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ABSTRACT
Background. Quorum Sensing (QS) is a cell-to-cell communication system that
bacteria utilize to adapt to the external environment by synthesizing and responding
to signalling molecules called autoinducers. The psychrotrophic bacterium Aliivibrio
wodanis 06/09/139, originally isolated from a winter ulcer of a reared Atlantic salmon,
produces the autoinducer N-3-hydroxy-decanoyl-homoserine-lactone (3OHC10-
HSL) and encodes the QS systems AinS/R and LuxS/PQ, and the master regulator LitR.
However, the role of QS in this bacterium has not been investigated yet.
Results. In the present work we show that 3OHC10-HSL production is cell density and
temperature-dependent inA. wodanis 06/09/139 with the highest production occurring
at a low temperature (6 ◦C). Gene inactivation demonstrates that AinS is responsible
for 3OHC10-HSL production and positively regulated by LitR. Inactivation of ainS and
litR further show that QS is involved in the regulation of growth, motility, hemolysis,
protease activity and siderophore production. Of these QS regulated activities, only the
protease activity was found to be independent of LitR. Lastly, supernatants harvested
from the wild type and the 1ainS and 1litR mutants at high cell densities show that
inactivation of QS leads to a decreased cytopathogenic effect (CPE) in a cell culture
assay, and strongest attenuation of the CPE was observed with supernatants harvested
from the 1litR mutant.
Conclusion. A. wodanis 06/09/139 use QS to regulate a number of activities that may
prove important for host colonization or interactions. The temperature of 6 ◦C that is
in the temperature range at which winter ulcer occurs, plays a role in AHL production
and development of CPE on a Chinook Salmon Embryo (CHSE) cell line.
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INTRODUCTION
Quorum sensing (QS) is a cell–cell communication mechanism regulated by secretion and
accumulation of small diffusible signalling molecules called autoinducers (AI) in a cell
density-dependent manner (Bassler, 1999). In Gram-negative bacteria, the most common
signalling molecules used for intra-species communication are N-acyl homoserine lactones
(AHLs) referred to as AI-1. The AHLs consist of a common homoserine lactone (HSL) ring
attached to an acyl side chain with four to 18 carbon atoms and a carbonyl substitution
at third carbon (Parsek et al., 1999; Kumari et al., 2006). The type and number of AHLs
produced differ between bacteria and also between bacteria of the same species (Purohit
et al., 2013; Girard et al., 2019). In addition to the AHLs, bacteria may use autoinducer-2
(AI-2) for both intra- and interspecies QS signalling (Forsyth & Cover, 2000; Schauder et
al., 2001; Li et al., 2010;Marques et al., 2011).

QS was first described in Aliivibrio fischeri, previously known as Vibrio fischeri, and
later in other vibrios such as Vibrio harveyi (Nealson & Hastings, 1979; Fuqua, Winans
& Greenberg, 1994; Freeman, Lilley & Bassler, 2000). A. fischeri possesses two AHL based
QS systems, the AinS/AinR and LuxI/LuxR, in addition to a LuxS/LuxPQ system where
AinS, LuxI and LuxS are the autoinducer synthases and AinR, LuxR and LuxPQ are the
receptors. LuxI synthesizes N-3-oxohexanoyl-homoserine lactone (3-oxo-C6-HSL) and
AinS synthesizes N-octanoyl- homoserine lactones (C8-HSL) while the LuxS synthesizes
a furanosyl borate diester (AI-2) (Lupp & Ruby, 2004; Miyashiro & Ruby, 2012). In
A. fischeri, the AinS/R and LuxS/LuxPQ QS systems work in parallel to transfer the signal
responses to LuxO via LuxU. At a low cell density and low autoinducers concentration,
the receptors AinR and LuxPQ phosphorylate LuxO. Phosphorylated LuxO activates the
transcription of the sRNA qrr gene to repress the transcription factor LitR through RNA
chaperone Hfq (Lupp et al., 2003). Alternatively, at high cell density, the autoinducers bind
to their cognate receptors leading to dephosphorylation of LuxO and litR expression. In
addition to the phosphorelay system, in A. fischeri, LitR directly activates luxR expression
to regulate bioluminescence production from the luxICDABEG operon (Engebrecht &
Silverman, 1984; Lupp & Ruby, 2005; Bose, Rosenberg & Stabb, 2008; Verma & Miyashiro,
2013). A. fischeri also uses QS to control other activities such as motility, colonization and
biofilm formation (Lupp et al., 2003; Lupp & Ruby, 2005; Studer, Mandel & Ruby, 2008;
Ray & Visick, 2012).

The marine bacterium Aliivibrio wodanis belongs to the genus Aliivibrio within
the Vibrionaceae family (Urbanczyk et al., 2007; Ast, Urbanczyk & Dunlap, 2009). The
bacterium is motile and psychrotrophic with the ability to grow at temperatures between 4
and 25 ◦C in the laboratory (Lunder et al., 1995; Lunder et al., 2000; Soderberg et al., 2019).
A. wodanis is repeatedly isolated together with Moritella viscosa from Atlantic salmons
(Salmo salar) suffering from winter ulcer disease (Lunder et al., 1995; Benediktsdottir et
al., 2000; Lunder et al., 2000; Whitman et al., 2001). The disease has only been reported
in reared salmons, and when the sea water temperature drops below 8 ◦C (Lunder et al.,
1995; Benediktsdottir, Helgason & Sigurjonsdottir, 1998; Whitman et al., 2001). The role of
A. wodanis in pathogenicity of winter ulcer disease is uncertain, andM. viscosa is considered
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to be the main pathogen (Lunder et al., 1995; Benediktsdottir, Helgason & Sigurjonsdottir,
1998; Bruno et al., 1998).

Karlsen et al. (2012) and Karlsen et al. (2014) have attempted to study the interaction
between A. wodanis and M. viscosa using different approaches. The studies suggest that
A. wodanis may influence the progression of a M. viscosa infection. In particular, they
show that predisposing Atlantic salmons to A. wodanis prior to infection with M. viscosa
led to lower mortalities (Karlsen et al., 2014). As a follow-up Hjerde et al. (2015) studied
the transcriptome of co-cultured A. wodanis and M. viscosa. In this study the authors
concluded that the presence of A. wodanis alters the transcriptome of M. viscosa and
impedes its growth. A. wodanis genome encodes bacteriocin, a proteinaceous toxin that
inhibits the growth of closely or distantly related bacteria (Hjerde et al., 2015). It was
speculated that the expression of bacteriocin in A. wodanis might have possibly impeded
the growth of M. viscosa (Hjerde et al., 2015). Although the contribution of A. wodanis
in the development of winter ulcer is unclear and may have an alleviating effect on a
M. viscosa infection, laboratory experiments have shown that Atlantic salmons infected
with A. wodanis alone is able to cause clinical symptoms such as scale loss, fin rot and
internal pathological symptoms such as swollen spleen, peritoneal fat tissues and petecchia
in liver (Karlsen et al., 2014). Furthermore, supernatants harvested from high cell density
A. wodanis cultures induce severe and rapid cytopathogenic effect (CPE) in four differ cell
lines of salmonid origins (Karlsen et al., 2014). Hence, the bacterium is able to produce and
secrete some yet unknown agent(s) that is cytotoxic to eukaryotic fish cells.

We have previously shown that A. wodanis strain 06/09/139 produces N-3-hydroxy-
decanoyl-homoserine-lactone (3OHC10-HSL) (Purohit et al., 2013), and encodes the QS
systems LuxS/LuxPQ and AinS/AinR and the master regulator LitR (Hjerde et al., 2015).
In the study presented here we investigate the QS system of A. wodanis by studying the
functional roles of the autoinducer synthase AinS and the master regulator LitR. We
performed the analyses at different temperatures since A. wodanis has been associated
with the winter ulcer disease, and also due to the fact that temperature is an important
factor for AHL production and QS regulation in the closely related Aliivibrio salmonicida,
the bacterium known to cause cold-water vibriosis in Atlantic salmons (Bjelland et al.,
2012; Hansen et al., 2014; Hansen et al., 2015). Our analysis show that the QS system in
A. wodanis regulates various phenotypic traits such asmotility, growth, hemolysis, protease,
siderophore production, as well as cytotoxicity in a cell line.We speculate thatQS regulation
of various potential virulent factors in A. wodanismay play a vital role during winter ulcer
development. To our knowledge, this is the first study on the QS system of A. wodanis.

MATERIALS & METHODS
Bacterial strains, plasmids and growth conditions
Bacterial cells and plasmids used in this study are listed in Table 1. The wild type
A. wodanis 06/09/139 and the constructed A. wodanis mutants were grown from glycerol
stocks (−80 ◦C) on Luria-Bertani Agar (Difco BD Diagnostics Sparks, MD, USA) plates
containing 1.5% agar (Sigma-Aldrich, St. Louis, MO, USA) and supplemented with a
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Table 1 Bacterial strains, plasmids and primers used in this study.

Strains, plasmids and primers Description Source or reference

A. wodanis
A. wodanis
06/09/139

Wild type from head kidney of Atlantic salmon from west
coast of Norway

Karlsen et al. (2014)

1litR A. wodanis 06/09/139 with a complete deletion of litR gene This study
1ainS A. wodanis 06/09/139 with a partial deletion of ainS gene This study
litR+ 1litR complemented with the wild type litR gene This study
E. coli
JM109 Competent strain for transformation of pGEM vector with

insert
Yanisch-Perron, Vieira & (2005)

SY327 Strain for replicating suicide vector, λ pir Miller & Mekalanos (1988)
S.17-1 Donor strain used for conjugation, λ pir Simon et al. (1983)
Plasmids
pDM4 Suicide vector with sacB, cmR, R6K origin (λpir) Milton et al. (1996)
pGEM R©-T Easy vector Cloning vector with β-galactosidase, Ampr, lacz,3′T

overhangs, blue /white screening
Promega

pGEM1litR pGEM R©-T Easy vector with1litR This study
pDM41litR pDM4 with regions flanking the deleted litR gene This study
pDM4 litR+ pDM4 with flanking regions and full length litR gene This study
pDM41ainS pDM4 with regions flanking the deleted ainS gene This study
Primers
LitRA-F ATATACTCGAGTTTACAACAAAAGCGCACCTG This study
LitRB-R CATATTTATTTATATCCTTGCCAACAA This study
LitRC-F GATATAAATAAATATGTAATATTCAGAACTCAGAAAGTAGATA This study
LitRD-R TATAATACTAGTGAGCTTCTTGGTGAAATTGG This study
LitRG-F GAGCCACGTAATAAACCAATCATC This study
LitRH-R CGTGTTATCGGTGGTGCTATT This study
AinSA-F AATAACTCGAGGGCTGATTATACAATAAGGTTGTG This study
AinSB-R CTAGATTGTTTAGATCAAATGTTGATA This study
AinSC-F GATCTAAACAATCTAGACGAGCCACCAAGATATCAA This study
AinSD-R TATATACTAGTCAACCTCCATCCGATCTTTA This study
AinSG-F TCACGACGAGAACCAAGACC This study
AinSH-R TTAGGTTGATAGCGAGAGCAAAG This study
NQCAT TAACGGCAAAAGCACCGCCGGACATCA Milton et al. (1996)
NQREV TGTACACCTTAACACTCGCCTATTGTT Milton et al. (1996)

final concentration of 2.5% NaCl (wt/vol) (LA2.5) for 3 days at 12 ◦C. The Pre-culture
of A. wodanis was grown overnight in 2 ml of Luria-Bertani broth (LB2.5) at 12 ◦C and
220 rpm.

The Escherichia coli (E. coli) strains JM109 and S.17-1lambdapir were grown on LA or
LB supplemented with 1% (wt/vol) NaCl (LA1 and LB1, respectively) at 37 ◦C and 220
rpm overnight. The TA plasmid pGEM-T was propagated in E. coli JM109 (Promega). The
suicide plasmid pDM4 (GenBank: KC795686.1) was propagated in S.17-1lambdapir cells.
The E.coli JM109 and S.17-1lambdapir transformants were selected on LA1 with 100 µg/ml
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ampicillin and 25 µg/ml chloramphenicol respectively. The potential transconjugants of
A. wodanis were selected on LA2.5 supplemented with 2 µg/ml chloramphenicol at 12 ◦C
for 5 days.

A sea water-based medium (SWT) was used in the biofilm and colony morphology
assays consists of 5 g/L of Bacto peptone (BD), 3 g/L of yeast extract (Sigma-Aldrich, St.
Louis, MO, USA) supplemented with different sea salt (Instant Ocean, Aquarium systems,
Sarrebourg, France) concentrations (1.0, 2.8 and 4.0% per litre). For solid SWT plates, 1.5%
agar (Sigma-Aldrich, St. Louis, MO, USA) was added. The hemolysin assay was carried on
blood agar plates (BA) base no.2 (OXOID, Thermo Scientific) supplementedwith 5%blood
and 2.5% NaCl. Leibowitch-15 (L-15) medium (Thermo Fisher Scientific, USA) was used
for cytotoxicity assay and supplemented with 200 mM L-glutamine, antibiotic-antimycotic
solution 100 units/ml penicillin, 100 µg/ml Streptomycin, 250 ng/ml amphotericin B
(P/S/A) (Sigma-Aldrich, St. Louis, MO, USA) and fetal bovine serum (FBS) (8%).

DNA extraction, PCR and sequencing
Genomic DNA was purified using MasterpureTM complete DNA/RNA purification kit
(Epicentre, Cambio Ltd., Cambridge) and plasmids were purified using E.Z.N.A R© plasmid
mini kit (Omega Bio-tek, Inc., Norcross, GA). The DNA concentration was measured
using NanoDropTM 2000c spectrophotometer (Thermo Scientific, DE, USA). The PCR
amplification was performed using Phusion R© polymerase (Thermo Fisher Scientific,
Waltham, MA, USA) or Taq polymerase (Sigma, St. Louis, MO, USA) in a ArktikTM

thermal cycler (Thermo Fisher Scientific, USA). Restriction digestion using XhoI and
SpeI restriction enzymes and DNA ligation using T4 DNA ligase were performed as
recommended by themanufactures andwere obtained fromNewEngland Biolabs (Ipswich,
MA, USA). The PCR products and the digested DNA fragments were separated using
agarose gel electrophoresis and extracted using Montage R© gel extraction kit (Millipore,
MA, USA). DNA sequencing was performed using Big Dye (Applied biosystems, CA, USA).
The primers used in the PCR and sequencing reactions were synthesized by Sigma-Aldrich
and are listed in Table 1.

Construction of 1litR and 1ainS mutants
The litR (AWOD_I_0419) and ainS (AWOD_I_1040) genes were in-frame deleted in
A. wodanis using allelic exchange as described by others (Milton et al., 1996; Bjelland et al.,
2012; Hansen et al., 2015; Khider, Willassen & Hansen, 2018). Briefly, litR and ainS genes
were deleted by amplifying and fusing regions flanking these genes. The upstream (280
bp) and downstream (263 bp) flanking regions of litR gene were amplified by primer pairs
LitRA/LitRB and LitRC/LitRD respectively. The upstream region contains the start codon
(ATG), and the downstream region contains the last three codons (TAA) at the C-terminal
end of litR gene. The upstream (253 bp) and downstream (271 bp) flanking regions of
ainS gene were amplified using primer pairs AinSA/AinSB, and AinSC/AinSD, respectively.
The upstream PCR product ends before the start codon (ATG), and the downstream PCR
product contained the last 149 bp (50 codons) of the ainS gene. PCR amplification was
performed with an initial denaturation at 98 ◦C for 30 s (s), followed by 30 cycles of 98 ◦C
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for 10 s, 60 ◦C for 20 s, 72 ◦C for 30 s, finishing with a final extension at 72 ◦C for 5 min
and storage at 4 ◦C thereafter. The upstream and downstream PCR products of either
litR or ainS were fused by overlap extension PCR. This overlap PCR was performed by
mixing the upstream and downstream PCR products with DNA Phusion polymerase,
deoxynucleoside triphosphates (dNTPs) and buffer and cycling for seven times. Then
the primer pairs LitRA/D or AinSA/D were added, and 25 more cycles were run (PCR
amplification was performed similarly to the stated above). A’overhangs were added to
the fused PCR products and ligated into pGEM-T Easy vector. The ligated constructs were
transformed into E. coli JM109 cells. The inserts (PCR overlap products) were digested
from the pGEM plasmid using SpeI and XhoI restriction enzymes as the primer pairs
LitRA/D and AinSA/D contain restriction sites (SpeI and XhoI ) to enable further ligation.
The digested fused PCR products were further ligated into corresponding restriction sites
of the suicide vector pDM4. The pDM4 plasmid with either litR or ainS fused PCR product
was transformed to E.coli S.17-1lambdapir cells. The resulting plasmids were designated as
pDM41litR and pDM41ainS.

The pDM41litR and pDM41ainS constructs were transferred into wild type A. wodanis
by bacterial conjugation as described previously (Milton et al., 1996; Bjelland et al.,
2012; Khider, Willassen & Hansen, 2018). Briefly, the donor cells E.coli S.17-1lambdapir
harboring the pDM41litR or pDM41ainS were grown until mid-exponential phase to
OD600 (optical density at 600 nm) of 1.0 and the recipient strain (A. wodanis) to an
early-exponential phase OD600 of 2.0. One ml from each culture was centrifuged separately
at room temperature and the pellets were separately washed twice with LB1 medium. The
washed bacterial pellets were mixed and resuspended in 10 µl of LB1. The resuspended
pellet was spotted onto LA1 plates and incubated at 19 ◦C for 6 h. The plates were further
incubated at 12 ◦C for 48 h. The spotted cells were then resuspended in 2 ml LB2.5
and incubated overnight at 12 ◦C before plating (20, 40, 60, 80, and 100 µl) on LA2.5
plates with 2 µg/ml chloramphenicol. Potential transconjugants were selected after 3 to
5 days and confirmed using colony PCR. To complete the allelic exchange needed to
generate the complete deletion mutants (1ainS and 1litR) potential transconjugants
(A.wodanis-pDM4-1ainS or A.wodanis-pDM4-1litR) were plated on LA2.5 plates with
5% sucrose to allow the second cross over. The cells that were able to grow were selected
based on their sensitivity to chloramphenicol. The antibiotics sensitive cells were confirmed
by colony PCR and further verified by sequencing.

Construction of 1litR complementary strain
The complementary strain (litR+) of the 1litR mutant was constructed by amplifying
the full-length wild type litR gene using primers LitRA and LitRD. Briefly, the length of
both the parental litR gene and its flanking region used to generate litR+ was 1,145 bp,
which was amplified from wild type using primers LitRA and LitRD. The PCR product was
then cloned into pDM4 using restriction digestion and ligation as described above. The
resulting plasmid pDM4litR+ was transformed into E.coli S.17-1lambdapir cells and further
transferred to the A. wodanis 1litR mutant by bacterial conjugation (described above).
The selection and verification of the potential complementary strain were performed as

Maharajan et al. (2021), PeerJ, DOI 10.7717/peerj.11980 6/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.11980


described above. The region that flanks the complemented region (litR+) after allelic
exchange was confirmed using primers LitRG and LitRH. The length of products amplified
using LitRG and LitRH was 1,365 bp.

Preparation of bacterial supernatants for AHL measurements
The wild type A. wodanis, 1litR and litR+ were cultivated in parallel at 6 and 12 ◦C. The
cultures were diluted to a start OD600 of 0.001 in a total volume of 60 ml LB2.5 in a 250
ml baffled flasks. The cultures were grown further at the selected temperatures and 220
rpm. Cultures of 1 ml (wild type, 1litR and litR+) were collected at seven different cell
densities in total, six at the log phase (OD600 of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0) and one at the
stationary phase (8.0). For 1ainS AHL measurements, samples were only harvested at
the early stationary phase (OD600 of 6.0). The cultures were centrifuged at 13,000× g for
2 min at 4 ◦C (Heraeus fresco 21; Thermo Scientific, Waltham, MA, USA). Seventy-five
microliters of each supernatant were acidified with 4 µl of 1M HCl and stored in three
technical replicates at −20 ◦C before measuring the AHLs. A commercial 3-OH-C10-HSL
was used as a standard (Sigma-Aldrich, St. Louis, MO, USA). The sample preparations for
High-Performance Liquid Chromatography-TandemMass Spectrometry (HPLC-MS/MS)
were done as described by others (Purohit et al., 2013; Hansen et al., 2015). Briefly, the
acidified supernatants were mixed with three volumes of ethyl acetate (225 µl) and
vortexed. The ethyl acetate phase of the three technical replicates was pooled together into
a 1 ml 96 well plate and dried in a rotary vacuum centrifuge at −90 ◦C for 2 h (SpeedVac
SavantTM concentrator; Thermo Scientific). The dried samples were dissolved in 150 µl
of 20% acetonitrile containing 0.1% formic acid and 660 ng/ml of internal standard
3-oxo-C12-HSL (Sigma-Aldrich, St. Louis, MO, USA).

HPLC-MS/MS analysis
The HPLC-MS/MS analysis was performed as described in Purohit et al. (2013) and
Hansen et al. (2015). Briefly HPLC-MS/MS was performed using an Ascentis Express C18
reversed-phase column (50 × 2.1 mm, 2.7 µm particle size; Sigma). A sample of 20 µl
was injected into the column and eluted using 0.1% formic acid in water and 0.1% formic
acid in acetonitrile at a flow rate of 200 µl/min. The elution profile obtained was 5%
acetonitrile in 30 s, 90% in 300 s and 5% in the next 60 s. The separated compounds were
detected by Linear Ion Trap Quadrapole (LTQ) part of the LTQ-Orbitrap (Thermo Fisher
Scientific). The LTQ was used in selected reaction monitoring (SRM) mode, and the SRM
was divided into two segments. Segment 1 scanned 3OHC10-HSL and segment 2 scanned
the internal standard 3O-C12-HSL with a retention time of 0–3.15 min and 3.15–6.00 min,
respectively. The ion trap parameters chosen for MS/MS were maximum injection time 50
ms, isowidth 1.0 m/z, collision energy 35, act Q 0.25 and act time 30 ms. The measured
AHLs are presented in ng/ml/OD600. The AHL measurements at different temperatures
were performed twice.

Motility assay
Motility assay was performed in LA2.5 soft agar plates with 0.25% agar (Bjelland et al., 2012;
Khider, Willassen & Hansen, 2018). Pre-cultures of A. wodanis wild type,1ainS, 1litR and
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litR+ were diluted 1:100 in LB2.5 and grown overnight at 12 ◦C to an OD600 corresponding
to 1.0. Then 2 µl of each culture was spotted onto the LA2.5 soft agar plates and incubated
at 6 ◦C and 12 ◦C. The diameter of motility zones were measured in millimeters every 24 h
for 5 days.

Siderophore, hemolysis, chitinase and protease assays
Siderophore production was screened using Chromeazurol S (CAS) agar plates as described
by others (Lauzon et al., 2008), with the exception that 2.5% of NaCl was used in this study.
Culture supernatants harvested at OD600 6.0 (100 µl) from strains grown at 6 and 12 ◦C
were added to six mm wells casted in CAS agar. The CAS agar plates were incubated at
20 ◦C for 2 days. Hemolysin production was estimated by spotting 2 µl cultures of each
strain on BA plates. The protease production was estimated by spotting 2µl cultures of each
strain on LA2.5 agar plates supplemented with 2% skim milk (Sigma-Aldrich, St. Louis,
MO, USA). The chitinase assay was performed by spotting 2 µl cultures of each strain on
LA2.5 supplemented with 2% colloidal chitin (Sigma-Aldrich, St. Louis, MO, USA) and
the plates were stained with 0.5% congo red (Sigma-Aldrich, St. Louis, MO, USA) for 30
min before destaining with 1 M NaCl for 20 min for chitinase zones measurement. All the
assays were performed with at least three biological replicates of strains A. wodanis wild
type,1ainS,1litR and litR+ and were incubated at 6 and 12 ◦C. The clear zones ratio values
for hemolysis, protease and chitinase assays were calculated as clear zone diameter/colony
diameter.

Biofilm and colony morphology assays
The biofilm and colonymorphology assays were performed as described previously (Hansen
et al., 2014) using SWTmedia and plates, respectively. Pre-cultures of A. wodaniswild type,
1ainS, and 1litR were diluted 1:100 in LB2.5 and grown overnight at 12 ◦C to an OD600

of 1.0. For the biofilm assay, the cultures were further diluted 1:10 in SWT media, and a
total volume of 300 µl was added to Falcon 24 well plates (BD Biosciences) and incubated
statically at 6 ◦C. The plates were monitored every 24 h. For the colony morphology assay,
a 250 µl of each bacterial culture was harvested by centrifugation, and the pellet was
resuspended in 250 µl SWT. Then, 2 µl of each culture was spotted onto SWT plates and
incubated at 6 ◦C for up to 4 weeks. The biofilm formation and colony morphology was
visualized using Ziess Primovert microscope at 10x and 4x magnification, respectively and
were photographed with AxioCam ERc5s.

Cytotoxicity assay and crystal violet staining
Chinook salmon embryo (CHSE-214) cells were purchased from American Type Culture
Collection (Nicholson & Byrne, 1973). Chinook salmon embryonic (CHSE) cells (passage
55) were grown in L-15. The CHSE cells were seeded 1×105 cells/ml in a flat-bottom
tissue culture 24-well plates (Falcon; BD Biosciences) and incubated for 48 h at 20 ◦C.
Supernatants of A. wodanis, 1ainS, 1litR and litR+ grown at 6 ◦C and 12 ◦C were
harvested at OD600 of 6.0, 7.0 and 8.0 and filter sterilized through 0.22 µm filter. The 100%
confluent fish cells were washed with L-15 without supplements and treated with bacterial
supernatants (1:10 to L-15 with antibiotics) before incubating at 12 ◦C. LB2.5 was used
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as a negative control. The plates were monitored after 4 and 24 h. The treated CHSE cells
were quantified using crystal violet staining. Briefly, the wells with treated CHSE cells were
stained with 500 µL of 0.1% crystal violet for 20 min before washing with water. The plates
were air-dried for 1 or 2 days, and the cells were dissolved in 96% ethanol before measuring
the absorbance at 590 nm (100 µL) using a spectrophotometer (Spectromax, Molecular
devices).

All assays were carried out in biological triplicates, unless otherwise indicated. The assays
were also performed in two to three independent experiments to validate the results.

RESULTS
In order to study the roles of QS in A. wodanis 06/09/139, we deleted parts of the ainS
gene (347 of 396 codons) and the litR gene (200 of 201 codons) using allelic exchange. A
complementary1litR strain (litR+) was constructed by re-inserting the full-length copy of
the wild type litR gene into the 1litR mutant to ensure that observed phenotypes are due
to the targeted gene inactivation and not to other factors. Despite several trials, we were
unable to rescue the 1ainS mutant. The schematic presentation of the litR and ainS genes
in the genome of A. wodanis is shown in Fig. S1.

The AinS autoinducer synthase is responsible for the production of
3OHC10-HSL
In previous work, we mapped AHL profiles among members of the Vibrionaceae family.
Only one single AHL, the 3OHC10-HSL, was identified inA. wodanis 06/09/139 (Purohit et
al., 2013). In A. salmonicida, the autoinducer synthase AinS was responsible for 3OHC10-
HSL synthesis (Hansen et al., 2015). Thus our first aim was to verify if 3OHC10-HSL is
produced by AinS. To this end, supernatants harvested from the wild type and mutants
(1ainS, 1litR and litR+) were analyzed by HPLC-MS/MS as previously described (Purohit
et al., 2013; Hansen et al., 2015). A peak corresponding to 3OHC10-HSL was present only
in supernatants harvested from the wild type, 1litR mutant and the litR+ (Fig. 1). This
suggests that AinS is the autoinducer synthase responsible for 3OHC10-HSL production
in A. wodanis 06/09/139. Unfortunately, we were not able to complement the ainSmutant
which could have given absolute proof for AinS being the 3OHC10-HSL synthase in
A. wodanis. Since ainS is the only AHL-linked gene annotated in A. wodanis we find other
explanations unlikely.

LitR represses growth of A. wodanis at 20 ◦C
Mutations are known to affect the growth of bacteria. A. wodanis strains grow in a range of
4–25 ◦C and in a recent study in our lab, the optimal growth temperatures were found to
be 12–18 ◦C (Lunder et al., 1995; Lunder et al., 2000; Soderberg et al., 2019). We, therefore
tested the strains ability to grow at three different temperatures (6 ◦C, 12 ◦C and 20 ◦C)
within the reported temperature range for A. wodanis. As shown in Fig. 2, the litR or ainS
mutations did not alter the growth rate of A. wodanis at 6 ◦C and 12 ◦C, and all strains
reached a maximum OD600 of ∼8.0. The strains grew considerably faster at 12 ◦C than at
6 ◦C, and the duration of the log/exponential phase (OD600 0.5 to 8.0) for the wild type
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Figure 1 3OHC10-HSL screening in wild type,1ainS,1litR and litR+. HPLC-MS/MS peaks showing
the relative abundance of 3OHC10-HSL in supernatants harvested at OD600 of 6.0 after growth of the dif-
ferent bacterial strains at 12 ◦C. LB2.5 was used as a blank. RT: Retention Time, AA: Peak area count.

Full-size DOI: 10.7717/peerj.11980/fig-1

lasted for 22 h when grown at 12 ◦C compared to 45 h at 6 ◦C (Fig. 2). At 20 ◦C, which
is a non-optimal temperature for growth of A. wodanis in the laboratory (Soderberg et al.,
2019), the wild type and1ainSmutant showed a growth deficiency, and the growth halted
after reaching an OD600 of 2.0–3.0 before it finally reached maximum OD600 of 5.0–6.0.
On the other hand, the 1litR mutant grew steadily and was able to reach an OD600 of 8.0.
Neither of the strains grew in liquid media (LB2.5) at 25 ◦C, and after streaking single
colonies of the different strains onto blood agar plates (BA2.5) only the 1litR mutant was
able to form small colonies when incubated at 25 ◦C (Fig. S2). Thus, LitR represses the
ability of A. wodanis to grow at 20 ◦C and 25 ◦C.
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Figure 2 Growth curves of wild type A. wodanis 06/09/139, and the isogenic mutants1ainS,1litR
and litR+. The strains were grown in LB2.5, 220 rpm at 6 ◦C (A), 12◦C (B) and 20 ◦C (C). The error bars
indicate the standard deviation of three biological replicates.

Full-size DOI: 10.7717/peerj.11980/fig-2

Figure 3 AHL profiling of supernatants harvested fromwild type A. wodanis 06/09/139,1litR and
litR+. (A) The 3OHC10-HSL concentrations (ng/ml/OD600) were measured in acidified supernatants by
HPLC-MS/MS after growth of the different strains at 6 ◦C and (B) at 12 ◦C. The error bars indicate the
standard deviation of three biological replicates.

Full-size DOI: 10.7717/peerj.11980/fig-3

3OHC10-HSL production in A. wodanis is cell density and
temperature-dependent, and weakly regulated by LitR
To explore the role of temperature on the production of 3OHC10-HSL in A. wodanis, we
analyzed supernatants harvested from the wild type 06/09/139 at different cell densities
after growth at 6 and 12 ◦C. The HPLC-MS/MS analyses showed that the 3OHC10-HSL
production was detectable from the measurements started at OD600 of 0.5 and increased
along the growth curve in a cell density-dependent manner. The bacterium produced
higher concentrations of 3OHC10-HSL when it was grown at 6 ◦C compared to at 12 ◦C
(P < 0.05, by Students t test). Highest 3OHC10-HSL concentrations were measured in the
stationary phase (OD600 of 8.0) where the wild type reached concentrations of 21.06± 0.43
ng/ml/OD600 and 15.12 ± 0.94 ng/ml/OD600 after growth at 6 ◦C and 12 ◦C, respectively
(Table S1, Fig. 3).

We also analyzed supernatants harvested from the 1litR mutant to examine if LitR is
a regulator of AHL production in A. wodanis, similar to what has been shown for other
aliivibrios (Lupp & Ruby, 2004; Hansen et al., 2015). As shown in Fig. 3, the 1litR mutant
produced lower concentrations of 3OHC10-HSL than the wild type did in the stationary
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phase, and the deletion of litR led to an 24% reduction when the maximum concentrations
(measured at OD600 = 8.0) of the wild type and1litR were compared at 6 ◦C (WT= 21.06
± 0.43 ng/ml/OD600 and 1litR = 16.01 ± 0.96 ng/ml/OD600; P < 0.05 by Students t test)
and 22% reduction after growth at 12 ◦C (WT = 15.12 ± 0.94 ng/ml/OD600 and 1litR =
11.78 ± 0.94 ng/ml/OD600; P < 0.05 by Students t test). The complementary mutant litR+

behaved as the wild type with regard to 3OHC10-HSL production.

Phenotypic traits regulated by QS in A. wodanis 06/09/139
QS is known to regulate several activities or phenotypic traits in vibrios and allivibrios
(Croxatto et al., 2002; Zhu et al., 2002; Lee et al., 2004; Tsou & Zhu, 2010; Bjelland et al.,
2012; Khider et al., 2019). Therefore, we analyzed the wild type A. wodanis 06/09/139
and QS mutants (1ainS and 1litR) with regard to motility, protease and siderophore
production, hemolysis, chitinase activity, biofilm formation and colony morphology. The
experiments were performed at 6 ◦C and 12 ◦C to determine if the temperature has an
influence on the phenotypic traits exhibited by the wild type, 1ainS and 1litR mutants.

Motility
The motility assay showed that the wild type A. wodanis 06/09/139 was motile at both
6 ◦C and 12 ◦C. The motility of wild type A. wodanis was 57% higher at 12 ◦C compared
to at 6 ◦C (12 ◦C = 42.17 ± 3.19 mm and 6 ◦C = 18.00 ± 0.89 mm; P < 0.05 by Students
t test) (Fig. 4A). The 1ainS and 1litR mutants showed significantly higher motility than
the wild type at both temperatures. Compared to wild type, the1litRmutant showed 27%
larger motility zones both at 6 ◦C (WT= 18.00± 0.89 mm and1litR= 24.58± 1.74 mm;
P < 0.05 by Students t test) and at 12 ◦C (WT = 42.17 ± 3.19 mm and 1litR = 57.67
± 1.97 mm; P < 0.05 by Students t test). Similarly, the 1ainS mutant showed 17% larger
motility zones at 6 ◦C (WT = 18.00 ± 0.89 mm and 1ainS = 21.67 ± 1.51 mm; P < 0.05
by Students t test) and 26% larger zones at 12 ◦C (WT = 42.17 ± 3.19 mm and 1ainS =
57.17 ± 3.87 mm; P < 0.05 by Students t test) (Fig. 4A, Table S2).

Siderophore production
Siderophores are produced by the bacterium and secreted into the growth medium (Sandy
& Butler, 2009). Hence, the activity was analyzed in supernatants harvested at OD600 of
6.0 from the wild type and mutants after growth at 6 and 12 ◦C. The CAS assay showed
that supernatants harvested from wild type at 12 ◦C produced 19% larger zones than
supernatants harvested at 6 ◦C (Fig. 4B, Table S2). Siderophore production was negatively
affected by the litR mutation, and the zones formed by 1litR mutant supernatants were
19% smaller at 6 ◦C (WT = 14.00 ± 1.00 mm and 1litR = 11.33 ± 1.53 mm; P < 0.05
by Students t test) and 29% smaller at 12 ◦C (WT = 17.33 ± 1.15 mm and 1litR = 12.33
± 1.15 mm; P < 0.05 by Students t test) when compared to the zones produced by wild
type supernatants. The size of siderophore zones formed by the supernatants from 1ainS
mutant was not significantly different from the wild type at neither 6 ◦C nor at 12 ◦C
(Fig. 4B, Table S2).
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Figure 4 Motility, siderophore- and protease production, and hemolytic activity in A. wodanis,1ainS,
1litR and litR+ mutants at 6 ◦C and 12 ◦C. (A) Soft agar plates showing the motility zones after 2 days.
(B) Siderophores produced at OD600 of 6.0 visible as yellow halos on CAS agar. (C) Protease production
visible as cleared zones on skim milk agar plates. (D) Hemolytic zones on blood agar.

Full-size DOI: 10.7717/peerj.11980/fig-4

Protease activity
The protease assay showed that the wild type A. wodanis 06/09/139 was able to cleave
the skim milk embedded in the agar (Fig. 4C). When compared to wild type, the average
proteolytic zone ratio of the 1ainS mutant was 16% smaller at 6 ◦C (WT = 1.47 ± 0.20
and 1ainS = 1.23 ± 0.08; P < 0.05 by Students t test) and 17% smaller at 12 ◦C (WT =
1.78 ± 0.15 and 1ainS = 1.47 ± 0.07; P <0.05 by Students t test). The proteolytic zones
produced by the 1litR mutant were not significantly different from the ones produced by
the wild type at neither 6 ◦C nor 12 ◦C (Fig. 4C, Table S2).

Hemolytic activity
The hemolysis assay showed that the wild type A. wodanis 06/09/139 was hemolytic
(Fig. 4D). The 1litR mutant produced hemolytic zones ratio that were 10% smaller than
the corresponding zones produced by the wild type at 6 ◦C (WT = 1.76 ± 0.07 and 1litR
= 1.58 ± 0.07; P < 0.05 Students t test) and 10% smaller at 12 ◦C (WT = 1.84 ± 0.03
and 1litR = 1.66 ± 0.06; P < 0.05 by Students t test). Deletion of ainS had no significant
effects on the hemolytic activity, as both 1ainS and wild type produced similar hemolytic
zones on the blood agar plates (P > 0.05 by Students t test) (Fig. 4D, Table S2).

Chitinase activity
The assay showed no significant differences (P > 0.05 by Students t test) in chitinase zones
between the wild type and mutants (1ainS and 1litR) (Fig. S3, Table S2).
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Colony morphology and biofilm formation
The ability of the mutants to form biofilm and colony morphology was analyzed in the
SWT media with different salt conditions. The strains (A. wodanis, 1ainS and 1litR)
did not form biofilm (Fig. S4). Similarly, on the SWT plates, the colonies of 1ainS and
1litR looked smooth similar to the wild-type with no rugosity both microscopically and
macroscopically (Fig. S5).

Cytopathogenic effect on Chinook salmon embryonic cells (CHSE)
To test whether QS affects the cytopathogenic effect (CPE) of A. wodanis 06/09/139, CHSE
cells were treated with supernatants harvested at different cell densities (OD600 of 6.0, 7.0
and 8.0) from the wild type and mutants (1ainS and 1litR) after growth at 6 and 12 ◦C.
The CPE was observed microscopically (Fig. 5A), and cells that survived and remained
attached to the substratum were thereafter quantified using a crystal violet staining method
(Figs. 5B and 5C). Supernatants harvested from the wild type had a CPE on the CHSE cells
similar to what has been described earlier (Karlsen et al., 2014). The temperature at which
the bacterium was grown and the time of harvest (cell density) determined the severity of
CPE. After growth at 6 ◦C, wild type supernatants harvested at OD600 of 6.0 showed highest
CPE with complete lysis of the cells (Figs. 5A and 5B). Wild type supernatants harvested
at OD600 of 6.0 after growth at 12 ◦C were less cytotoxic to the cells (Fig. 5A), but the CPE
increased with increasing cell density, and after treatment with supernatants harvested at
OD600 of 8.0 the cells suffered from severe CPE and few cells remained viable and attached
to the substratum (Fig. 5C).

Compared to the negative control, some CPE was observed for cells treated with
supernatants harvested from the 1litR mutant, but most cells remained intact without
losing the cell to cell contact (Fig. 5A). On the other hand, supernatants harvested at OD
600 of 6.0 from the1ainSmutant grown at 6 ◦C induced severe CPE and few cells survived
(Figs. 5A and 5B). However, after growth at 12 ◦C the supernatants harvested from the
1ainS and 1litR induced similar CPE and were less cytotoxic than the corresponding
supernatants harvested from the wild type. Hence, in particular, QS and LitR play a role in
regulation of CPE towards CHSE cells in A. wodanis, and this regulatory role is somewhat
stronger at 6 ◦C compared to at 12 ◦C (Fig. 5, Table S3).

DISCUSSION
QS is known to regulate several phenotypes or traits in vibrios and aliivibrios such as
motility, siderophore production, hemolysis, biofilm formation, protease production and
virulence (Croxatto et al., 2002; Zhu et al., 2002; Sandy & Butler, 2009; Bjelland et al., 2012;
Yang & Defoirdt, 2015; Elgaml & Miyoshi, 2017; Balado et al., 2018).

Before the study presented here, we had a limited knowledge regarding the QS systems
in A. wodanis. However, from previous genome analysis and HPLC-MS/MS analyses of
supernatants we knew that A. wodanis encoded two QS systems (LuxS/PQ and AinS/AinR)
and produced one AHL (3OHC10-HSL) (Purohit et al., 2013; Hjerde et al., 2015). Thus, to
explore the role of the QS in A. wodanis, the essential genes ainS and litR, were inactivated
and their functional roles were investigated when the bacteria was grown at 6 ◦C and 12 ◦C.
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Figure 5 Cytopathogenic effect (CPE) in CHSE cells inoculated with supernatants of wild type
A. wodanis,1ainS,1litRmutants and litR+ harvested at 6 and 12 ◦C. (A) CPE observed in CHSE cells
treated with supernatants harvested at OD600 of 6.0 from strains grown at 6 ◦C (top) and 12 ◦C (bottom).
The images were taken after 24 h incubation at 12 ◦C with a Nikon Eclipse TS100 Inverted Phase contrast
Microscope at 10x magnification. The bar charts represent the absorbance measured after crystal violet
staining the remaining attached CHSE cells after being exposed to supernatants harvested at OD600

of 6.0–8.0 from strains grown at 6 ◦C (B) and 12 ◦C (C). NC denotes negative control. The error bars
indicate the standard deviation of three biological replicates.

Full-size DOI: 10.7717/peerj.11980/fig-5

Our study shows that AinS is the autoinducer synthase responsible for cell density
dependent 3OHC10-HSL production in A. wodanis. This is similar to AinS in
A. salmonicida, which produces the same type of AHL (3OHC10-HSL) (Hansen et al.,
2015). Previous studies of pathogenic vibrios and aliivibrios have pointed to a relationship
between a temperature closest to disease temperature and AHL production (Hansen et al.,
2015; Bhedi et al., 2017). Similarly, the temperature was found to regulate 3OHC10-HSL
production in A. wodanis, where the concentration was higher at 6 ◦C than at 12 ◦C. Thus,
the effect of temperature on 3OHC10-HSL production in A. wodanis may correlate to the
winter ulcer threshold temperature, 8 ◦C.

LitR in A. salmonicida and A. fischeri are activators of AHL production while the LitR
homologue VanT in Vibrio anguillarum does not affect AHL production (Croxatto et al.,
2002; Lupp & Ruby, 2004; Hansen et al., 2015). Interestingly, LitR is only a weak activator
of 3OHC10-HSL synthesis in A. wodanis, suggesting that other mechanisms may be
involved in regulation of AHL production. Several LitR-independent regulations such as
AinS autoregulation or cyclic adenosine monophosphate (cAMP) - cAMP receptor protein
(CRP)-, response regulator (GacA)-, posttranscriptional regulator (RsmA)- and regulator of
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general stress response (RpoS)- mediated regulation have been reported in A. fischeri (Lupp
& Ruby, 2004; Lyell et al., 2013). The genome of A. wodanis encodes homologs of GacA
(AWOD_I_1749), RpoS (AWOD_I_2147 and AWOD_II_1179), RsmA (AWOD_I_2393)
and CRP (AWOD_I_0320) (Hjerde et al., 2015). However, further studies are needed to
investigate if these regulators are involved in 3OHC10-HSL production in addition to LitR
in A.wodanis.

The A. wodanis 1litR mutant exhibited better growth than the wild type and 1ainS
mutant at the non-optimal temperatures 20 and 25 ◦C. At 20 ◦C the wild type and 1ainS
mutant stopped growing in the early log phase and then continued growing after few hours,
whereas the1litRmutant grew well without this pause. This suggests that LitR is a negative
regulator of growth and temporarily prevents growth of A. wodanis at 20 ◦C. Others have
reported that QS upregulate growth at non-optimal temperatures such as in A. fischeri and
A. salmonicida where deletion of litR led to slower growth than their respective wild types
(Fidopiastis et al., 2002; Hansen et al., 2015). However, in some bacteria like Pseudomonas
aeruginosa, the mutation of QS transcriptional regulators (LasR and RhlR) provided a
growth advantage to the lasR and rhlR mutants over the wild type (Heurlier et al., 2005;
Yan et al., 2007). Moreover, during alkaline stress, the lasRmutant in P. aeruginosa showed
better cell viability than the wild type (Heurlier et al., 2005). Bacteria experience various
fluctuations in the environment, and suboptimal temperature is a key stressor, which the
bacteria have to react and respond to in order to survive. This is well-known from studies
with E.coli where a temperature shift from 37 to 42 ◦C results in accumulation of heat
shock proteins to maintain homeostasis and later, after the bacteria have adapted to the
temperature, the heat shock proteins are down regulated to assist the growth again (Bukau,
1993; Guisbert et al., 2004). Thus, A. wodanis may respond to non-optimal temperatures
by inducing heat shock proteins and start to grow again after adapting to the temperature
shock. However, the mechanisms LitR may play in the response to stress and non-optimal
temperatures needs to be further investigated.

A. wodanis is considered a secondary pathogen in winter ulcer disease, and little is known
about virulence factors in this bacterium. In a community, bacteria produce various virulent
and non-virulent factors that provide an opportunity for adaptation and survival, such
as motility, biofilm formation, siderophore and protease production (Hibbing et al., 2010;
Cullen & McClean, 2015; Diard & Hardt, 2017). In this study, we found that A. wodanis
06/09/139 was motile and produced siderophores, hemolysin, protease and chitinase.
A. wodanis grows faster at 12 ◦C than at 6 ◦C, and the aforementioned phenotypes
or activities were strongest at 12 ◦C. Deletion of litR and ainS in A. wodanis changed
several phenotypes in this study. QS regulation of motility has been shown in numerous
Vibrionaceae members, where the effect of QS on motility varies between bacteria. QS
positively regulates motility in V. harveyi and Vibrio cholerae, whereas it negatively affects
motility in A. salmonicida, A. fischeri, Vibrio parahaemolyticus and Vibrio alginolyticus
(Lupp & Ruby, 2004; Nielsen et al., 2006; Rui et al., 2008; Bjelland et al., 2012; Kernell Burke
et al., 2015; Yang & Defoirdt, 2015). Similarly, in our study, QS negatively regulates
motility in A. wodanis. In a planktonic state, bacteria require higher motility to reach
towards the host or surface, as they attach, the motility decreases to facilitate colonization
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(Lupp & Ruby, 2005; Liu et al., 2008). Since LitR negatively regulatesmotility, it is likely that
A. wodanis is more motile at low cell density and reduces its motility as it reaches higher cell
density by activating the LitR-AinS pathway. In A. fischeri and V. cholerae, hypermotility in
QS mutants have led to low colonization of the hosts (Gardel & Mekalanos, 1996; Lupp et
al., 2003; Lupp & Ruby, 2005). We speculate that the hypermotile 1ainS and 1litR strains
may behave like planktonic cells and result in low colonization in the host.

The motility is often linked to biofilm formation and colony rugosity in many Vibrio
and Aliivibrio spp. (Yildiz & Visick, 2009; Bjelland et al., 2012; Jemielita, Wingreen & Bassler,
2018; Khider et al., 2019). In the present study, neither the wild type nor the hypermotile
strains (1ainS and 1litR) formed biofilm or colony rugosity under the tested conditions.

Proteases play an essential role in numerous bacterial biological processes and also
act as virulence factors in many pathogens (Rui et al., 2009; Syngkon et al., 2010). QS
master regulators such as VanT in V. anguillarum, HapR in V. cholera, SmcR in Vibrio
vulnificus, OpaR in V. parahaemolyticus are known to be associated with regulation of
proteases (Croxatto et al., 2002; Wang et al., 2011; Elgaml & Miyoshi, 2017; Chang & Lee,
2018). However, in A. wodanis LitR did not affect protease production. Interestingly, AinS
in A. wodanis seems to positively affect protease production. This observation suggests
that protease production is activated by AinS independently of LitR. LitR independent
regulations of proteases have also been reported in other bacteria (Chancey, Wood &
Pierson, 1999; Elgaml & Miyoshi, 2017). As AHL is still produced in the 1litR mutant,
the AHL could bind to some unknown LitR-independent regulators and express the wild
type proteases. Thus, there is a possible linkage between other regulators and the AHL
3OHC10-HSL.

Deletion of litR in A. wodanis led to a reduction in siderophores production and
hemolytic activity. The bacterium secretes siderophores to acquire iron from the
environment and is a potential virulent factor (Ratledge & Dover, 2000; Balado et al.,
2018). The genome of A. wodanis encodes two siderophores clusters (AWOD_I_1553-
1563 and AWOD_II_0923-0927) and several putative hemolysin genes (AWOD_I_0727,
AWOD_I_2361, AWOD_I_2612, AWOD_II_0256 and AWOD_II_1158) with high
similarity to A. salmonicida and A. fischeri MJ11 (Hjerde et al., 2015). Hemolysin and
siderophores are under QS regulation in other Vibrionaceae members (Gao et al., 2018;
McRose et al., 2018). The finding that LitR is a positive regulator of siderophore and
hemolysin production suggests that these phenotypes are more significant at high cell
densities in A. wodanis. However, consistent with the LitR regulation of AHL production,
LitR seems only to be a weak activator of siderophore and hemolysin production and
may include other regulation mechanisms. In A. fischeri, a mutation in ainS showed no
effect on siderophore production (Lupp et al., 2003). Similarly, neither siderophore nor
hemolysin production was affected in 1ainS mutant, suggesting that their productions
are not dependent on AHL-mediated QS system. Additionally, the performed hemolysis
and proteases assays in this study are semi-quantified test and conducted mainly due to
their importance in virulence. However, further experiments and quantification methods
are required to draw a better conclusion. While QS is known to negatively regulate
chitinase in V. harveyi, the QS does not affect the chitinase production in A. fischeri
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(Defoirdt et al., 2010;Cao et al., 2012). LikeA. fischeri, deletion of ainS and litR inA. wodanis
did not have an effect on chitinase production, suggesting the production is independent
of the QS system.

In the study of Karlsen et al. supernatants (OD600 of 6.0–7.5) harvested from A. wodanis
grown at 8 ◦C were cytotoxic to four different salmon cell lines including CHSE (Karlsen
et al., 2014). Similarly, in the work presented here A. wodanis supernatants caused CPE
on CHSE, but the severity varied with time of harvest and the temperature at which the
bacterium was grown. When grown at 6 ◦C, a severe CPE was observed with supernatants
harvested in the early in the stationary phase (OD600 of 6.0). However, when the cells were
exposed to supernatants harvested at later stages in the stationary phase more cells survived
and remained attached. This suggests that the factor(s) responsible for causing cell death
is more strongly expressed early in the stationary phase at this temperature. The situation
is opposite when the wild type was grown at 12 ◦C where a higher cell density seems to be
vital for expression of the cytotoxic factor(s). Thus, if QS is involved in regulation of CPE
the ‘‘quorum’’ needed to turn on this activity may be achieved at lower cell densities when
the bacterium is grown at 6 ◦C compared to at 12 ◦C. Several pathogenic vibrios such
as V. cholerae, V. parahaemolyticus, V. vulnificus and V. alginolyticus use QS to regulate
cytotoxicity (Cao et al., 2010; Gode-Potratz & McCarter, 2011; Shao et al., 2011; Gao et al.,
2018). Similarly, our results show that LitR and AinS are activators of cytopathogenicity.
However, only the litR mutation led to reduced CPE when the CHSE cells were treated
with supernatants harvested after growth at 6 ◦C suggesting that the cytotoxic effect
is independent of AinS and AHL mediated QS at this temperature. In addition to the
AinS/AinR system A. wodanis encodes the genes needed for the LuxS/LuxPQ system.
Perhaps at 6 ◦C, the virulence or CPE is more dependent on this latter QS system or, so
far, other unknown factors.

The temperature has been shown to regulate QS in some bacteria, where a difference in
phenotypes between the wild type and QS mutants is clearly different at one temperature
compared to another. This was seen for A. salmonicida where a litRmutation led to biofilm
formation and rugose colonies when the bacteria were grown at a low temperature (Hansen
et al., 2014). However, when the same bacteria were grown at higher temperatures the1litR
mutant behaved like the wild type and was not able to produce biofilm and rugose colonies
(Hansen et al., 2014). AinS in A. salmonicida produces the same AHL as A. wodanis in
addition to seven LuxI produced AHLs, and the concentration of 3-OH-C10-HSL was
much higher at low temperature (Hansen et al., 2015). A. wodanis is not able to produce
rugose colonies or biofilm, and the difference in AHL production at different temperatures
is modest. However, the different QS regulated phenotypes are expressed at 6 ◦C in
A. wodanis, and at this temperature the CHSE cells showed highest CPE.

CONCLUSION
Based on the findings presented in this study,A. wodanis 06/09/139 produces some virulent
factors that may be used for inter- or intraspecies co-operation and competition for niche
adaptations during winter ulcer development. Many bacteria use AHL-mediated QS for
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regulation of various phenotypic traits (Papenfort & Bassler, 2016). Like other Vibrionaceae
members, the LuxS/PQ and AinS/AinR QS systems in A. wodanis probably convey into the
same cascade to activate LitR and downstream genes. In this study, we found that AinS is
responsible for autoinducer production. We have shown that temperature is an essential
factor in regulating AHL production, growth and cytotoxicity. Although QS in A. wodanis
may not be a crucial activator or repressor of virulence-associated phenotypic traits, the
minor role in regulation can add knowledge to the winter ulcer disease development. The
regulatory mechanisms other than QS that regulates the phenotypic traits in A. wodanis
need to be further investigated.
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