—NMW.Z.ZOlS.012.0004,
posterolateral view, stained with methyl green); (1) notopodia of chaetigers 9 and 10 of M.
johnstoni from Berwick-upon-Tweed (anterior view). Noto = notopodia, Neuro = neuropodia,

Pre = prechaetal, Post = postchaetal, SDL = superior dorsal lobe.
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Figure 10

Magelonid thoracic chaetae.

(A) first five chaetigers of Magelona equilamellag (Ebre-Belta-Catatenia-dorsal viewiSEM by
K. Mills)-shewirg-theracic-capittary-chaetae-ir-neto—and-neurepedia; (B) right-hand notopodia

of chaetiger 5 (anterior view) of Mﬁg_tljilamellai(EbFe-DeJ-ta,—GataJemISEM by K. Mills); (C)
unilimbate capillary chaetae of M. minut@SNM 52510); (D) bilimbate capillary chaetae with

irreqular blades from chaetiger 4 of M. riojai;% bilimbate capillary chaeta with irregular

blade from chaetiger 2 of M. variolamellata;%J—G) mucronate chaetae from chaetiger 9 of M.

riojai;% the same from M. johnstoni from Berwick-upon-Tweed (NMW.Z.2013.037.0011b);

(I) pennoned chaetae from chaetiger 9 of M. pitelkai, M. hobsonae, M. hartmanae

(respectively), modified from Jones (1978).
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Figure 11

Magelonid thoracic region.

(A) characteristically bulbous and rounded thoracic chaetigers of Magelona a%i (holotype,
dorsal view); (B) anterioif M.johns@A(NMW.Z. 2013.037.0001, dorsal viewlphoto by
PSYM)
tdersabwew,seale-1mm)-showing oblique lateral sht%g) anter|0£fM crenul:fronA(Heng
Keng-ventral view) ARG ; i i
g-r:een—sfea+m-ng—pat_temlanten0£f M. pul@l!a (holotype, ventral view)-shewirg-X-shaped
een; (F) thoracic ventral

(NMW.Z.2013.037.0020, ventral

: (C) anterior ﬁfM variolamellata

pads/swellingsAof M. mir@s i
viewlphoto by A.S.Y. Mackie); (G) posterior thorax of M. obock@is (syntype, ventral view)
showing ventral swellings/pads. Ach = achaetous first segment, BO = burrowing organ, DS =
dorsal slits, Pp = palp, Pr = prostomium, Th = thorax, V = ventral V-shaped marking, VS =

ventral swellings, X = ventral X-shaped marking.
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Figure 12

Magelonid abdominal chaetigers.

(A) wider than long abdominal chaetigers of Magelona posterelon@a (lateral view, scale 1
mm); (B) right-hand parapodia of chaetigers 10 and 11 of M. johr[;E_]nL
(NMW.Z.2013.037.0011b, anterior view),-shewinrganteriorh-open-peuch; (C) left-hand
parapodia of chaetiger 10 of M. crenulif/@ (NMW.Z.2010.037.0034b, anterior view); (D)
right-hand parapodia of chaetigers 9-11 of M. equilamellag) (Ebre-Belta-Catatonia-lateral
viewLSEM by K. Mills); (E) abdominal parapodium of M. sp. EJ Brasil (2003) (anterior view);
(F) right-hand parapodia of abdominal chaetiger of M. sp. E} Uebelacker & Jones (1984)
(r@iﬁed fromﬁat publication); (G) left-hand parapodia of chaetiger 11 of M. alIeriMeFeeee;
ZMBN, MIWA projecﬂ-she%ng—su-b—eq-eﬂ—l-atem-tancﬂtae; (H) right-hand parapodia of an
abdominal chaetiger of M. sp.@f Brasil QOO?’L(I) thoracic-abdominal junction of M.
ﬁlifom@paratype, BMNH 1959.4.2.6-10, ventro-lateral view). AC = acicular chaetae, AH =
abdominal hooks, DF = dorsal flap, DML = dorsal medial lobe, LO = lateral organ, Neuro =
neuropodia, Noto = notopodia, PE = postchaetal extension of the lamellae, PM, pouch
membrane, SAH = small abdominal hook, US = unidentate spine, VF = ventral flap, VML =

ventral medial lobe. Numbers indicate chaetigei
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Figure 13

Magelonid lateral abdominal pouches.

(A) schematic diagram showing a “magelonid* with paired anteriorly open pouches in the
anterior abdomen, followed by unpaired posteriorly open pouches in the mid and posterior
abdomen, on alternate chaetigers; (B) schematic diagram of a “magelonid- with unpaired
posteriorly open pouches, on alternate chaetigers; (C) schematic diagram of a ‘magelonid-
with paired posteriorly open pouches, on consecutive chaetigers; (D) transverse section
W bodn anteriorly opening pouch situated between chaetigers 10 and 11
(posterior half of pouch and parapodia of chaetiger 11 visible)-ef Magelorajohnstoni
(NMW.Z.2013.037.0010c, anterior view); (E) left-hand anteriorly opening pouch between
chaetigers 10 and 11 of M.johnst@(NMW.Z.2013.037.0011b, lateral view); (F) the same
from another specime@entrolateral view (NMW.Z.2013.037.0008c); (G) posteriorly open
pouch of the same specimen (ventrolateral view); (H) posteriorly open pouches on
consecutive segments of M.Jacificg (syntype, lateral view)—peuches-shewing-distinct-medial
splits. DF = dorsal flap, DML = dorsal medial lobe, LO = lateral organ, Neuro = neuropodia,
Noto = notopodia, PM = pouch membrane, PO pouch = posteriorly opening pouch, VF =

ventral flap. Numbers indicate chaetigel
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Figure 14

Magelonid abdominal hooded hooks.

(A) transverse sectiorih%e&g-h—the body of Magelona johnston@tween chaetigers 10 and 11
(posterior half of pouch and parapodia of chaetiger 11 visible) (NMW.Z.2013.037.0010c,
anterior view); (B) row of hooded hooks of M. equi/amel/airranged vis-a-vis (Ebre-Delta;
Catalenia); (C) bidentate hooded hooks from chaetiger 29 of M.
n@tiNMW.Z.1991.075.1584a, lateral view); (D) bidentate hooded hook from M.
papi/l@nis (lateral vie\ﬂgscale = 0.01 mm); (E) tridentate hooded hook from M. alleni; (F-H)
quadridentate, pentadentate and hexodont hooded hooks from M. fauch%} (paratypes); (1)
small hooded hook adjacent to the lateral Ia%lae of M. sp. %Brasil (2003) (anterior view);
(J) bidentate hooded hooks of M. papillicornis, arranged vis-a-vis; (K) unidentate enlarged
hook of M. sp. @ Brasii]:é—}. {C, E-H, hoods broken. Photos B, C, E by K. Mills}. Neuro =

neuropodia, Noto = notopodia, SAH = small abdominal hook.
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Figure 15

Magelonid pigmentation.

(A) anterior end of a live Magelona alleni (dorsal view) from Plymouth, showing thoracic

pigment band on posterior thorax (photo by A.S.Y. Mackie); (B) anterior end (dorsal view) of

M. sp. 5 from West Africg (ZMBN, MIWA project);-shewing-distinet-stripy-pigmentati

characteristic-of-thespeceies; (C) pigment band of posterior thorax of M. equilamellae from
Ebro Delta, Catalonia (photo by K. Mills). Pp = palp, Pr = prostomium.
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Figure 16

Magelonid pigmentation, granular bodies, tube, pygidial cirri.

(A) anteriomf Magelona minNMW.Z.2005.014.0111, dorsal viewhoto by K. Mills)

shewing-distinet-transverse-thoracie-stripes; (B) anterior jof Magelona sp. cf. M. cincta from
Ira%NMW.Z.2015.012.0004, dorsal view)-shewing-distinetciretlarregiohs-ef granularbedies
! tto-the-parapedia; (C) same specimen showing abdominal interparapodial patches

and granular bodies along the mid-ventral line of the abdomen (veniral view); (D) granular
bodies of the dorsal surface of the thoracic region of M. papillicornis; (E) distinct multi-
layered tube covered in sand of M. alleni from the Irish Sea ( .Z.1969.104.109fhoto by
K. Mills); (F) digitiform pygidial cirri either side of the pygidium (dorsal view); (G) posteriomf
M. minuta from the Outer Bristol Channel (NMW.Z.2003.047.5939, ventral viewLPhoto by K.
Mills); (H) posterioif M. al@ (paratype, ventro-lateral view). {A-C, G, H, stained with
methyl green; E, stained with Rose Bengal}. A = anus, Ab = abdomen, BO = burrowing

organ, GB = granular bodies, PC = pygidial cirri, Pp = palp, Pr = prostomium, Th = thorax.
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Figure 17

Phylogenetic results. Strict consensus tree for 2,417,600 cladograms produced from
data matrix in Table S1.

Note that Magelona is paraphyletic relative to Octomagelona. Letters a—u indicate clades for

which some character transformation series are presented in the Results.
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Phyllochaetopterus limicolus
Spio filicornis

Laonice cirrata

Prionospio ehlersi
Prionospio lighti
M. alexandrae
M. anuheone
M. cinthyae
M. cornuta

M. crenulifrons
M. gemmata
M. lusitanica
M. marianae
M. montera
M. pacifica

M. paulolanai
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M. spinifera
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M. tehuanensis
M. sp. G
M.sp. L
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M. lenticulata
M. wilsoni
M.sp. J

M. sinbadi

M. sp. K

M. conversa
M. debeerei
M. johnstoni
M. mirabilis
M. sacculata
M. riojai

M. parochilis
M. crenulata
M.sp. B

M. sp. A

M. obockensis
M. tinae

M. dakini

M. filiformis
M. hartmanae
M. hobsonae
M. pitelkai

M. cepiceps

M. alleni
M. cincta
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Figure 18

Phylogenetic results.

Fig 46 of the strict consensus tree for nine cladograms presented by Brasil (2003) of
Magelonidae phylogenetic hypotheses. Clades referred to in that study are indicated by the

Roman numerals.
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Table S1. Character matrix of Magelonidae taxa and characters. Outgroups are Phyllochaetopterus limicolus, Spio filicornis,

Laonice cirrata, Prionospio lighti, and P. ehlersi. *?” = unknown; ‘-> = inapplicable; ‘** = polymorphism, 0/1, in Magelona sp. H.
1 2 3 4 5 6 7
0 0 0 0 0 0 0
Phyllochaetopterus limicolus 01----20-0 0--00-0-0- ----—---—-- O=0=c————c ———————-—— 0 0000----- 0 —=-—-= 0-——== == 000-001
Spio filicornis 01----00-0 0--00-1-1- 0100-0-1-0 0-10100001 0010000100 000000-000 ----- 10-0- 11100-001
Laonice cirrata 01----20-0 0--00-1-1- 0100-0-1-0 0-00100001 0110001100 000000-001 0001012-0- 01100-007?
Prionospio lighti 01----00-0 0--00-1-1- 0100-0-1-1 0-10100001 0110001100 000000-000 ----- 12-0- 01100-00?
P. ehlersi 01----00-0 0--00-1-1- 0100-0-1-1 0-00100001 0110001100 000000-001 0001012-0- 01100-00?
Magelona alexandrae 1000110111 1101111111 0111110001 10720111110 1110021017 0001110101 000111100- 10000-110
M. alleni 1002101111 1221111010 10-0-10001 10010-0100 110-011000 010000-010 ----- 1100- 000010111
M. annulata 1000111111 1??1111010 1100-1?001 1001100170 1110011010 0000111000 ----- 101?? 100?0-?70
M. anuheone 1000110111 1111111110 0101110001 1020101100 1110011007 0001111101 0????1110- 10010-1?0
M. berkeleyi 1000112111 1111111111 0101111001 1120101210 0110021010 0100110100 ----- 1110- 000?0-?00
M. californica 10020-1101 1??1111010 00-0-0-000 ??000-0000 010-001000 000000-000 ----- 1010- 10000-110
M. cepiceps 1002101111 1111111011 0101111001 ??00101110 0110111010 0100110100 ----- 1100- 00000-110
M. cerae 1000111171 1771111111 00-111?001 ?0200-1000 1100001000 000000-000 ----- 1000- 11000-110
M. cincta 1002101111 1111111111 10-0-11012 10?10-0000 110-001001 010000-001 101001100- 000010111
M. cinthyae 1000110111 1101111111 0101110001 1020101210 1110021017 0001110101 00?1?1110- 10010-110
M. conversa 10010-0111 1221111111 010102-001 1020101211 0010021011 1000010001 211001000~ 01010-010
M. cornuta 1010111111 1171111111 0101110001 10270101210 1110021017 0000110101 000111100- 00010-110
M. crenulata 10010-01?1 1171111111 012112-001 1000121210 0011000101 1000010101 2110?1100~ 10000-?10
M. crenulifrons 1010111111 1771111111 0101110001 1000101210 1110021010 0000111101 101001000- 00010-110
M. dakini 1002100111 1101111011 00-0-11001 1000100210 0110011010 0000111101 1012?1110- 00010-?10
M. debeerei 10010-0111 1171111111 0101010001 ??00101211 0010000101 100000-001 ?110?21100- 01000-??0
M. equilamellae 1002102101 1111111011 10-0-11000 10010-0000 010-001000 010000-000 ----- 1100- 000010111
M. falcifera 10020-1101 1111111010 00-0-0-000 ??000-0000 010-00100? 0000010000 ----- 10110 10000-110
M. fauchaldi 10020-1101 1001111010 00-0-0-000 10000-0000 010-001000 000000-000 ----- 1200- 10000-110
M. Filiformis 1002100111 1111111111 00-1110001 10000-1110 110-011010 0000111001 101201110- 00000-110
M. gemmata 1000110111 1101111111 0101110001 ???0101110 1110021010 0000110101 000101100- 10010-110
M. hartmanae 1002100111 1101111111 00-112-001 10000-1200 110-021010 2000111001 1011?1110- 10000-?00
M. hobsonae 1002102111 1111111111 00-1110000 10010-1210 110-011010 2000111000 ----- 1110- 00000-?00
M. johnstoni 10010-0111 1111111111 0111010001 1701101210 0010000101 1000010001 211001100~ 01010-010
M. jonesi 1022101111 1271111011 0100-0-1-0 1010100110 0110001100 0100110000 ----- 1010- 01000-?00
M. lenticulata 1010112111 1171111111 0101117071 1021101071 0110121010 0100110000 ----- 1100- 000?0-1?0
M. lusitanica 1000110111 1101111111 0101110001 2700101210 1110021010 0000110101 101001100- 10000-110
M. magnahamata 10020-1101 1001111010 00-0-0-000 ???00-0000 010-00100? 0000010100 ----- 10110 100?0-110

Comentado [user1]: Where are the specimens used from?
Where are the vouchers deposited? Please, include these
data in Table 2.
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mahensis

marianae

minuta

mirabilis

montera

nonatoi

obockensis
pacifica
papillicornis
parochilis
paulolanai
pettiboneae
phyllisae

pitelkai
polydentata
posterelongata
pulchella

pygmaea

riojai

sacculata

sinbadi

spinifera
symmetrica
tehuanensis

tinae

uebelackerae
variollamelata
wilsoni

sp. 4 W Africa

sp. 4b-4B W Africa
sp. 4e-4C W Africa
sp. 5A W Africa
sp. 5B W Africa
sp.
sp.
sp.
sp.
sp.
sp.-
sp.-
sp.-
sp.-
sp.
sp.
sp.
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1002100111
1000111111
10020-1101
10010-0111
1000110111
1002101171
10010-0111
1000110111
10020-1101
10010-0111
1000111111

1201111011
1171111111
1001111010
1101111111
1101111111
1171111011
1111111111

00-0-10001
0111117001
00-0-0-000
0100-2-1-1
0111110001
0101111001
0121111001

1111111111
1??1111010
1111111111
11011111112

10020-1111
1002111101
1002100111
10020-2101
1000110111
1000111111
10020-1101
10010-0111
10010-0111
1000110111
1010111111
1022102101
1010111111
10010-0111
1000110111
1002102101
1010112111
1002101111
1002102111
1002102101
1002101111
1002102111
10010-0111
10010-0111
10020-1101
1010111111
1010110111
1012101111
1000110111
1000111111
1002102101
1012112111
1000110111
1010111111

1101111010
1101111010
1111111111
1211111011
1??1111011
1101111111
1001111010
1111111111
1701111111
1101111111
1171111111
1211111010
1771111111
1111111111
1??1111011
1221111011
1101111011
??71111111
??71111111
1211111111
1211111011
1211111111
1??1111111
1??1111111
1??1111010
1??1111111
1??1111010
1??1111010
1771111111
1??1111110
1??1111011
1??1111011
1??1111111
1??1111111

0101110001
00-0-0-000
0101111001
0101110000
00-0-0-000
00-0-0-000
10-1111001
10-0-17000
10-0-10001
0101110001
00-0-0-000
1101111001
0100-171-1
0101111001
01011171-1
10-0-0-000
0101110001
0111111001
00-0-10001
10-0-11001
0101111001
10-1110001
0101110001
0101110001
10-0-11011
00-1110001
012112-001
012112-001
00-0-0-000
01011101-1
10-1110001
00-0-17001
0101110001
0100-10001
10-0-12001
0101111001
0101111001
0101110001

???00-0110
1010111170
0-000-0000
1000100200
???0111110
1000101110
1001121210
1110101110
0-000-0000
0-11101210
1070101270
0-000-0000
0-000-0000
11010-1210
10200-0100
10010-0100
7701101210
??000-0000
1101101211
1011100771
???0101210
7700101210
???10-0000
1000101210
???0121210
10100-01?0
11210-0100
1020101210
??010-1100
1070101110
??70101100
11?10-0000
???00-1110
1001121211
1001121210
0-000-0000
1000101210
10000-1100
10000-0100
1010101110
10000-0100
10210-0170
1020101210
1000101110
1000101210

010-001007?
1110121010
010-001000
0010000101
1110021017
0110111010
0011021011
1110021010
010-001000
0010021011
1110021017
010-001000
010-001000
1110021010
010-011000
110-011000
1110021010
010-001007?
0010000101
0010000101
0110021010
0110021010
010-001007?
1110021010
001102101?
010-011010
110-011000
0110121010
110-011010
010-001007?
010-001007?
110-011017
010-01101?
0012021011
0011000101
010-001000
1110021010
010-111010
010-001000
1110021010
1110011000
110-011000
0110121010
1110021000
0110011010

000010-001
000010-000
0000010000
1000010101
0000111101
0100110000
1000010101
0000117101
0000010000
100000-001
0007110101
0000110000
0000111000
2000111101
011000-000
0001010010
0000110101
000000-000
1000010101
1000010011
0100111100
0700111070
010000-000
0700110000
1007010101
0000110000
0110010000
0100110000
0100010000
0100110100
0100110000
0100010001
0100010000
1000010101
1000010001
0000110000
0700111000
0000110000
0000010000
0000110101
0701111100
0110010000
0100110000
0700111100
0700110101

101101000~

001201100~

000111110-

211001100-
000111000~

211001100~
00?0?1100~

1017?1100~
2110?1100~

2110?1000-
2110?1100-

000071100~

00000-110
00010-710
10000-110
01010-010
00000-110
00000-110
000?0-170
0?000-110
10000-?10
01000-110
10000-110
00000-110
10000-?00
00010-707?
000710111
00000-710
00000-110
10070-110
01000-?10
01000-??0
00000-110
1?010-?10
000011111
10010-?10
000?0-110
10000-??0
000010771
00070-110
000010117
000010017
000011117
00001011?
000011111
00000-710
00000-770
10000-?7?0
10010-??0
10000-?00
00000-?00
00010-?10
00000-?00
0000107???
00000-710
00000-710
10010-?10
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Octomagelona bizkaiensis
0. sp. W Africa

1002102107 ???1101111 10-0-0-001 10210-0000 ----------
1002102101 ???1101111 10-0-0-001 ??20?00??? ----------





