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ABSTRACT
Stem cell-like memory T cells (Tscm) combine phenotypes of naïve and memory.
However, it remains unclear how T cell receptor (TCR) characteristics contribute to
heterogeneity in Tscm and other memory T cells. We compared the TCR-beta (TRB)
repertoire characteristics of CD4+ Tscm with those of naïve and other CD4+ memory
(Tm) in 16 human subjects. Comparedwith Tm, Tscmhad an increased diversity across
all stretches of TRB repertoire structure, a skewed gene usage, and a shorter length
distribution of CDR3 region. These distinctions between Tscm and Tm were enlarged
in top1000 abundant clonotypes. Furthermore, top1000 clonotypes in Tscmwere more
public than those in Tm and grouped in more clusters, implying more epitope types
recognized by top1000 clonotypes in Tscm. Importantly, self-reactive clonotypes were
public and enriched in Tscm rather than Tm, of type one diabetes patients. Therefore,
this study highlights the unique features of Tscm different from those of other memory
subsets and provides clues to understand the physiological and pathological functions
of Tscm.

Subjects Bioinformatics, Cell Biology, Immunology
Keywords T-cell receptor beta chain repertoire, Complementarity determining region 3, CD4+
memory T cell, Stem-cell like CD4+ memory T cell, Public clonotypes

INTRODUCTION
Memory T cells play the central role in coordinating innate and adaptive immune responses
(MacLeod et al., 2009). After encountering antigens, naïve T cells differentiate to memory
subsets and terminally differentiated effector T cells. During the differentiation process, T
cells acquire functions and lose self-renewal abilities (Seita & Weissman, 2010). Following
the theory of a hierarchical system of memory, naïve transits to central memory (Tcm)
and effector memory (Tem) T cell subsets in turn (Fearon et al., 2006). Tcm is relatively
long-lived, and a notion considers the stem cell-like characteristics of Tcm. However, the
finding of stem cell-like memory (Tscm) challenges this notion (Gattinoni et al., 2011;
Lugli et al., 2013). Tscm, a rare memory subset defined from naïve, is a long-term memory
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subset with self-renew and the plasticity to differentiate into other memory subsets and
effector (Ahmed et al., 2016; Stemberger et al., 2009).

Recently, observations in diseases and vaccines unveil physiological and pathogenies
functions of Tscm. In mice models, deleting T cells and transplanting Tscm could re-
build the memory T cell population, including central and effector memory (Simons
& Clevers, 2011). In clinical studies, human Tscm cells from naïve precursors enrich
early after hematopoietic stem cell transplantation (HSCT), and contribute to peripheral
reconstitution by differentiating into effectors (Cieri et al., 2015; Roberto et al., 2015).
Stimulations with CMV, influenza vaccine and WT1 tumor antigen activate cytokine
expression in part of these naïve-derived Tscm, suggesting that naïve specific to given
antigens differentiate to Tscm (Roberto et al., 2015). Furthermore, HIV (Ahmed et al.,
2016), smallpox, and yellow fever vaccines studies (Gattinoni et al., 2017) presented that
antigen-specific CD8+ Tscm persisted in donors receiving vaccines after a long time,
indicating that Tscm acts as a reservoir for maintaining these exogenous factors antigen-
specific TCRs. In addition, CD4+ Tscm may involve in graft-versus-host disease (GVHD)
and autoimmune disease. As shown by Jimbo et al. (2019), the peripheral proportion
of CD4+ Tscm increased in graft-versus-host disease (GVHD) patients compared with
no GVHD patients after HSCT. An increased proportion of CD4+ or CD8+ Tscms has
also been observed in patients with autoimmune disease (Jimbo et al., 2019), such as
systemic lupus erythematosus (SLE) (Lee et al., 2018), type 1 diabetes (Vignali et al., 2018),
aplastic anaemia (Hosokawa et al., 2016), immune thrombocytopenia (Cao et al., 2019)
and rheumatoid arthritis (Cianciotti et al., 2020). Recently, T-cell immunotherapies based
on Tscm have been developed against HIV and cancer (Flynn & Gorry, 2014). However, in
addition to antigen-driven, cytokines also involve in T cell differentiation. Interleukin-7 and
Interleukin-15 combined with stimulation via CD3 and CD28 facilitate the differentiation
of naïve to Tscm in vitro (Cieri et al., 2013). PD-L1 and TGF-b promote the differentiation
from naïve to regular T cell (Batra et al., 2020). IFN-β can regulate the expansion of CD4+

memory T and NK cells to facilitate the anti-tumor effects of a novel form of 4-1BBL
(Barsoumian et al., 2019). Therefore, these studies in infectious and autoimmune diseases
raise interest in the specificity of TCR clonotypes enriched in Tscm and whether the TCR
repertoire of Tscm is different from other memory subsets.

Individual has enormous diversity of TCR repertoire including over 106 clonotypes (Qi
et al., 2014; Soto et al., 2020). Complementary-determining region 3 (CDR3) is the most
diverse part of TCR, and contribute to antigen recognition ability of TCR. The diversity
of TCR repertoire is trimmed by inherent and exogenous factors. For naive, genetics (Gao
et al., 2019; Posnett, 1995), the rearrangements of V(D)J segments, and thymus selection
(Khosravi-Maharlooei et al., 2019) shape its TCR repertoire. For memory, both genetics
and environment factors trim its TCR repertoire composition (Hou et al., 2020; Krishna
et al., 2020). Previous studies suggest that antigen-specific clonotypes unevenly distributed
amongmemory subsets. Acute infection-related clonotypes enriched in Tcm, while chronic
infection-related clonotypes and autoimmunity related clonotypes maintained in Tem
(Devarajan & Chen, 2013). InCOVID19 patients, CD4+ responding clonotypes were biased
to be expanded in Tcm more than in Tem (Minervina et al., 2021). Furthermore, a study
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using the transfer of genetically-modified virus-specific T cells showed that antigen-specific
clonotypes only maintained in Tscm rather than other subsets after a long time (Roberto
et al., 2015), suggesting that composition of TCR repertoire may different among memory
subsets. in addition, T-cell differentiation However, it is still difficult to conclude that
memory subsets have different composition of TCR clonotypes, because of the limitations
of methods for screening antigen-specific TCRs.

High-throughput sequencing of TCR repertoire (TCR-seq) has become an essential
technique in immunology. Recently, this technique is used to unveil the process of
TCRs’ development in the thymus (Khosravi-Maharlooei et al., 2019), to promote the
understanding of positive and negative selections, and to define the disease biomarkers
(Liu et al., 2019). By TCR-seq, the differences of the TCR repertoire were shown among T
cell subsets. The TCR beta chain (TRB) repertoire of CD4+ memory T cells has a shorter
distribution of CDR3 length and a skewed V-gene usage, compared with that of Tn in
peripheral blood. A study with three subjects shows that Tcm has a power law exponent
higher than Tem (Oakes et al., 2017). It suggests a lower clonal expansion in Tcm. A
model by the power law distribution was employed to separate type one diabetes from
heathy donors based on the TRB repertoire of Tscm, but not that of Tcm (Koch et al.,
2018). Furthermore, T cell receptor antigen specificity prediction methods based on the
TRB CDR3 sequence have been developed recently (Zhang et al., 2020), and clonotypes
targeting the same antigens can be clustered by the TRB CDR3 sequences (Huang et al.,
2020). Therefore, analyzing TCR-seq data of Tscm and other memory subsets may provide
novel perspectives for unveiling functions of Tscm.

We analyzed the repertoire features of the TRB repertoire in Tscm and Tm, including
sequence composition (k-mer), gene segments, the TRB repertoire structure and CDR3
length distribution. We then unveil the differences of the antigen specificity between Tscm
and Tm. We trained a SVM model with a large dataset (Emerson et al., 2017) to identify
the public clonotypes in each sample, and showed that public clonotypes within top1000
abundant clonotypes in Tscm were more than those in Tm. The public clonotypes in
Tscm have a different sequence composition comparing with public clonotypes in Tn. It
confirms that the high abundant, public clonotypes in Tscm are antigen-experienced. We
further used a sequence-based method to cluster clonotypes targeting same antigens, and
showed that the public clonotypes in Tscm could recognize more antigens than those in
other memory T cell subsets. Finally, we found more presence of similar clonotypes to
those found in database and recognized autoreactive antigens in type one diabetes (T1D)
patients.

MATERIALS AND METHODS
Datasets
In this study, we conducted analyses on high-throughput TCR repertoire datasets of
CD4+ T cell subsets. Gomez-Tourino et al. (2017) used a stringent strategy to sort Tn
(CD3+CD4+CD45RO−CD27+CCR7+CD95−), Tscm (CD3+CD4+CD45RO−CD27+

CCR7+CD95+), and Tm (CD3+CD4+CD45RO+CD27+) from eight healthy subjects
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(HD) and eight T1D patients by fluorescence-activated cell sorting (FACS). Then RNA
was extracted and sequenced in parallel. The sequence data is immuneACCESS format
(https://clients.adaptivebiotech.com/pub/peakman-2017-naturecommunications). We
examined the number of clonotypes in T1D and HD. As shown in Fig. S1, no significant
difference was presented between T1D and HD in any subset.

To generating a model to identify public clonotypes which can occur in more than two
individuals, we used datasets from Emerson et al. (2017) for training and testing a support
vector machine (SVM) model. The dataset includes data of two cohorts, and can be found
at https://clients.adaptivebiotech.com/pub/emerson-2017-natgen.

Statistical analysis and plots
Statistical analyses were performed with R. The paired Willcox-ranked test was used to
examine the difference between two groups. The Kruskal-Wallis rank-sum test was used
to examine the differences among multiple groups, and then Nemenyi test was used for
multiple comparisons. The p values of multiple tests were corrected by false discovery rate
(FDR) method. A test with a p value < 0.05 was considered as a significance. The Spearman
correlation method was used to examine the correlation between samples of two groups.
Graphics were generated with R package ggplot2. Principal component analysis (PCA) was
conducted with R package forcats. R package readr, dplyr and tidyr were used for statistics.

Definition of a clonotype
A clonotype was defined as the amino acid sequence identity of the TRB CDR3 region.

Determination of diversity
Renyi entropy was used in our study to evaluate the diversity with alpha value from 0 to
20. When alpha increases, clonotypes with a higher frequency will have a greater influence
on the entropy. When alpha equal 0, the Renyi entropy is the logarithm of the number of
clonotypes; When alpha is 1, Renyi entropy tends to the Shannon entropy. When the alpha
approaches infinity, the Renyi entropy is determined by themost frequent clonotype, where
a lower frequency of the most frequent clonotype will generate a higher Renyi entropy
index.
Renyi entropy formula is

H =
1

1−α
ln

( n∑
i=1

f α
i

)
Shannon diversity index formula is

H =−
R∑
i=1

pi lnfi

where H is the diversity index, α is the alpha value, n is the total number of clonotypes,
and fi is the frequency of the ith clonotype.

Hierarchical clustering
We performed ‘complete linkage’ clustering algorithm on the correlation matrix, and
visualized dendrograms using pheatmap, a R package [50]. The Euclidean distance was
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used as a distance metric. Pearson correlation method was used to measure the correlation
of TRB repertoire structures.

SVM model for identifying public and private clonotypes
SVM analysis was performed using kernel-based analysis of biological sequences with
the R package KeBABS (Palme, Hochreiter & Bodenhofer, 2015). Amino acid sequence of
clonotypes was split into features with length k= 3. A cost parameter C = 100 was used for
the misclassification of a sequence. A total of 320,000 public and 320,000 private clonotypes
were randomly sampled from the total set, and then were split into training (80%) and
test (20%) sets. SVM training was performed on the training set, and class prediction was
performed on the test set. Prediction accuracy of classification was qualified by calculating
BACC = 1

2×
(
spec+ sens

)
, where specificity was calculated as spec = TN

TN+FP , and sensitivity
was defined as sens= TP

TP+FN , (where TN = true negative, FP = false negative, TP = true
positive and FN = false negative). The area under the receiver operating characteristic
curve (AUC) was calculated, where the AUC = 0.5 means a random classification (BACC
= 50%), and AUC = 1 means a perfect classification (BACC = 100%).

The dataset (Emerson et al., 2017) includes two cohorts: cohort 1 includes 666
individuals, and cohort 2 includes 116 individuals. We termed clonotypes occurred in
no less than two individuals as public clones and ones occurred in only one individual as
private clonotypes. Data of cohort 1 was used as a training set. For this dataset of cohort 1,
we randomly sampled 20,000, 40,000, 80,000, 160,000 and 320,000 public clonotypes and
an equal number of private clonotypes, train a SVM model, and tested the model by cross
validation (Fig. S2). When sampling more than 160,000 public clonotypes, the increase in
the sample size had limited improvement in model accuracy. To save computing source,
we trained a model on the 320,000 public clonotypes and 320,000 private clonotypes. The
model was then validated with data of cohort2. In order to further increase prediction
accuracy, we tested two thresholds for public clonotype definition: (1) definition of public
clonotypes occurred in at least three subjects; (2) definition of public clonotypes occurred
in at least two subjects. Comparing to the second threshold, the definition of public
clonotypes occurred in at least three subjects elevated the prediction accuracy from 82%
to 88%. We therefore defined public clonotypes occurred in at least three subjects.

Prediction of epitope specificity of clonotypes
GLIPH2 (Huang et al., 2020) is a robust tool to predict the cluster of clonotypes targeting
the same epitope. Here, we used this method to cluster clonotypes recognizing the same
antigens. The reference of CD4+ T clonotypes, the clonotypes gene usage and length
distribution of CDR3 were included in ref_CD4.txt, ref_V_CD4.txt and ref_L_CD4.txt
downloaded from the official website of GLIPH2 (http://50.255.35.37:8080/). A filter with a
high stringency (Fisher_score < 0.0001, number of subjects >3, and number_unique_cdr3
≥ 3) was used for identify the number of potential antigens in each sample.
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RESULTS
Tscm and Tm had different TRB repertoire structures
To characterize immune repertoire clonal structure, we used Renyi entropy (Greiff et al.,
2015). The α-values represent weights, which means as α increases, higher frequency
clonotypes are weighted more. For a given alpha value, a larger Renyi entropy means a
more considerable diversity of the sample. Since each alpha value focuses on a different
stretch of the immune repertoire, thismethod enabled the reliable capture of TRB repertoire
clonal frequency distributions. Our results showed that as alpha value increased, the Renyi
entropy of all memory subsets decreased. At all alpha values, the Renyi entropy of Tn was
higher than that of both Tscm and Tm. At the alpha value from 0 to 2, the Renyi entropy
of Tscm was less than that of Tm, while after alpha value 3, the Renyi entropy of Tscm
was greater than that of Tm (Fig. 1A), which reflects that Tscm had a greater diversity
than Tm in the abundant clonotypes. Since the Renyi entropy profiling can recover a large
amount of immunodiagnostic fingerprints from TRB repertoire data, we used the Renyi
entropy to classify the cell subsets with hierarchical clustering approach based on Pearson
correlation (Greiff et al., 2015). The results showed that Tscm of 13 subjects were clustered
together; Tm of 15 subjects were gathered; Tscm of only 3 subjects mixed in the cluster of
Tm (Fig. 1B). This hierarchical clustering result suggested that Tscm and Tm had different
TRB repertoire structures.

Top1000 clonotypes of Tscm and Tm used different genes
The gene usage of the TRB repertoire of memory T cells is heavily affected by antigen
experience. We analyzed the gene usage to unveil the effects of antigen-experience on Tscm
and Tm, respectively. Since the frequent clonotypes of memory T cells are expanded by
chronic antigen stimulations, we also analyzed the gene usage of the top1000 abundant
clonotypes. The PCA on the gene usage of the entire repertoire separated Tn, Tscm, and
Tm from each other (Fig. 2A). Specially, the PCA on the genes of the top1000 clonotypes
could achieve a better performance of classification (Fig. 2B). A further analysis on
top1000 abundant clonotypes showed that Tscm and Tm differentially used 12 V-genes
and 3 J-genes: the frequency of TRBV12-03, TRBV07-09, TRBV18-01, TRBV23-01 and
TRBJ02-07 were less in Tm than in Tscm; the frequency of TRBV03-01, TRBV02-01,
TRBV11-02, TRBV09-01, TRBV06-05, TRBV25-01, TRBV24-01, TRBV05-05, TRBJ01-02
and TRBJ02-02 was greater in Tm than in Tscm (Table S1). In further, we used Spearman
correlation to quantify the similarity of the gene usage between Tscm and Tm. Because
Tscm and Tm differentiate from Tn, we therefore used the correlation between Tn and
Tscm as a contrast. For the entire TRB repertoire, the correlation between Tm and Tscm
was similar to that between Tscm and Tn, but less than that between Tm and Tn (Fig. 2C);
for the top 1000 abundant clonotypes, the correlation between Tscm and Tm was greater
than that between Tscm and Tn (Fig. 2D). It suggests that Tscm and Tm had a large
difference in the gene usage of the TRB repertoire, especially in the range of top1000
abundant clonotypes.
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Figure 1 Tscm and Tm had different TRB repertoire structure. (A) The Renyi entropy of Tn, Tscm,
and Tm with alpha values from 0 to 20 (step size of 1). The median, the first and third quartiles were
shown. (B) The Renyi entropy profiles were hierarchically clustered based on Pearson correlation
coefficient with an alpha range of 0 to 10 (step size of 0.2).

Full-size DOI: 10.7717/peerj.11987/fig-1

Tscm was different from Tm in CDR3 length distribution
The antigen experience has a selection on clonotypes which may change the distribution
of CDR3 length. For the CDR3 of the total clonotypes, Tscm was significantly longer than
Tn, and Tm as well (Fig. 3A). For the CDR3 of the top1000 abundant clonotypes, Tscm
was obviously shorter than Tm, but longer than Tn. (Fig. 3A). According to the Spearman
correlation analysis, Tscm had a similar length distribution to Tm rather than to Tn in the
top1000 abundant clonotypes (Fig. 3B). Tscm and Tm also showed an increased correlation
in gene usage, thenwe examinedwhether gene usagewas related to the distribution of CDR3
length in Tscm and Tm. However, we did not find a high correlation (cor= 0.27) between
the gene usage and distribution of CDR3 length in Tscm and Tm (Fig. 3C), suggesting that,
between Tscm and Tm, the increased correlation of gene usage and elevated correlation of
length distribution might be independent.
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Figure 2 Tscm and Tm had distinct gene usage. (A) The PCA on the gene usage of the total clonotypes
of Tn, Tscm, and Tm. Each dot represents one sample from a subject. (B) The PCA on the gene usage of
the top1000 abundant clonotypes of Tn, Tscm, and Tm. Each dot represents one sample from a subject,
each ellipse shows a 95% confidence ellipse, and the centroid presents the mean of PC1 as well as PC2 of
samples in a cluster. (C) The Spearman correlation of the gene usage of the total clonotypes among Tn,
Tscm, and Tm. The median, the first and third quartiles were shown. (D) The Spearman correlation of the
gene usage of the top1000 abundant clonotypes among Tn, Tscm, and Tm. The median, the first and third
quartiles were shown. For (A) to ( D), each dot represented a sample. The paired Wilcox-ranked test was
used in (C) and (D), and the p values were corrected by FDR method.

Full-size DOI: 10.7717/peerj.11987/fig-2

Tscm had special CDR3 sequence compositions
We examined the CDR3 sequence composition by decomposing kernels containing three
amino acids. As showed by the PCA on the sequence composition of all clonotypes, Tn,
Tm, and Tsm samples were partially separated (Fig. 4A). Exhibited by the PCA based on
the k-mer of the top1000 abundant clonotypes, the samples of Tn, Tscm, and Tm were
completely separated (Fig. 4B). These results suggested that Tscm and Tm had a great
difference in the sequence composition of the top1000 clonotypes. We used Spearman
correlation to quantify differences of sequence composition among subsets. For the total
TRB repertoire, the correlation between Tm and Tscm was significantly weaker than that
between Tn and Tm, and slightly weaker than that between Tscm and Tn (Fig. 4C). For
the top1000 abundant clonotypes, the correlation between Tm and Tscm was significantly
weaker than that between Tn and Tscm, and between Tn and Tm as well (Fig. 4D).
Furthermore, to identify whether the correlation between Tscm and Tm reduced in the
top1000 clonotypes, we randomly sampled 1,000 clonotypes from the entire repertoire as
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Figure 3 Tscm and Tm had different distributions of CDR3 length. (A) The mean CDR3 length of the
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was used for multiple comparisons.

Full-size DOI: 10.7717/peerj.11987/fig-3

a contrast. Our results showed that the correlation coefficient of the top1000 clonotypes
between Tscm and Tmwas significantly lower than that of random subsamples. In contrast,
the correlation of top1000 clonotypes sequence composition between Tn and Tscm, and
that between Tn and Tm were significantly stronger than that of random samples between
corresponding cell subsets (Fig. 4D). It suggested that Tscm and Tm were different in
the sequence composition of the entire TRB repertoire, especially the top1000 abundant
clonotypes.

Frequent clonotypes of Tscm were more public
Public clonotypes which are shared among subjects can be induced by gene recombination
and antigen stimulation (Venturi et al., 2008). To evaluate the public clonotypes’
distribution in each sample, we trained a SVM model to identify public clonotypes
with a large dataset (Greiff et al., 2017). This dataset includes two cohorts. The SVMmodel
had a high prediction accuracy (BACC= 88% and AUC= 95%) in cohort 1 and presented
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a strong robustness when classifying public clonotypes on the data of cohort 2 (BACC
= 82%) (Fig. S3). Using the SVM model, we identified public clonotypes from samples
of Tn, Tscm, Tcm, and Tem. Since the public clonotypes may be unevenly distributed in
different frequency ranges of the TRB repertoire, we calculated the percentage of public
clonotypes for each frequency range. We ranked clonotypes by their frequency. Our result
showed that as the ranks increased, the percentage of public clonotypes decreased, which
was inconsistent with findings in global T cells (Soto et al., 2020). Notably, percentage
of identified public top1000 clonotypes in Tscm were more than the percentage in Tm.
(Fig. 5A). We also used the data of top1000 clonotypes of effector memory T cells and
central memory T cells presented by Jiang et al. (2020), and found a similar trend that
Tscm contained more public top1000 clonotypes than effector memory T cells (Tem)
as well as central memory T cells (Tcm). (Fig. 5B). We further trained a SVM model to
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classify public clonotypes of Tn and Tm, and showed a prediction accuracy of 66%, which
suggested that public clonotypes of Tn and public clonotypes of Tscm contained predictive
high-dimensional features.

To further identify the antigen specificity of clonotypes in memory subsets, we used
GLIPH2 to cluster clonotypes potentially targeting same antigens. A stringent cutoff was
used to avoid potential mistakes when performed GLIPH2. In GLIPH2, a clonotype can
be grouped in over one cluster. For top1000 abundant clonotypes, 1095 clusters were
exhibited in Tn, 176 exhibited in Tscm, and 71 exhibited in Tm. For public clonotypes
within top1000 clonotypes, we defined 541 clusters in Tn, 117 in Tscm, 67 in Tm (Tables S2
and S3).

Self-reactivated clonotypes expanded in Tscm rather than Tm in T1D
patients
Since Tscm potentially play roles in infections and autoimmune diseases, we evaluated
the pathogen and autoreactive clonotypes in Tscm and Tm, respectively. The clonotypes
were annotated by a database including 1,885 pathogen-related clonotypes from VDJdb
(Bagaev et al., 2020), 1,409 autoreactive clonotypes (Gomez-Tourino et al., 2017). Our
results showed that autoreactive, private clonotypes could be found in Tscm of 11 subjects,
and in Tm of 3 subjects; autoreactive, public clonotypes were shown in Tscm of 16 subjects,
and in Tm of 16 subjects. The number of autoreactive clonotypes were similar in Tscm and
Tm, however, there were more autoreactive public clonotypes than autoreactive private
clonotypes in each sample (Fig. 6A). Considering clonotypes’ frequency in each subject,
we showed that GAD-related clonotypes within Tscm became more frequent in T1D than
in HD. In contrast, the frequency of GAD-related clonotypes in Tm was similar in T1D
and HD (Fig. 6B). Meanwhile, we showed more pathogen-related public clonotypes than
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pathogen-related private clonotypes for Tscm and Tm (Fig. 6C). However, we did not
find that pathogen-related clonotypes of either Tscm or Tm were more frequent in T1D
(Fig. 6D). In conclusion, self-reactivated clonotypes expanded in Tscm of T1D patients.

DISCUSSION
Heterogeneous phenotypic and functions make it controversial to conclude that Tscm
represent a stable subset (Cieri et al., 2015; Sallusto & Lanzavecchia, 2009). Studies in
HSCT and on estimating Tscm turn-over rate indicated that Tscm were maintained by
dynamic-influx from naïve. However, which clonotypes are selectively expanded during
the differentiation from naïve is still unclear. Meanwhile, the dynamic of Tcm and Tem
were also tracked in mice model, and about half of Tcm and Tem were long-lived and
self-renewed, and the other part can be supplied by differentiation from naïve directly
(Gossel et al., 2017). Thus, a question is raised whether the TCR repertoire of Tscm and
other memory subsets are similar. In this study, we analyzed TRB repertoire data of Tscm
from a previous study. Tscm presented different features of TRB clonotype compared
with other memory subsets. These features included TRB repertoire structure, gene usage,
CDR3 length, and sequence composition. In previous studies, top1000 clonotypes were
different from those of naïve, which was considering as a result of antigen-driven selection.
In this study, we found that top1000 clonotypes of Tscm have more overlap with naïve
than other memory subsets. Furthermore, these differences between Tscm and Tm were
greater than inter-individual differences within Tscm, implying that these TRB repertoire
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features could distinguish CD4+ Tscm and other CD4 + memory T subsets. Previously,
Hou et al. (2020) reported that CD4+ memory T cells have a shortening distribution of
CDR3 length and skewed gene usage compared with CD4+ naive cells. Hou et al. inferred
that antigen experience leads the TRB repertoire of memory T cells skewed. Bilate et al.
(2020) found that intestinal CD4+ intraepithelial lymphocytes differentiation was always
accompanied by clonal restriction, suggesting that TCR and local antigen presentation is
required by differentiation of this subset of T cells. Meyer-Olson et al. (2010) found that
in HIV infections, TCR/peptide major histocompatibility complex interaction played a
central role in the differentiation of TemRA cells (one type of effector memory T cells),
but not in the differentiation of TemRO. Therefore, antigen experience affects T cell
subsets’ differentiation differently, which lets TCR repertoire features divergent among
T-cell subsets. This mechanism might explain the differences in TRB repertoire between
Tscm and other CD4+ memory T cells. Besides, differentiation sequential is another factor
influencing the TRB repertoire and is supported by some previous studies (Minervina et al.,
2021; Minervina et al., 2020; Snook, Kim &Williams, 2018). Hogan et al. (2019) inferred
that early exposure to self and environmental antigens establishes persistent memory
populations at levels mainly determined by the dirtiness of the environment. After the first
few weeks of life, new memory cells replace these populations at rates independent of the
environment. Tcm showed a larger proportion replacement than Tem, which implied that
Tcm was affected by naïve cells more than Tem. Our result exhibited that TRB repertoire
features of Tscm, rather than Tm, are more like those of naïve, suggesting that subset with
a lower differentiation would be affected by naïve subset more. This notion is consistent
with the hierarchical model of human T cell differentiation (Gattinoni et al., 2011).

Renyi entropy is a classical method for estimating all stretches of a community. Greiff
et al. introduced this method to grab features of TCR repertoire and verified that TCR
repertoire structure features captured by this method could separate individuals with
different healthy statuses (Greiff et al., 2015). In this study, our data suggested that Tscm
were separated from Tm, whether individuals did or did not get T1D, suggesting that a
large difference in TCR repertoire structure between Tscm and other memory subsets
during cell differentiation. When alpha is 1, Renyi entropy tends to the Shannon entropy.
Therefore, Shannon entropy, a index used in many studies, was contained in the estimation
by Renyi entropy.

Public clonotypes are defined as ones that appeared in more than one individual. The
traditional method for identifying public clonotypes needs a large cohort. Greiff et al.
(2017) found that public clonotypes could be separated by the SVM method from private
ones. Therefore, we trained an SVM model based on a large cohort and then used this
model to identify public clonotypes in a small sample size. A limitation of the original
study was that the model’s accuracy for identifying public TCR clonotypes was about
76% and needed to be improved. We found that a large cohort (Emerson et al., 2017) and
increased the threshold (termed public clonotypes as ones occurred in more than two
individuals) for identifying public clonotypes could increase the model’s accuracy (BBAC
over 85%). Public clonotypes can be generated during gene recombination (Carey et al.,
2017) and thymus selection (Khosravi-Maharlooei et al., 2019). Public clonotypes enriched
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in naïve are likely promiscuous in their peptide-binding (Carey et al., 2017), while ones in
memory are more specific. Tscm had more public clonotypes than other memory T cell
subsets shown in this study. This study showed that the sequence composition of public
clonotypes is slightly different from those in naïve, with an SVM prediction accuracy of
66%. It suggested that public clonotypes in Tscm and Tn might have different sequence
composition, and implied that public clonotypes in Tscmmight undergo a selection driven
by antigen stimulation. The results of the GLIPG2 analysis further verified this hypothesis.
In this analysis, public clonotypes from top1000 clonotypes of Tn had 1095 clusters, while
Tscm only had 176 clusters. It suggests that public clonotypes in Tscm had an increased
specificity than those in Tn, which is a feature of antigen-experienced TRB repertoire.

TwoMethods were involved in this study for estimating epitope specificity of clonotypes
in subsets: GLIPH2 and estimation of enrichment of self-reactive clonotypes. GLIPH2 is
based on a hypothesis that the sequence composition of TCR, especially the CDR3 region,
determine the antigen specificity of clonotype. This model is trained on TCR clonotypes
with known specificities. Huang et al. (2020) verified that GLIPH2 model could precisely
cluster clonotypes recognizing the same epitope under a stringent threshold. Therefore,
number of clusters predicted in our studies could reflect the number of potential epitopes
recognized by clonotypes. As shown in our results, clusters of Tscm was less than naïve, but
more than other memory subsets, suggesting that Tscm still maintained ability to recognize
diverse antigens after antigen-specific stimulation. The other method was counting the
frequency of self-reactive clonotypes in each individual. Because CDR3 primarily affected
the antigen specificity of clonotype, accounting the frequency and percentage of self-reactive
clonotypes identified in previous studies could reflect the functions of memory subsets.
Infection and autoimmune related clonotypes in T1D and healthy groups were estimated
respectively. The results confirmed the expansion of self-reactive clonotypes in Tscm rather
than in other memory subsets in T1D patients.

The different TRB repertoire composition indicated a different function of Tscm
compared with other memory T cell subsets. As shown by Greiff et al. (2017), public
clones are usually generated by specific inserts and/or deletions (indel) during somatic
hypermutation. Shown by other studies as well as our results, during cell differentiation,
public clonotypes reduced in memory and effector. Although the cellular mechanism
underlying this phenomenon is still unclear, the selection on TCR clonotypes during
differentiation were wildly observed. Our study showed that top1000 clonotypes were more
public in Tscm than in other memory subsets, suggesting that a characteristic of Tscm is
enriching public clonotypes. Furthermore, self-reactive clonotypes were defined as ‘public’
in our study, suggesting that abnormal indels happened in these self-reactive clonotypes
make them ’public’. Therefore, the ‘public’ feature contributed to the enrichment of
self-reactive clonotypes in Tscm. Roberto et al. (2015) introduced that self/tumor-antigen
specific TCRs were enriched in Tscm after HSCT, and Interluekin-7 was essential for Tscm
generation (Cieri et al., 2013; Cieri et al., 2015). Thus, environment of Tscm generation
might Tscm enrich ‘public’ clonotypes. The increased level of Tscm were also found in
other studies focus on autoimmune diseases. For example, a study confirms that CD4+

Tscm recognizing citrullinated epitopes were expanded in rheumatoid arthritis (Cianciotti
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et al., 2020). The frequency of CD8+ Tscm was increased in acquired aplastic anemia
(Hosokawa et al., 2016). Autoreactive CD8+ Tscm occurs in T1D (Vignali et al., 2018). Our
results indicated the expansion of autoreactive clonotypes in T1D. These observations
suggested that Tscmmight serve as a pool for autoreactive clonotypes. Although the factors
to lead the enrichment of self-reactive clonotypes in Tscm is still unclear, our data showed
that it might be possible to amiable T1D by targeting Tscm in T1D patients. As shown by
Ahmed et al. (2016), Tscm highly expressed Ki67, indicating an activated status of Tscm.
Therefore, therapies suppressing immune activation may be possible to attenuate the
pathology of T1D.
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