Cortinarius subsalor and C. tibeticisalor spp. nov., two new species from the section Delibuti from China

4 5 Meng-Le Xie^{1, 2†}, Jun-Liang Chen^{3†}, Chayanard Phukhamsakda², B aint Dima⁴, Yong-Ping Fu², 6 Rui-Oing Ji², Ke Wang⁵, Tie-Zheng Wei⁵, Yu Li^{1, 2} 7 8 ¹ Life Science College, Northeast Normal University, Changchun, Jilin, P. R. China 9 10 ² Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, P. R. China 11 ³ Science and Technology Research Center of Edible Fungi, Lishui, Zhejiang, P. R. China 12 ⁴ Department of Plant Anatomy, Institute of Biology, E ätv ös Lor ánd University, Budapest, 13 14 ⁵ State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 15 Chaoyang, Beijing, P. R. China 16 17 † These authors contributed equally to this work. 18 19 Corresponding Author: Yu Li $^{\bar{1},\,2}$ 20 21 Xincheng Street, Changchun, Jilin, 130118, P. R. China Email address: livu@jlau.edu.cn 22 Tie-Zheng Wei⁵ 23 24 Beichen West Road, Chaoyang, Beijing, 100101, P. R. China 25 Email address: weitz@im.ac.cn

Abstract

26 27

28

29

30

31

32

33

34

35

36 37

38

1

2

3

Cortinarius subsalor and C. tibeticisalor, belonging to the section Delibuti, are described from China as new to science. Cortinarius subsalor has been found to be associated with Lithocarpus trees in subtropical China and resembling C. salor, but it differs from C. salor in the slender basidiomata and the narrower basidiospores, as well as in molecular sequence data. Cortinarius tibeticisalor were collected from eastern Tibetan Plateau, associated with Abies, it differs from other species within sect. Delibuti in the olive tinge of mature or dried basidiomata and bigger basidiospores. The molecular data also support C_subsalor and C.tibeticisalor as new species. The phylogenetic analyses and biogeography of sect. Delibuti are discussed and a key to the species of this section currently known in the world is provided.

带格式的:突出显示

删除的内容: es

删除的内容: with

删除的内容: by

删除的内容: by

带格式的:突出显示

Introduction

Cortinarius (Pers.) Gray is an ectomycorrhizal fungal genus, associated with a wide host range of plants, such as Betulaceae, Caesalpiniaceae, Cistaceae, Dipterocarpaceae, Fagaceae, Myrtaceae, Pinaceae, Rhamnaceae, Rosaceae, Salicaceae and some herbaceous plants (Frøslev, Brandrud & Jeppesen, 2006; Niskanen, 2008). The genus is distributed worldwide. Even though it is the largest genus among macrofungi, but its species diversity is still unknown. Most of Cortinarius species were originally discovered from Europe and America, and rarely in Asia and Africa (Horak, 1983; Xie et al., 2020).

删除的内容: s

删除的内容: continent

带格式的: 两端对齐

删除的内容: ing

Cortinarius sect. Delibuti (Fr.) Sacc. with characteristics of viscid pileus and stipe, haveusually been considered as a section in subg. Myxacium (Fr.) Trog (Trog, 1844; Earle, 1902; Orton, 1955; Brandrud et al., 1989; Consiglio, Antonini & Antonini, 2003). Delibuti species can easily be distinguished by the anomaloid appearances, mild taste and subglobose basidiospores from other myxacioid species (Orton, 1955; Soop, 2014). Section Delibuti was also considered to belong to subg. Phlegmacium (Fr.) Trog (Bidaud, Moänne-Loccoz & Reumaux, 1992; Bidaud, Mo änne-Loccoz & Reumaux, 1994). Recently, Soop et al. (2019) treated sect. Delibuti among anomaloid sections, not in myxacioid sections based on the shared characters of sect. Delibuti and sect. Anomali Konrad & Maubl., together with the close relationship in the phylogenetic analyses. In the past, numeral species were assigned to section Delibuti (Fries, 1838; Earle, 1902; Bidaud, Mo änne-Loccoz & Reumaux, 1992; Soop, 2013; Soop, 2014), however most species have been confirmed not to belong to this section (Orton, 1955; Consiglio, 2012; Dima et al., 2016; Soop et al., 2019). Soop et al. (2019) defined only ten species in sect. Delibuti, but the phylogenetic analyses verified and showed that there can still be some undescribed species in this section (Harrower et al., 2011; Garnica et al., 2016; Soop et al., 2019). In China, four Delibuti species, C. betulinus J. Favre, C. delibutus Fr., C. illibatus Fr., and C. salor Fr., were reported (e.g. Teng, 1963; Yuan & Sun, 1995; Shao & Xiang, 1997; Li & Azbukina, 2011; Xie, 2018; Wang et al., 2020), but none of them have been confirmed by molecular sequence data, thus their occurrence in China is yet controversial.

We have conducted taxonomic and phylogenetic studies of *Cortinairus* in China. Several new *Cortinairus* species have been described from China (*Wei & Yao, 2013; Xie et al., 2019; Xie et al., 2020; Xie et al., 2021; Yuan et al., 2020*). Some glutinous violet *Cortinarius* specimens resembling *C. salor* were found during an intensive field work and later, during the identification process they turned out to be new species which we describe here based on morphological and ecological characteristics, as well as phylogenetic analyses evidences. We also discuss the phylogenetic relationship and biogeography of sect. *Delibuti*. An identification key to the known species of sect. *Delibuti* is provided.

删除的内容: ly

删除的内容: e

Materials & Methods

50

51

52

53

54

55

56 57

58

59

60

61

62

63 64

65

66

67

68

69

70

71

72

73

74

75

76

77

78 79 80

81

Specimens and morphological description

Specimens were collected from Zhejiang Province and Tibet Autonomous Region, respectively.

82 The collection sites in Zhejiang are the subtropical areas with the evergreen broadleaf forests

删除的内容: ved

dominated by *Lithocarpus brevicaudatus*. Meanwhile, the collection sites in Tibet are the plateau-alpine areas with coniferous forests dominated by *Abies georgei* var. *smithii*. Fresh basidiomata were photographed in the field. Macroscopic characteristics were measured and recorded from every basidiomata, color codes follow *Kornerup & Wanscher* (1978). Microscopic features were examined and described in 5% KOH, Congo Red or Melzer's reagent and observed under a Zeiss AX10 light microscope. Thirty to forty mature basidiospores were measured (excluding apiculus and ornamentation) per collection. The length/width ratio (Q) was calculated for individual basidiospores. X_{av.} and Q_{av.} refer to the average value of basidiospores of each specimen. Voucher specimens deposited in the Herbarium of Mycology, Jilin Agricultural University (HMJAU), Changchun, China.

Phylogenetic reconstruction

DNA extraction, PCR amplifications, and sequencing methods followed *Xie et al.* (2019). The primers ITS1F and ITS4 were used in both PCR and sequencing reactions for the nrDNA ITS region with (*White et al.*, 1990; *Gardes & Bruns*, 1993). The newly generated ITS sequences were submitted to GenBank. The ITS sequences for the phylogenetic analyses were selected based on results of BLASTn (> 90% identity) in GenBank and UNITE and followed the publication by *Garnica et al.* (2016) and *Soop et al.* (2019). Two species in section *Cyanites* Nespiak were chosen as outgroup followed *Xie et al.* (2021).

Sequences (*Table 1*) for the phylogenetic analyses were aligned and edited with BioEdit 7.1.3.0 and Clustal X (*Tompson et al.*, 1997; *Hall*, 1999). For phylogenetic analyses, Bayesian Inference (BI) and Maximum Likelihood (ML) methods were implemented in this study. MrModeltest 2.3 was used to calculate the best model (HKY+I+G) for Bayesian Inference (BI) analysis (*Nylander et al.*, 2008). BI analysis was performed with MrBayes 3.2.6 (*Ronquist & Huelsenbeck*, 2003). Markov Chains Monte Carlo (MCMC) chains were run for 500 000 generations, sampling every 100th at which point the average standard deviation of split frequencies was 0.009032. A The 50% majority rule consensus tree of the BI trees sampled in the MCMC analyses and posterior probability values were estimated from the samples after discarding the first 25% (1250) of sampled trees. The ML analysis was performed with RAxML (*Stamatakis*, 2014) and implemented in raxmlGUI (*Silvestro & Michalak*, 2012). All parameters in the ML analysis were kept as defaults, except for choosing GTRGAMMA as the model of sequence evolution. For testing the support of the branches, rapid bootstrap analysis with 1,000 replicates was chosen. The phylogenetic trees were visualized in FigTree 1.4.3. The Bayesian posterior probabilities values (BPP) \geq 0.95 and ML bootstrap values (ML) \geq 75% are shown on

Nomenclature

the branches at the nodes (BPP/ML).

The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Code of Nomenclature for algae, fungi, and plants, and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. In addition, new names contained in this work have been

删除的内容:, and these

submitted to MycoBank from where they will be made available to the Global Names Index. The unique MycoBank number can be resolved and the associated information viewed through any standard web browser by appending the MycoBank number contained in this publication to the prefix "http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=". The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central, and CLOCKSS.

Results

Phylogenetic analyses

- The alignment contained 67 ITS sequences with 785 nucleotide sites, include 260 informative sites (see Supplemental Material). The BI and ML trees showed similar topologies and ML tree was selected as the representative phylogeny (*Figure 1*). The phylogenetic analyses showed 11 sections including section *Cyanites* outgroup, in addition one singleton species from Argentina, and two singletons from New Zealand. Every section formed separate monophyletic lineages with strong statistical support. Section *Delibuti* formed a distinct clade (BPP = 0.96) separated from other sections. Section *Delibuti* split into five main clades based on the analyses of ITS sequences. Clade A and B consist of Australasian species. Clade C is a clade including our new species from the Tibetan Plateau. Clade D consist of the species distributed in Europe, Asia and North and South America. Clade E represents the species in the Northern Hemisphere. *Cortinarius subsalor* (BPP/ML = 1.00/100%, clade E) and *C. tibeticisalor* (BPP/ML = 1.00/100%, clade C) formed a dinstinct lineages with high statistical support, respectively.
- Furthermore, *C. subsalor* formed a sister relationship with the European *C. salor* (BPP = 0.97, clade E).

Taxonomy

- 157 Cortinarius subsalor M.L. Xie, T.Z. Wei & Y. Li, sp. nov.
- 158 MycoBank No. MB839320
- 159 (Fig. 2)

Etymology. The name refers to the similar species *Cortinarius salor*.

Holotype. CHINA. Zhejiang: Baishanzu Mountain, Qingyuan county, on moist soil under *Lithocarpus brevicaudatus* (Fagaceae) forest with scattered Theaceae and *Rhododendron*, 27 45 44" N, 119 11 50" E, ASL 1510 m, 20 July 2020, Jun-Liang Chen, *QY-0235(1192-1198)* (HMJAU48759), GenBank: MW911734.

Diagnosis. Pileus hemispherical to plane, violet, glutinous; lamellae violet at first, then pale grayish violet; stipe slender, pale violet, then brown; glutinous veil violet. Basidiospores on average $8.0–8.3\times6.9–7.0~\mu m$, subglobose to broadly ellipsoid. Differing from other species in sect. *Delituti* by the violet color of basidiomata, the distribution of subtropical China and association, with *Lithocarpus brevicaudatus*.

 删除的内容: ed

Description

Pileus 20–50 mm, hemispherical at first, then convex to applanate; bluish violet (18B6-18C7) at first, purple (15B6-15C7) to purplish red (14A6-14B7) at the centre, then grayish violet (17B4-17C5), pale violet (19A3) at the margin; surface glutinous. Lamellae emarginate; moderately crowded; violet (17B6) when young, then grayish violet (17B4-17C5) to pale grayish violet (15B1-15C2); edge almost even. Stipe slender, 35–65 mm long, 3–7 mm thick, clavate at base (up to 14 mm); pale violet to grayish violet (19A3-19B5), later whitish, lightly brown to brown (7D6-7E7); surface with viscid universal veil, basal mycelium white with bluish tinge. Universal veil viscid, violet, remnants forming a girdle on the upper part of the stipe, disappearing with age. Context whitish at the pileus, slightly with yellowish tinge at the center, pale violet tinge extend outward, hygrophanous near lamellae; white with pale violet tinge at the apex of the stipe, yellow at the lower part; somewhat hollow within stipe. Odor not significant, taste mild.

Basidiospores 7.4–9.5 (10.6) \times 6–7.7 (8.7) μ m, Q = 1.10–1.29, $X_{av.} = 8.0–8.3 <math>\times$ 6.9–7.0 μ m, $Q_{av.} = 1.20$, subglobose to broadly ellipsoid, moderately coarsely verrucose, moderately dextrinoid. Basidia 4-spored. Lamellar edges fertile. Pileipellis: epicutis strongly gelatinous, about 180–250 μ m thick, with hyphae 2–7 μ m wide, yellowish to colorless in 5% KOH, with small encrusted spots, with some thick-walled hyphae. Hypodermium present; hypodermial hyphae 4–10 μ m wide, cylindrical, almost colorless in 5% KOH, smooth. Clamp connections present.

Exsiccatae. Pileus grayish violet (19B3-19C4) at the margin, light brown to dark brown (6D6-6F8) at the centre; lamellae rust brown (6E8); stipe brown (6D7-6E7), lighter downwards, yellowish white (4A2) at base.

ITS sequence. The ITS sequence (MW911734, holotype) distinct from other members of sect. *Delibuti* and deviating from them by at least 22 substitutions and indel positions.

Ecology and distribution. In subtropical evergreen broadleaf forest, associated with *Lithocarpus brevicaudatus* (Fagaceae). Known from Zhejiang and Hunan province of China.

Additional specimens examined. CHINA. Zhejiang: Baishanzu Mountain, Qingyuan county, on moist soil under *Lithocarpus brevicaudatus* (Fagaceae) forest with scattered Theaceae and *Rhododendron*, 27°45′55″ N, 119°11′0″ E, ASL 1500 m, 20 August 2020, Meng-Le Xie, 20xml12101 (HMJAU48758), GenBank: MW911733.

Cortinarius tibeticisalor M.L. Xie, T.Z. Wei & Y. Li, sp. nov.

MycoBank No. MB839321

205 (Fig. 3)

Etymology. The name refers to the Tibetan Plateau, the type locality, and $\underline{\text{the}}$ similar $\underline{\text{ity}}$ with *C. salor*.

Holotype. CHINA. Tibet Autonomous Region: Sejila Mountain, Linzhi city, on moist soil in *Abies* forest with scattered *Rhododendron*, 29°35′26″ N, 94°35′53″ E, ASL 4120 m, 5 September 2020, Meng-Le Xie, 20xml12416 (HMJAU48764), GenBank: MW911729.

Diagnosis. Pileus hemispherical to applanate, violet, glutinous, margin wavy, somewhat olive when mature; lamellae for a long time violet, then pale grayish violet to violet gray; stipe

删除的内容: at the

删除的内容: u

批注 [I1]: granules?

删除的内容:,

删除的内容: base

删除的内容: ved

robust, bluish gray to brown with olive tinge; <u>veil</u> glutinous violet. Basidiospores on average $10.3-10.8 \times 8.7-8.9 \mu m$, subglobose to broadly ellipsoid, rarely ellipsoid. Differing from other species in sect. *Delituti* by the olive tinge of basidiomata and the large basidiospores.

Description

Pileus 50–85 mm, hemispherical at first, then convex to plane, sometimes slightly depressed, wavy at margin of mature basidiomata, violet (17C7) at first, especially at the centre, paler violet towards the margin, then grayish orange (5B5) to brown (5D6-5E7) with olive tinge, dark at the centre; surface glutinous. Lamellae emarginate, moderately crowded, persistently violet (17C7), then grayish violet (19B4-19C6) to violet gray (19B2); edge uneven, slightly serrate. Stipe 85–120 mm long, 10–15 mm thick, clavate at base (up to 23 mm); surface with viscid bluish gray (19B2) universal veil remnants, then becoming yellow to brown with olive tinge (4B6-4D7), grayish violet (19B4-19C6) at the apex; basal mycelium white. Universal veil viscid, violet, remnants forming a girdle on the upper part of the stipe, dispearing with age. Context white with marbled violet tinge at first, slightly yellowish from the center of the pileus, then yellow at the stipe, especially at the middle. Odor weak when fresh, somewhat like honey when old or dry. Taste mild.

Basidiospores 9.0–12.0 (13.5) \times 7.7–10. 6 μm , Q = 1.10–1.39, $X_{av.} = 10.3–10.8 <math>\times$ 8.7–8.9 μm , $Q_{av.} = 1.20–1.23$, subglobose to broadly ellipsoid, rarely ellipsoid, moderately coarsely verrucose, weakly dextrinoid. Basidia 4-spored. Lamellar edges fertile, with narrow clavate cells. Pileipellis: epicutis strongly gelatinous, about 300–410 μm thick, hyphae 3–8 μm wide, with yellowish intracellular pigment in 5% KOH, smooth. Hypodermium present, hyphae 7–15 μm wide, irregular, almost colorless in 5% KOH, smooth. Clamp connections present.

Exsiccatae. Pileus olive brown (4E6-4F7) at margin, yellowish brown (5D7-5E8) at centre; lamellae dark bluish gray (19E2-19F2); stipe bluish white at apex, light brown (6D6-6E7) to dark brown (6F4-6F8), white at base.

ITS sequence. The ITS sequence (MW911729, holotype) distinct from other members of sect. *Delibuti* and deviating from them by at least 40 substitutions and indel positions.

Ecology and distribution. In plateau-alpine coniferous forests, associated with *Abies* (Pinaceae) trees. Known from Tibetan Plateau of China.

Additional specimens examined. CHINA. Tibet Autonomous Region: Sejila Mountain, Linzhi city, on moist soil under *Abies* forest with scattered *Rhododendron*, 29°35′25″ N, 94°35′55″ E, ASL 4170 m, 28 August 2019, Meng-Le Xie, *19xml10976* (HMJAU48761), GenBank MW911731, *19xml10981* (HMJAU48762), GenBank MW911732; Sejila Mountain, Linzhi city, on moist soil under *Abies* forest with scattered *Rhododendron*, 29°35′26″ N, 94°35′53″ E, ASL 4120 m, 5 September 2020, Meng-Le Xie, *20xml12395* (HMJAU48763), GenBank: MW911730.

Key to species of sect. *Delibuti*

删除的内容: veil

删除的内容: margin 删除的内容: in 删除的内容: ; 删除的内容: ; 删除的内容: ;

删除的内容: tinge 删除的内容: u 删除的内容: ly

删除的内容: with

删除的内容: the 删除的内容: the 删除的内容: the 删除的内容: base

批注 [I2]: Please carefully double check the characteristics of each species not to contradict the description in the Key.

21.	- 1	- Theus more of less violet to orde when young, sometimes partly yellow,	shviously "violet to blue" for
27	4	3. Lamellae usually blue when young, veil yellowish	obviously "violet to blue", for example: <i>C. largodelibutus</i> .
27	5	- Lamellae pinkish ochraceous clay, veil not yellowish	
270	3	4. Pileus frankly blue when young, stipe bluish, veil violet5	
27	7	- Pileus grayish blue to olive brown, stipe pale, veil different	
278	3	5. Basidiomata usually small, lamellae violet, then grayish to brownish, stipe usually slender (<	
279	9	10 mm), base white with bluish tinge, basidiospores on average $8.0-8.3 \times 6.9-7.0 \mu m$,	
280)	subglobose to broadly ellipsoid, distributed in subtropical China, associated with <i>Lithocarpus</i>	
28	1	brevicaudatus	
282	2	- Basidiomata usually bigger, lamellae persistently lilaceous or bluish, stipe usually more robust (>	删除的内容:
283	3	10 mm thick)6	(
284	4	6. Pileus usually staining buff or fading from the centre, stipe base usually grayish brown,	批注 [I4]: Some species are not so
28	5	basidiospores $7-9 \times 6-8 \mu m$, globose to subglobose, distributed in Europue, associated with	obviously "grayish blue to olive brown", for example: C.
280	3	deciduous and coniferous trees	largodelibutus.
28	7	- Pileus usually olive brown when mature, stipe base usually white, basidiospores 10.3–10.8 $ imes$	
288	3	8.7–8.9 µm, subglobose to broadly ellipsoid, rarely ellipsoid, distributed in Tibetan Plateau of	
289	9	China, associated with Abies	
290)	7. Basidiomata small, pileus yellow to olive-ochre at the centre, grayish blue towards the margin,	删除的内容: e
29	1	soon fading, veil yellow, basidiospores $7.5-9.5 \times 6.5-7.5 \mu m$, subglobose, associated with	删除的内容: .
292	2	Betula	删除的内容: the
293	3	- Basidiomata robust, associated with <i>Picea</i>	
293 294		- Basidiomata robust, associated with <i>Picea</i>	
	1		删除的内容:,
294	4 5	8. Pileus olive brown with a violet margin, veil olive brown, basidiospores $8-10 \times 7-8$	删除的内容: , 删除的内容: globose
294 295	4 5 6	8. Pileus olive brown with a violet margin, veil olive brown, basidiospores 8–10 ×7–8 µm,	删除的内容: globose 批注 [I5]: The spore sizes and
294 299	4 5 6 7	 8. Pileus olive brown with a violet margin, veil olive brown, basidiospores 8–10 × 7–8 μm,	删除的内容: globose 批注 [15]: The spore sizes and subglobose forms are so close,
294 299 290 290	4 5 6 7	8. Pileus olive brown with a violet margin, veil olive brown, basidiospores 8–10 ×7–8 µm,	删除的内容: globose 批注 [I5]: The spore sizes and
294 299 290 290 290	4 5 6 7 8	8. Pileus olive brown with a violet margin, veil olive brown, basidiospores 8–10 ×7–8 µm,	删除的内容: globose 批注 [15]: The spore sizes and subglobose forms are so close, that it is suggested to add an additional comparative character here.
294 299 290 290 290 290	4 5 6 7 8	8. Pileus olive brown with a violet margin, veil olive brown, basidiospores 8–10 × 7–8 μm,	删除的内容: globose 批注 [15]: The spore sizes and subglobose forms are so close, that it is suggested to add an additional comparative character
294 299 290 290 299 299 300	4 5 6 7 8 9	8. Pileus olive brown with a violet margin, veil olive brown, basidiospores 8–10 × 7–8 μm,	删除的内容: globose 批注 [15]: The spore sizes and subglobose forms are so close, that it is suggested to add an additional comparative character here.
294 299 299 299 299 300 301	4 5 6 7 3 9	8. Pileus olive brown with a violet margin, veil olive brown, basidiospores 8–10 ×7–8 μm,	删除的内容: globose 批注 [15]: The spore sizes and subglobose forms are so close, that it is suggested to add an additional comparative character here.
294 295 297 297 298 300 307 302	4 5 6 7 3 9 0 1 1 2 3	8. Pileus olive brown with a violet margin, veil olive brown, basidiospores 8–10 × 7–8 μm,	删除的内容: globose 批注 [15]: The spore sizes and subglobose forms are so close, that it is suggested to add an additional comparative character here.
294 295 296 297 299 300 300 300 300	4 5 7 3 9 0 1 1 2 3 4	8. Pileus olive brown with a violet margin, veil olive brown, basidiospores 8–10 ×7–8 μm,	删除的内容: globose 批注 [15]: The spore sizes and subglobose forms are so close, that it is suggested to add an additional comparative character here.
294 296 296 296 306 307 303 304	4 5 6 7 3 9 0 1 1 2 3 4 5	8. Pileus olive brown with a violet margin, veil olive brown, basidiospores 8–10 × 7–8 μm,	删除的内容: globose 批注 [15]: The spore sizes and subglobose forms are so close, that it is suggested to add an additional comparative character here.
294 296 297 298 300 300 300 300 300 300	4 5 6 7 3 9 0 1 1 2 3 4 5 6	8. Pileus olive brown with a violet margin, veil olive brown, basidiospores 8–10 ×7–8 μm,	删除的内容: globose 批注 [15]: The spore sizes and subglobose forms are so close, that it is suggested to add an additional comparative character here.
294 299 299 299 300 300 300 300 300 300 300	4 5 6 7 3 9 0 11 22 3 4 5 6 7	8. Pileus olive brown with a violet margin, veil olive brown, basidiospores 8–10 ×7–8 μm,	删除的内容: globose 批注 [15]: The spore sizes and subglobose forms are so close, that it is suggested to add an additional comparative character here.
294 299 299 299 300 300 300 300 300 300 300 300 300 3	4 55 77 33 99 90 11 22 33 44 55 66 77 33	8. Pileus olive brown with a violet margin, veil olive brown, basidiospores 8–10 × 7–8 µm,	删除的内容: globose 批注 [15]: The spore sizes and subglobose forms are so close, that it is suggested to add an additional comparative character here.
294 299 299 299 300 300 300 300 300 300 300 300 300 3	4 55 77 33 99 11 22 33 44 55 66 77 33 99	8. Pileus olive brown with a violet margin, veil olive brown, basidiospores 8–10 × 7–8 µm	删除的内容: globose 批注 [15]: The spore sizes and subglobose forms are so close, that it is suggested to add an additional comparative character here. 删除的内容:, subglobose
294 299 299 299 300 300 300 300 300 300 300 300 300 3	4 55 66 7 7 33 99 00 11 55 66 7 7 33 99 00 00 00 00 00 00 00 00 00 00 00 00 0	8. Pileus olive brown with a violet margin, veil olive brown, basidiospores 8–10 × 7–8 µm	删除的内容: globose 批注 [15]: The spore sizes and subglobose forms are so close, that it is suggested to add an additional comparative character here. 删除的内容:, subglobose

Niskanen et al., 2008; Soop, 2014). The pileus of C. transiens is often with a violet tone towards

312

the margin, while the centre is more olive gray to yellowish brown even in young specimens, the stipe is pale, and the gelatinous veil is olive brown (Soop, 1990; Soop, 2014). In China, sometimes some bluish myxacioid species have been misidentified as C. Salor (MHHNU30409, GenBank: MK250915), collected from Hunan Province. Our phylogenetic analyses showed that this sequence belong to the new species C. Subsalor. Cortinarius salor has persitently lilaceous lamellae, the stipe is more robust (> 10 mm thick) and the base is more grayish brown, the the basidiospores are rounder ($7-9 \times 6-8 \mu m$), and it occurs in European woodlands (Orton, 1955; Consiglio, Antonini & Antonini, 2003; Soop, 2014). Based on these features, C. Salor can be distinguished from the Asian C. Subsalor.

Cortinarius tibeticisalor is characterized by the basidiomata usually violet when young, then grayish orange to brown with an olive tinge, larger basidiospores and a restricted distribution in the Tibetan Plateau. Cortinarius tibeticisalor is similar to C. salor in young stage, however, the basidiospores (7–9 \times 6–8 μ m) of C. salor are significantly smaller and rounder, and the basidiomata never have olive tinge (Orton, 1955; Consiglio, Antonini & Antonini, 2003; Soop, 2014).

According to our phylogenetic analyses, sect. Delibuti demonstrates a widely distributed lineage of Cortinarius, in both the Northern and Southern Hemispheres. This bihemispherical distribution is also seen in several other lineages in Cortinarius, such as Anomali, Bolares, Camphorati, Defibulati, Illumini, and Vibratiles, which result is in concordance with other papers (e.g. Harrower et al., 2015; Garnica et al., 2016; Soop et al., 2019). The nrDNA ITS region is not suitable to draw conclusions for comprehensive phylogenetic evaluation, however, there are some interesting patterns indicated in sect. *Delibuti* to be further discussed. The basal lineages (clade A and B) of *Delibuti* are solely distributed in the Australasia, showing a presumable origin of the section in Australasia. Interestingly, the clade D contains species from multiple continents in the Northern and Southern Hemispheres. Some species distributed in Asia (Cortinarius sp., LC175538), in Europe (Cortinarius sp., JF907917), and in South America, like Cortinarius sp. (MF599228) from Colombia and C. illitus M.M. Moser & E. Horak, originally described from Argentina (Moser & Horak, 1975), but also found in North America (according to the sequences in GenBank). These patterns could explain that the evolution of sect. *Delibuti* is limited to the ectomycorrhizal host specificity, as well as geographic barriers (Wang & Qiu, 2006; Brandrud, 1996; Wilson et al., 2017; Feng et al., 2016). The evolution and origin of sect. Delibuti, even of genus Cortinarius will be a subject for future research.

Acknowledgements

The authors are grateful to the anonymous reviewers for the constructive comments and suggestions on the manuscript. We also thank to Dr. Rong Xie and Ms. Hui-Juan Sun (Tibet Academy of Agricultural and Animal Husbandry Sciences) and Mr. Ju-Zuo Li (Life Science College, Northeast Normal University) for their kind help in the fieldwork.

References

批注 [I6]: "As well as" is somewhat different from "and".

删除的内容: as well as

删除的内容: as well as

批注 [17]: Grammatically incorrect

- 363 Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Chethana KWT, Dai DQ, Dai YC,
- 364 Daranagama DA, Jayawardena RS, Lücking R, Ghobad-Nejhad M, Niskanen T,
- 365 Thambugala KM, Voigt K, Zhao RL, Li GJ, Doilom M, Boonmee S, Yang ZL, Cai Q,
- 366 Cui YY, Bahkali AH, Chen J, Cui BK, Chen JJ, Dayarathne MC, Dissanayake AJ,
- 367 Ekanayaka AH, Hashimoto A, Hongsanan S, Jones EBG, Larsson E, Li WJ, Li QR,
- 368 Liu JK, Luo ZL, Maharachchikumbura SSN, Mapook A, McKenzie EHC,
- 369 Norphanphoun C, Konta S, Pang KL, Perera RH, Phookamsak R, Phukhamsakda C,
- 370 Pinruan U, Randrianjohany E, Singtripop C, Tanaka K, Tian CM, Tibpromma S,
- 371 Abdel-Wahab MA, Wanasinghe DN, Wijayawardene NN, Zhang JF, Zhang H, Abdel-
- 372 Aziz FA, Wedin M, Westberg M, Ammirati JF, Bulgakov TS, Lima DX, Callaghan TM,
- 373 Callac P, Chang CH, Coca LF, Dal-Forno M, Dollhofer V, Fliegerov áK, Greiner K,
- 374 Griffith GW, Ho H-M, Hofstetter V, Jeewon R, Kang JC, Wen T-C, Kirk PM,
- 375 Kyt övuori I, Lawrey JD, Xing J, Li H, Liu ZY, Liu XZ, Liimatainen K, Lumbsch HT,
- 376 Matsumura M, Moncada B, Nuankaew S, Parnmen S, de Azevedo Santiago A LCM,
- Sommai S, Song Y, de Souza CAF, de Souza-Motta CM, Su HY, Suetrong S, Wang Y, 377
- 378 Wei SF, Wen TC, Yuan HS, Zhou LW, R & Jolov &M, Fournier J, Camporesi E, Luangsa-
- 379 ard JJ, Tasanathai K, Khonsanit A, Thanakitpipattana D, Somrithipol S, Diederich P,
- 380 Millanes AM, Common RS, Stadler M, Yan JY, Li XH, Lee HW, Nguyen TTT, Lee HB,
- 381 Battistin E, Marsico O, Vizzini A, Vila J, Ercole E, Eberhardt U, Simonini G, Wen HA,
- 382 Chen XH, Miettinen O, Spirin V, Hernawati. 2015. Fungal diversity notes 111–252—
- taxonomic and phylogenetic contributions to fungal taxa. Fungal diversity 75:27-274 DOI 383 384 10.1007/s13225-015-0346-5.
- 385 Bidaud A, Mo änne-Loccoz P, Reumaux P. 1992. Atlas des Cortinaires IV. Meyzieu: Éditions 386 Fédération Mycologique Dauphin é-Savoie.
- 387 Bidaud A, Mo inne-Loccoz P, Reumaux P. 1994. Atlas des Cortinaires. Clégénérale des 388 sousgenres, sections, sous-sections et séries. Meyzieu: Éditions Fédération Mycologique 389 Dauphin é-Savoie.
- 390 Brandrud TE. 1996. Cortinarius, subgenus Phlegmacium, section Phlegmacium in Europe. A study of character variation and ecology including a numerical analysis of the C. argutus complex. Mycological Research 100(4):471-485 DOI 10.1016/S0953-7562(96)80146-8. 392
- 393 Brandrud TE, Lindstr üm H, Marklund H, Melot J, Muskos S. 1989. Cortinarius Flora 394 Photographica I. Sweden: Cortinarius HB.

- 395 Cadiñanos JA, Gomez MM, Ballar à J. 2016. Cortinarius oreoborealis y C. pyrenaicus, dos 396 nuevas especies de la seccion Myxacium, subgenero Myxacium (Fr.) Trog ss. str. Journal 397 des JEC 18:39-65.
- 398 Consiglio G, Antonini D, Antonini M. 2003. Il Genere Cortinarius in Italia, Parte prima. 399 Luglio: Associazione Micologica Bresadola.
- 400 Consiglio G. 2012. Il Genere Cortinarius in Italia, Parte sesta. Luglio: Associazione Micologica 401 Bresadola.
- 402 Dima B, Lindström H, Liimatainen K, Olson A, Soop K, Kytövuori I, Dahlberg A,
- 403 Niskanen T. 2016. Typification of Friesian names in Cortinarius sections Anomali,

- 404 Spilomei and Bolares, and description of two new species from northern Europe.
- 405 *Mycological Progress* 15(9):903–919 DOI 10.1007/s11557-016-1217-5.
- 406 Earle FS. 1902. A key to the North American species of *Cortinarius* I. *Torreya* 2(11):169–172
 407 DOI 10.2307/40594021.
- Feng B, Zhao Q, Xu JP, Qin J, Yang ZL. 2016. Drainage isolation and climate change-driven population expansion shape the genetic structures of *Tuber indicum* complex in the Hengduan Mountains region. *Scientific Reports* 6:21811 DOI 10.1038/srep21811.
- 411 Fries EM. 1838. Epicrisis Systematis Mycologici. seu synopsis hymenomycetum. Uppsala.
- Frøslev TG, Brandrud TE, Jeppesen TS. 2006. New species and combinations in *Cortinarius* subgenus *Phlegmacium* section *Calochroi*. *Mycotaxon* 97:367–377.
- Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes.
 Application to the identification of mycorrhizae and rusts. *Molecular Ecology* 2(2):113–118
 DOI 10.1111/j.1365-294X.1993.tb00005.x.
- Garnica S, Schön ME, Abarenkov K, Riess K, Liimatainen K, Niskanen T, Dima B, Soop K,
 Frøslev TG, Jeppesen TS, Peintner U, Kühnert-Finkernagel R, Brandrud TE, Saar G,
 Oertel B, Ammirati JF. 2016. Determining threshold values for barcoding fungi lessons
 from Cortinarius (Basidiomycota), a highly diverse and widespread ectomycorrhizal genus.
 FEMS Microbiology Ecology 92:fiw045 DOI 10.1093/femsec/fiw045.
- Garnica S, WeißM, Oertel B, Oberwinkler F. 2005. A framework for a phylogenetic
 classification in the genus *Cortinarius* (Basidiomycota, Agaricales) derived from
 morphological and molecular data. *Botany* 83(11):1457–1477 DOI 10.1139/b05-107.
- Hall TA. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis
 program for windows 95/98/NT. *Nucleic Acids Symposium Series* 41(41):95–98
 DOI 10.1021/bk-1999-0734.ch008.
- Harrower E, Ammirati JF, Cappuccino AA, Ceska O, Kranabetter JM, Kroeger P, Lim S,
 Taylor T, Berbee ML. 2011. Cortinarius species diversity in British Columbia and
 molecular phylogenetic comparison with European specimen sequences. Botany
 89(11):799–810 DOI 10.1139/b11-065.
- Harrower E, Bougher NL, Henkel TW, Horak E, Matheny PB. 2015. Long-distance dispersal
 and speciation of Australasian and American species of *Cortinarius* sect. *Cortinarius*.
 Mycologia 107(4):697–709 DOI 10.3852/14-182.
- 435 Horak E. 1983. Mycogeography in the South Pacific region: Agaricales, Boletales. *Australian Journal of Botany* 10:1–41 DOI 10.1071/BT8310001.
- 437 **Kibby G. 2005.** Fungal Portraits: No. 21: *Cortinarius betulinus. Field Mycology* 6(1):3–4 DOI
 438 10.1016/S1468-1641(10)60282-4.
- 439 Kornerup A, Wanscher JHK. 1978. The methuen handbook of colour. London: Eyre Methuen
 440 Ltd. Reprint.
- 441 Li Y, Azbukina ZM. 2011. Fungi of Ussuri river valley. Beijing: Science Press.
- 442 Liimatainen K, Niskanen T, Dima B, Kyt övuori I, Ammirati JF, Frøslev TG. 2014. The
- 443 largest type study of Agaricales species to date: bringing identification and nomenclature of

- 444 Phlegmacium (Cortinarius) into the DNA era. Persoonia 33:98-140 DOI 445 10.3767/003158514X684681.
- 446 Moser M, Horak E. 1975. Cortinarius und nahe verwandte Gattungen in Südamerika. Beihefte 447 zur Nova Hedwigia 52:1-628.
- Niskanen T. 2008. Cortinarius subgenus Telamonia p.p. in North Europe. PhD. Thesis, 448 449 University of Helsinki.
- 450 Niskanen T, Kyt övuori I, Bendiksen E, Bendiksen K, Brandrud TE, Frøslev TG, Hølland K, 451 Jeppesen TS, Liimatainen K, Lindstr öm H. 2008. Cortinarius (Pers.) Gray. In: Knudsen 452 H, Vesterholt J, ed. Funga Nordica. Agaricoid, boletoid, clavarioid, cyphelloid and gastroid 453 genera. Copenhagen: Nordsvamp, 676–677.
- Niskanen T, Kytövuori I, Liimatainen K, Ammirati JF. 2015. Nomenclatural novelties. Index 454 455 Fungorum 256:1-2 456
 - http://www.indexfungorum.org/Publications/Index%20Fungorum%20no.256.pdf.
- 457 Nylander JAA, Zoology S, Posada D, Mrmodeltest R, Os F. 2008. MrModeltest 2.3 README, 458 May 22 2008.
- Orton PD. 1955. Cortinarius I. Leeds: The Naturalist. 459
- Osmundson TW, Robert VA, Schoch CL, Baker LJ, Smith A, Robich G, Mizzan L, 460 461 Garbelotto MM. 2013. Filling gaps in biodiversity knowledge for macrofungi: 462 contributions and assessment of an herbarium collection DNA barcode sequencing project. 463 PLoS One 8(4):e62419 DOI 10.1371/journal.pone.0062419.
- Peintner U, Bougher NL, Castellano MA, Moncalvo JM, Moser MM, Trappe JM, Vilgalys 464 465 **R. 2001.** Multiple origins of sequestrate fungi related to *Cortinarius* (Cortinariaceae). 466 American Journal of Botany 88(12):2168–2179 DOI 10.2307/3558378.
- Peintner U, Dresch P, Bellù F, Borghi E. 2014. Cortinarius microglobisporus (Basidiomycota), 467 468 a new species with roundish spores related to C. illuminus. Mycological Progress 469 13(3):899-904 DOI 10.1007/s11557-014-0975-1.
- 470 Peintner U, Horak E, Moser MM, Vilgalys R. 2002. Phylogeny of Rozites, Cuphocybe and 471 Rapacea inferred from ITS and LSU rDNA sequences. Mycologia 94(4):620-629 DOI 472 10.1080/15572536.2003.11833190.
- 473 Peintner U, Moncalvo JM, Vilgalys R. 2004. Toward a better understanding of the infrageneric 474 relationships in Cortinarius (Agaricales, Basidiomycota). Mycologia 96(5):1042-1058 DOI 475 10.1080/15572536.2005.11832904.
- 476 Peintner U, Moser MM, Thomas KA, Manimohan P. 2003. First records of ectomycorrhizal Cortinarius species (Agaricales, Basidiomycetes) from tropical India and their phylogenetic 477 478 position based on rDNA ITS sequences. Mycological Research 107(PT4):485-494 DOI 479 10.1017/S0953756203007585.
- 480 Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed 481 models. Bioinformatics 19(12):1572–1574 DOI 10.1093/bioinformatics/btg180.
- 482 Sawyer NA, Chambers SM, Cairney JWG. 1999. Molecular investigation of genet distribution 483 and genetic variation of *Cortinarius rotundisporus* in eastern Australian sclerophyll forests.
- 484 New Phytologist 142(3):561–568 DOI 10.1046/j.1469-8137.1999.00417.x.

- Shao LP, Xiang CT. 1997. Forest Mushrooms of China. Haerbin: Northeast Forestry University
 Press.
- Silvestro D, Michalak I. 2012. RaxmlGUI: a graphical front-end for RAxML. *Organisms Diversity & Evolution* 12:335–337 DOI 10.1007/s13127-011-0056-0.
- 489 Soop K. 1990. Observationer av några intressanta Cortinarius-arter. Agarica 10/11(19/20):30–43.
- 490 Soop K. 2013. Cortinarioid fungi of New Zealand, 9th edn. Sweden: Éditions Scientrix.
- 491 **Soop K. 2014.** *Cortinarius in Sweden*, 14th edn. Sweden: Éditions Scientrix.
- Soop K. 2016. A contribution to the study of the cortinarioid mycoflora of New Zealand, VII.
 New Zealand Journal of Botany 54(3):344–365 DOI 10.1080/0028825X.2016.1178149.
- Soop K, Dima B, Cooper JA, Park D, Oertel B. 2019. A phylogenetic approach to a global
 supraspecific taxonomy of *Cortinarius* (Agaricales) with an emphasis on the southern
 mycota. *Persoonia* 42:261–290 DOI 10.3767/persoonia.2019.42.10.
- Soop K, Wallace M, Dima B. 2018. New Cortinarius (Agaricales) species described from New
 Zealand. New Zealand Journal of Botany 56(2):163–182 DOI
 10.1080/0028825X.2018.1436574.
- Stamatakis A. 2014 RAxML version 8: a tool for phylogenetic analysis and post-analysis of
 large phylogenies. *Bioinformatics* 30:1312–1313 DOI 10.1093/bioinformatics/btu033.
 - **Teasdale SE, Beulke AK, Guy PL, Orlovich DA. 2013.** Environmental barcoding of the ectomycorrhizal fungus *Cortinarius*. Fungal Diversity 58(1):299–310 DOI 10.1007/s13225-012-0218-1.
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The Clustal_X
 windows interface: flexible strategies for multiple sequence alignment aided by quality
 analysis tools. *Nucleic Acids Research* 25(24):4876–4882 DOI 10.1093/nar/25.24.4876.
- **Teng SC. 1963.** Fungi of China. Beijing: Science Press.

502

503

- Trog JG. 1844. Verzeichniss schweizerischer Schwämme, welche grösstentheils in der
 Umgebung von Thun gesammelt worden sind. Mitteilungen der Naturforschenden
 Gesellschaft Bern 1844(15-23):17–92.
- Wang B, Qiu YL. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants.
 Mycorrhiza 16:299–363 DOI 10.1007/s00572-005-0033-6.
- Wang K, Zhao MJ, Su JH, Yang L, Deng H, Wang YH, Wu HJ, Li Y, Wu HM, Wei XD,
 Wei TZ, Cai L, Yao YJ. 2020. The use of Checklist of Fungi in China database in the red
 list assessment of macrofungi in China. *Biodiversity Science* 28(1):74–98 DOI
 10.17520/biods.2019163.
- Wei TZ, Yao YJ. 2013. Cortinarius korfii, a new species from China. Mycosystema 32(3):557–562 DOI 10.13346/j.mycosystema.2013.03.017.
- White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, ed. *PCR protocols: a guide to methods and amplifications*. New York: Academic Press.
- Wilson AW, Hosaka K, Mueller GM. 2017. Evolution of ectomycorrhizas as a driver of diversification and biogeographic patterns in the model mycorrhizal mushroom genus
 Laccaria. New Phytologist 213:1862–1873 DOI 10.1111/nph.14270.

- Wright SH, Berch SM, Berbee ML. 2009. The effect of fertilization on the below-ground
- 527 diversity and community composition of ectomycorrhizal fungi associated with western
- 528 hemlock (*Tsuga heterophylla*). *Mycorrhiza* 19(4): 267-276 DOI 10.1007/s00572-008-0218-529 x.
- Xie ML. 2018. Resources and taxonomy of *Cortinarius* in northeast of China. MA. Thesis, Jilin
 Agricultural University.
- Xie ML, Li D, Wei SL, Ji RQ, Li Y. 2019. Cortinarius subcaesiobrunneus sp. nov.,
- (Cortinariaceae, Agaricales) a new species from northwest China. *Phytotaxa* 392(3):217–224 DOI 10.11646/phytotaxa.392.3.4.
- Xie ML, Wei TZ, Dima B, Fu YP, Ji RQ, Li Y. 2021. Cortinarius khinganensis (Agaricales), a
 new species of section *Illumini* from Northeast China. *Phytotaxa* 500(1): 1-10. DOI
 10.11646/phytotaxa.500.1.1
- Xie ML, Wei TZ, Fu YP, Li D, Qi LL, Xing PJ, Cheng GH, Ji RQ, Li Y. 2020. Three new species of *Cortinarius* subgenus *Telamonia* (Cortinariaceae, Agaricales) from China.
 MycoKeys 69:91–109 DOI 10.3897/mycokeys.69.49437.
- 541 Yuan HS, Lu X, Dai YC, Hyde KD, Kan YH, Kušan I, He SH, Liu NG, Sarma VV, Zhao
 - CL, Cui BK, Yousaf N, Sun GY, Liu SY, Wu F, Lin CG, Dayarathne MC, Gibertoni
- TB, Concei ção LB, Garibay-Orijel R, Villegas-R ós M, Salas-Lizana R, Wei TZ, Qiu
- JZ, Yu ZF, Phookamsak R, Zeng M, Paloi S, Bao DF, Abeywickrama PD, Wei DP,
- Yang J, Manawasinghe IS, Harishchandra D, Brahmanage RS, de Silva NI,

- 546 Tennakoon DS, Karunarathna A, Gaforov Y, Pem D, Zhang SN, de Azevedo Santiago
- 547 ALCM, Bezerra JDP, Dima B, Acharya K, Alvarez-Manjarrez J, Bahkali AH, Bhatt
- 548 VK, Brandrud TE, Bulgakov TS, Camporesi E, Cao T, Chen YX, Chen YY, Devadatha
- B, Elgorban AM, Fan LF, Du X, Gao L, Gon çalves CM, Gusm ão LFP, Huanraluek N,
- Jadan M, Jayawardena RS, Khalid AN, Langer E, Lima DX, de Lima-Júnior NC, de
- Lira CRS, Liu JK, Liu S, Lumyong S, Luo ZL, Matočec N, Niranjan M, Oliveira-Filho
- 552 JRC, Papp V, P érez-Pazos E, Phillips AJL, Qiu PL, Ren YH, Ruiz RFC, Semwal KC,
- 553 Soop K, de Souza CAF, Souza-Motta CM, Sun LH, Xie ML, Yao YJ, Zhao Q, Zhou
- LW. 2020. Fungal diversity notes 1277–1386: taxonomic and phylogenetic contributions to
- 555 fungal taxa. Fungal Diversity 104:1–266 DOI 10.1007/s13225-020-00461-7.
- 556 Yuan ML, Sun PQ. 1995. Sichuan Mushroom. Chengdu: Sichuan Science and Technology Press.