1Cranial and mandibular shape variation in the genus *Carollia* (Mammalia: Chiroptera) from 2Colombia: biogeographic patterns and morphological modularity

3Abstract

4Neotropical bats of the genus Carollia are widely studied due to their abundance, distribution 5and relevance for ecosystems. However, the ecomorphological boundaries of these species are 6poorly differentiated, and consequently correspondence between their geographic distribution, 7ecological plasticity and morphological variation remains unclear. In this study, patterns of 8cranial and mandibular morphological variation were assessed for Carollia brevicauda, C. 9castanea and C. perspicillata from Colombia. Using geometric morphometrics, 10morphological variation was examined with respect to: differences in intraspecific variation, 11morphological modularity and integration, and biogeographic patterns. Patterns of 12intraspecific variation were different for each species in both cranial and mandibular 13morphology, with functional differences apparent according to diet. Cranial modularity varied 14between species whereas mandibular modularity did not. High cranial and mandibular 15correlation reflects Cranium-Mandible integration as a functional unit. Similarity in the 16biogeographic patterns of *C. brevicauda* and *C. perspicillata* indicates that the Andes do not 17act as a barrier but rather as an independent region, isolating the morphology of Andean 18populations of larger-bodied species. The biogeographic pattern for C. castanea was not 19associated with the physiography of the Andes, suggesting that large body size does not 20benefit C. brevicauda and C. perspicillata in maintaining homogeneous morphologies among 21populations.

22Camilo López-Aguirre^{12*}, Jairo Pérez-Torres³ and Laura A. B. Wilson²

23¹ School of Biological, Earth, and Environmental Sciences, University of New South Wales, 24Sydney, NSW 2052, Australia

25²Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Facultad de 26Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.

27

1

2

3

28³Laboratorio de Ecología Funcional, Unidad de Ecología y Sistemática (UNESIS), 29Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 30Colombia.

31*Corresponding author: <u>clopeza@javeriana.edu.co</u>.

32

33Introduction

34Morphological innovation plays a central role in the speciation and diversification of 35mammals (Dumont et al., 2012). This feature has allowed mammals to develop vast 36ecomorphological diversity, making them one of the most efficient vertebrate groups in terms 37of both colonising and specialising to new environments (Venditti et al., 2011). Among 38mammals, the family Phyllostomidae (Chiroptera) has undergone considerable adaptive 39radiation, occupying a wide variety of ecological niches associated to diet, comprising 40frugivorous, insectivorous, nectarivorous, carnivores, and hematophagous guilds (Dumont, 411997). Among these guilds, frugivory is the most related to morphological innovation and 42ecological diversification in phyllostomid bats (Freeman, 2000). Of all phyllostomid bats, 43frugivorous species display one of the highest degrees of morphological plasticity (Dumont, 441997; Rojas et al., 2012).

45Bats grouped into the genus *Carollia* are important for ecosystems as seed dispersers and 46pollinators, owing to their diet, abundance and distribution (Muscarella & Fleming, 2007). 47The genus *Carollia* comprises eight species, of which two are restricted to Central America 48(Wright et al., 1999; Zurc & Velazco, 2010): *C. sowelli* (Baker et al., 2002) and *C. subrufa* 49(Hahn, 1905); three to South America: *C. manu* (Pacheco et al., 2004), *C. monohernandezi* 50(Muñoz et al., 2004) and *C. benkeithi* (Solari & Baker, 2006); and three distributed in both: *C.* 51*brevicauda* (Schinz, 1821), *C. castanea* (Allen, 1890) and *C. perspicillata* (Linnaeus, 1758). 52In Colombia –which has the highest phyllostomid species richness in the world– four species 53of this genus are reported: *C. brevicauda*, *C. castanea*, *C. monohernandezi* and *C.* 54*perspicillata* (Mantilla-Meluk et al., 2009; Zurc & Velazco, 2010).

55Taxonomically, the morphological species boundaries of *Carollia* species have not been 56clearly determined, some of them being considered as species complexes yet to be resolved 57(Baker et al., 2002; Pacheco et al., 2004; Solari & Baker, 2006; Jarrín et al., 2010). In

5

6

7

58Colombia, the taxonomy of the genus is of special interest because the identities of some 59species described for the country are still unresolved (Cuartas et al., 2001; Muñoz et al., 2004; 60Zurc & Velazco, 2010).

61Some studies of cranial morphology in *Carollia* species suggest that size variation is the 62principal source of morphological plasticity (McLellan, 1984; Jarrín et al., 2010), however 63there is a lack of understanding about the patterns in shape variation. One study reported that 64skull shape variation was related to environmental fluctuations, and that the relationship was 65species-specific (Jarrín & Menéndez-Guerrero, 2011). Sexual dimorphism is another source 66of morphological variation that has been discussed, being reported as absent (McLellan, 1984) 67and present (Jarrín et al., 2010).

68Up to this point, other important factors (e.g. morphological modularity and integration) that 69may influence the structuring of morphological variation and generation of morphological 70diversity have not been investigated in phyllostomids (Jarrín et al., 2010; Jarrín & Menéndez-71Guerrero, 2011).

72Morphological integration is the tendency in certain traits within a structure to be correlated in 73their variation, so that they will co-vary (Klingenberg, 2014). The concept of modularity is 74related to integration because it describes subsets of traits (modules) that are highly connected 75(strongly integrated) to one another in comparison to connections between other traits 76(Klingenberg, 2014). Studies of modularity may clarify how different mechanisms 77(functional, evolutionary, ontogenetic, environmental or genetic) influence the way in which 78morphological variation is structured (Klingenberg, 2009; Goswami et al., 2014). A general 79pattern of cranial modularity based on functional traits is accepted for many mammal species; 80this pattern distinguishes two different modules: one at the facial region (splanchnocranium), 81 and the other at the posterior region of the skull (neuroocranium) (Hallgrimsson et al., 2004; 82Koyabu et al., 2014). Functional differences between modules are associated with brain 83developmental processes and muscle insertion in the neurocranium (Reep & Bhatnagar, 2000; 84Pitnick et al., 2006), and the biomechanics of biting behavior in the splachnocranium 85(Goswami & Polly, 2010; Wellens et al., 2013). In bats, the effect of morphological 86specializations for echolocation on cranial modularity has been evaluated, concluding that, 87despite specializations, patterns of modularity remain consistent with those reported for other 88mammals (Santana & Lofgren, 2013).

9

10

11

89Similarly, patterns of mandibular modularity in mammals are described as a response to 90functional differences between regions in the mandible, reflecting two different modules: the 91ascending ramus and the alveolar region (Klingenberg et al., 2003; Jojíc et al., 2007; Zelditch 92et al., 2008; Jojíc et al., 2012). Functionally, the ascending ramus is relevant for muscle 93insertion and articulation with the skull (Herring et al., 2001), whereas the alveolar region 94supports the dentition and is associated with food loading and processing (Cox, 2008). 95By using this approach it is possible to study cranial and mandibular morphological variation 96as a unit, evaluating if modularity between both structures is functionally correlated for biting, 97providing evidence of skull-jaw integration as a functional unit. This correlation for biting is 98poorly understood, due to the influence that factors like echolocation could have on skull-jaw 99integration, having been reported only once in mammals (García et al., 2014). 100The goal of this study is to provide a quantitative evaluation of cranial and mandibular 101morphology in Carollia species, specifically focusing on 1) the magnitude and mode of 102intraspecific shape variation, which is poorly understood, and 2) the influence of the Andes on 103the distribution of shape variation in populations located in each biogeographic region. Using 104geometric morphometric methods, we focus explicitly on the quantification of shape variation 105in Carollia by analyzing trait correlations, typically referred to as the study of modularity and

109Evolutionary studies reveal the influence of the Andean orogeny and tropical forest formation 110in the diversification processes of *Carollia* (Hoffmann & Baker, 2003; Pavan et al., 2011). 111Also, the Andes have been identified as a barrier affecting the distribution of morphological 112variation as a possible consequence of gene flow interruption between populations of the 113same species (Jarrín & Menéndez-Guerrero, 2011). This is especially relevant for *C. castanea* 114due to its small body size and lowland distribution. Previous studies proposed that the small 115size of *C. castanea* prevented individuals from crossing the Andes and hence altitudinal 116barriers were hypothesized to restrict gene flow between populations. (Jarrín and Menéndez-117Guerrero, 2011). Studies of the relationship between morphological features, resource 118partitioning and the coexistence of *Carollia* species have produced contradictory results, 119specifically concerning whether limiting similarity determines sympatry or not. York and 120Papes (2007) found that morphologically distinct species lived sympatrically, whereas more

106integration. In parallel, by combining geographic and morphologic data we will evaluate the

107effect of altitudinal barriers (i.e. Andes) on the biogeographic patterns of the morphological

13

108 variation in this genus.

14

15

121recent study by Jarrín and Menéndez-Guerrero (2011) concluded that morphologically similar 122species cohabited. These inconsistent results raise the question of whether assemblage 123composition and sympatry in *Carollia* favors morphologically similar or distinct species 124(Jarrín & Menéndez-Guerrero, 2011).

125Materials and methods

126Sample sites and specimen selection

127A total of 286 specimens of *Carollia* (*C. brevicauda*=108; *C. castanea*=82; *C.* 128*perspicillata*=96) from 143 different localities in Colombia were evaluated for this study (see 129Table S1). The criteria for specimen selection were: that only sites with at least one male and 130one female available were considered, and, to ensure adequate representation of all five 131biogeographic regions (Caribbean, Pacific, Andean, Amazonian, and Orinoquean) and 132independence between samples, that one locality only was selected per municipality for each 133species (Fig. 1).

134All specimens were obtained from the Instituto Alexander von Humboldt (IAvH-M), 135Colección Teriológica de la Universidad de Antioquia (CTUA), Instituto de Ciencias 136Naturales de la Universidad Nacional de Colombia (ICN) and the Museo Javeriano de 137Historia Natural (MPUJ).

138

139Morphological analysis

140Photographs were taken with a Nikon D5100 mounted on a tripod; crania were photographed 141in ventral view and mandibles in lateral view. In order to optimize and standardize the 142photographs, focal distance was estimated using the method proposed by Blaker (1976) and 143different holders were used for crania and mandibles.

144Following geometric morphometric principles, landmarks configurations were established for 145crania and mandibles separately using type 1 and 2 landmarks (Bookstein et al., 1985). 146Modifying the methodology used by Jarrín and Menéndez-Guerrero (2011), a total of 15 147landmarks were used for the cranium (Fig. 2A), and following previous studies (Zelditch et 148al., 2008; Jojić et al., 2012) 12 landmarks were used for the mandible (Fig. 2B) (see Table 149S1). Landmarks digitalization was performed using TPSDIG version 2.16 (Rohlf 2010). 150Generalized Procrustes Analysis (GPA) was performed in order to superimpose landmark 151coordinates, obtaining the average coordinates of all landmarks in a tangent configuration; 152this was performed separately for the cranium and mandible datasets (Rohlf, 1990). GPA

17

18

19

153removes non-shape sources of variation resulting from scaling, rotation and translation 154(Rohlf, 1999). A tangent configuration is the configuration of landmarks projected from a 155nonlinear shape space into a tangent space in which parametrical statistical analysis can be 156performed. Using TPSRELW (Rohlf, 2010), a Relative Warp Analysis (RWA) was performed 157following the principle of the thin-plate spline technique, which allows the partition of the 158total variation among all specimens from the tangent configuration in two different 159components: affine components that describe differences in uniform shape variation (principal 160warps), and non-affine components that express local variation within the shape (partial 161warps) (Rohlf et al., 1996).

162Relative Warps (RW) are the principal components of a distribution of shapes in a tangent 163space, comprising the majority of the variation in a few comprehensive components, which 164are easily visualized using a transformation grid (Rohlf & Bookstein, 2003). RW are non-165biological variables used as a representation of affine and non-affine components that 166describe localized deformations in specific regions of the overall shape, and can be analyzed 167using conventional statistical methods (Klingenberg, 2013). RW were computed using the 168partial warps for further statistical analysis.

169

170Patterns of interspecific variation

171Interspecific differences in the intraspecific morphological variation were tested with a 172multivariate analysis of variance (MANOVA) and a paired Hotelling's test using the RW 173pooled by species; these analyses were performed using PAST version 2.15 (Hammer et al., 1742001). Squared Mahalanobis distances were used as a measure of morphological distances 175between species to assess general patterns of variation for all species, P values were corrected 176with a Bonferroni correction for multiple comparisons α at = 0.05.

177In order to detect specific regions where major morphological variation may be focused, RW 178were visualized using transformation grids for each species, comparing the morphological 179patterns of variation between each species for the cranium and mandible. Patterns of shape 180change were depicted using TPSRELW (Rohlf, 2010), and the grids were built with the 181Principal Components (PC) of the Procrustes coordinates using MORPHO J version 1.04a 182(Klingenberg, 2011).

183

184Cranial-mandibular integration and modularity

21

22

23

185Based on previous findings of functional modularity in mammals (Zelditch et al., 2008; 186Monteiro & Nogueira, 2011; Jojić et al., 2012), two different a priori hypotheses were 187considered for evaluating morphological modularity, one for the skull and one for the 188mandible (Fig. 3). The first divided the skull into two functional modules, neurocranium 189(muscle insertion and brain development) and splachnocranium (feeding and biting behavior); 190the second divided the mandible also into two functional modules, the ascending ramus 191(muscle insertion) and the alveolar region (supporting the teeth). 192These hypotheses were evaluated with the Escoufier's RV coefficient using MORPHO J 193version 1.04a (Robert & Escoufier, 1976; Klingenberg, 2009; Klingenberg, 2011). This 194method takes the RV coefficients of the *a priori* hypothesis and compares it with coefficients 195of multiple alternate partitions, and hypotheses with coefficient values closer to zero are not 196rejected. Delaunay triangulations were considered during modules construction among 197landmarks (de Berg et al., 2000). For this study we set 10000 alternate partitions to compare 198 with each *a priori* hypothesis, and this procedure was applied for each species. 199Studying cranial-mandibular integration allowed us to evaluate whether the cranium and 200mandible together behave as a functional unit, covarying morphologically in their shape. To 201do this, partial least square analysis (PLS) was performed, which explores patterns of 202covariation between different blocks of variables. RW were pooled by structure (cranium and

206

205(Rohlf & Conti, 2000).

207Geographic patterns vs. Morphological variation

208RW of each species were pooled, differentiating biogeographic regions (Caribbean, Pacific, 209Andean, Amazonian, and Orinoquean); this was done for the cranium and the mandible 210separately. MANOVA and paired Hotelling's tests were used to assess morphological 211differences between populations from different geographic regions, and to test if the Andes 212represent a barrier that divides morphological differences among populations of the same 213species, separating populations of different biogeographic regions morphologically. P values 214were corrected with a Bonferroni correction for multiple comparisons α at = 0.05.

203mandible) and species, performing a PLS for all species where cranium and mandible shape

204were assigned as different blocks; this analysis was performed using TPSPLS version 1.18

215

216Results

25

26

27

217Patterns of interspecific variation

218The MANOVA differences between species were significant for both cranium (λ =0.5185; 219df1=18; df2=548; F=11.84; p=3.05E-26) and mandible (λ =0.5966; df1=18; df2=546; 220F=8.937; p=1.68E-1) data sets. All pairwise comparisons were significant with P-values \leq 2211.05E-03.

222Based on squared Mahalanobis distances we found *C. castanea* to be the most 223morphologically different species, being most distinct in its cranial morphology from the rest 224of the species (Table 1).

225As a general pattern, for all species the majority of the variation was concentrated in the 226neurocranium, around the suture of the occipital and temporal bones, as well as the area 227comprising the vomer and the palatine (Fig. 4). Each species showed species-specific 228variation patterns within these regions (Fig. 4A-C).

229For *C. brevicauda*, the highest deformation in the neurocranium is displaced towards the 230mastoid due to a constriction of the occipitomastoid suture and the tympanic part of the 231temporal bone (Fig. 4A). On the other hand, *C. castanea* exhibited an expansion in the region 232of the suture towards the occipital and a reduction of the length of the vomer (Fig. 4B). 233Finally, morphological variation in *C. perspicillata* was evident in the basicranium, between 234the foramen magnum and the vomer, and at the occipital and temporal bones. Variation in 235both regions showed a general contraction of such bones, leading to a general reduction in the 236length of the neurocranium (Fig. 4C).

238in which they varied was different between species. Most interspecific variation was 239concentrated in the middle region of the ascending ramus and the alveolar region (Fig. 5). 240When comparing variation across species, *C. brevicauda* showed greater variation in the 241lower border of the ramus, between the condyloid and angular processes (Fig. 5A); for *C*. 242*castanea* the mandibular tooth row and the base of the ramus expanded, resulting in a 243constriction of the medium region between the ascending ramus and the alveolar region (Fig. 2445B). *Carollia perspicillata* showed the same pattern in the lower border of the ramus, but in 245this case the mandibular tooth row was shortened, in contrast to *C. castanea* (Fig. 5C).

237Regarding mandibular morphology, the three species varied in the same regions, but the way

247Cranial-mandibular integration and modularity

29

30

31

249the lowest RV coefficients, dividing the mandible into two different modules (ascending 250ramus and alveolar region) according to their functional specializations (Table 2). However, 251913 different partitions, including the a priori hypothesis, are compatible with the data for *C*. 252*castanea*, which could mean that, although the evaluated hypothesis was not rejected, there 253are other factors that affect mandibular modularity in this species. Results indicate the *a* 254*priori* hypothesis for cranial modularity was rejected in all cases, finding alternate partitions 255with lowest RV coefficients (Table 2).

256Partitions recovered for mandibular modularity had the same structure for all species.
257Similarly, for cranial modularity, the same general partition pattern, dividing the cranium into 258two modules representing the neurocranium and the splachnocranium, was recovered.
259However, the structure of these partitions varied between species, each species having 260different modularity patterns, and such differences being present in the sphenoidal section of 261the basicranium (Fig. 6A-C). Cranial modularity results for *C. brevicauda* showed that the 262neurocranium module comprises the zygomatic process of the temporal bone (landmarks 3-26310), while the splachnocranium module comprises the palatine (landmarks 9-10) and vomer 264bones (landmarks 3-9) (Fig. 6A). For *C. perspicillata* the neurocranium module comprises the 265zygomatic process of the temporal bone and the vomer and the splachnocranium module 266comprises the palatine (Fig. 6C). *Carollia castanea* showed the most distinct modularity 267patterns where the neurocranium module extends anteriorly covering the zygomatic process of 268the temporal and the posterior section of the palatine, while the splachnocranium module 269extends posteriorly covering the vomer (Fig. 6B).

270For all species the first three dimensions of the PLS explained around 80% (*C. brevicauda* 27178.32%, *C. castanea* 84.84% and *C. perspicillata* 76.91%) of the cranial-mandibular 272morphological integration, R values were always positive (ranging from 0.37 to 0.65), and the 273coefficient of determination (r²) values corroborated the significance of the results (Table 3). 274

275Geographic patterns vs. Morphological variation

276MANOVA results were not significant for morphological differences in the mandible 277between specimens of the five biogeographic regions in any of the species; *C. brevicauda* 278(λ =0.6674, df1=36, df2=354, F=1.120, *P*=0.2971), *C. castanea* (λ =0.9243, df1=9, df2=72, 279F=0.6552, *P*=0.7461), *C. perspicillata* (λ =0.6555, df1=36, df2=309, F=1.024, *P*=0.4358). For

33

34

35

280the skull, MANOVA found significant differences between biogeographic regions in C. 281brevicauda (λ =0.5182, df1=36, df2=357.7, F=1.906, P=0.0018) and C. perspicillata 282(λ =0.3862, df1=36, df2=309, F=0.5179, P=0.0469), and no significant difference was found 283for C. castanea (λ =0.5468, df1=36, df2=260.3, F=1.264, P=0.1538). 284Paired Hotelling's test supports these results, finding significance only for C. brevicauda and 285C. perspicillata. Results revealed that for both species only specimens from the Andean 286region were different from the rest; Andean specimens of C. brevicauda were statistically 287different from Amazonian and Caribbean specimens, and for C. perspicillata Andean

288specimens were different from those of the Pacific region (Table 4).

289Discussion

290Patterns of interspecific variation

291Results confirmed that despite the presence of intraspecific variation in all species, the mode 292of this variation differs between species (Jarrín et al., 2010). Among these, *C. brevicauda* and 293*C. perspicillata* (larger species) are most similar, and *C. castanea* (smaller species) is the most 294divergent (Table 1). This is consistent with phylogenetic analysis in this genus that shows that 295*C. brevicauda* and *C. perspicillata* are sister species and the most recently diversified, while 296*C. castanea* is the oldest species (Hoffmann & Baker, 2003).

297Previous studies have shown that major cranial morphological variation in these species is 298present in the neurocranium, specifically in the region that comprises the occipital bone and 299the squama portion of the temporal bone (Jarrín & Menéndez-Guerrero, 2011), supporting our 300findings of major cranial morphological variation in the occipital and temporal bones (Fig. 4). 301Quantifying differences in dietary specialization and breadth between species (Dumont 1999), 302as well as the specific characteristics of consumed items, such as object hardness and size, 303could shed some light on the mechanisms shaping the differences found in the patterns of 304intraspecific variation (Dumont et al., 2005).

305In phyllostomid bats, mandibular shape has evolved independently of mandibular size, the 306direction of shape variation being instead associated with diet and feeding behavior (Monteiro 307& Nogueira, 2011). Frugivorous bats have similar patterns in loading behavior and pressure 308point resistance in bones related to the masticatory apparatus that differentiate them between 309hard-heavy-item consuming species (short and flatten rostrum) and soft-light-item consuming 310species (elongated and narrow rostrum) (a quote is needed here).

37

38

39

311Ecomorphological studies have demonstrated that morphological variation in bats is majorly 312associated with trophic specialization, and owing to the fact that bat skulls are under selective 313pressure to reduce their mass (i.e. reduction of skull mass to meet energetic demands of 314flight), their morphology might be optimized to meet functional demands (Dumont, 2007). 315Based on this, our findings might reflect interspecific ecomorphological differences in 316response to biological specializations for optimizing resource exploitation of soft and light 317items like Piperaceae fruits, one of the principal components of the diet in *Carollia* (Nogueira 318et al., 2009; York & Billings, 2009).

320and niche overlap has been reported in phyllostomid bats (Aguirre et al., 2002; Giannini & 321Kalko, 2004). Species-specific patterns of intraspecific morphological variation found in our 322study support the hypothesis of interspecific ecomorphological differentiation, which in 323*Carollia* is especially evident in sympatric species, where differences in diet breadth and 324composition have been studied (López & Vaughan, 2007; York & Billings, 2009). 325However, given that recent evidence suggests that more historical processes such as niche 326conservatism also influence the composition of assemblages in phyllostomid bats (Villalobos 327et al., 2013), to reach a greater understanding of the mechanisms underlying assemblage 328composition in this genus, it is advised to combine morphometric and phylogenetic 329approaches (i.e. community phylogenetics). The latter would give a more comprehensive 330understanding of the role that both historical, and ecological processes have in shaping the 331structure of modern geographic patterns of coexistence (Villalobos et al., 2013).

332Cranial-mandibular integration and modularity

333Cranial-mandibular integration was tested to determine whether the structures work together 334as a functional unit. Hypotheses tested in this study have been successfully studied in other 335mammals, revealing the importance of functionality in ecomorphological specialization and 336differentiation in mammals (Klingenberg et al., 2003; Jojíc et al., 2007; Zelditch et al., 2008; 337Jojíc et al., 2012). Our results indicate that cranial and mandibular modularity has different, 338independent patterns. Mandibular modularity was the same for all species, so that patterns in 339this trait were evident at the genus level, while cranial modularity patterns were species-340specific. The lack of variation in mandibular modularity is consistent with findings that 341modularity patterns in the mandible are genetically patterned, which has been suggested to 342explain the highly conserved module identity (Klingenberg et al., 2004). The variability found

41

42

43

343 for the cranial patterns may align with evidence that cranial modularity can shift on relatively 344short time scales in relation to selective pressure (Beldade et al., 2002; Monteiro & Nogueira, 3452010) and requires further, future investigation in the context of Carollia. 346Mandibular modularity has so far not been tested in bats and in this first approach our results 347agree with those reported previously in other mammals, specifically identifying mandibular 348modularity as a two-module partition defined by functional traits (Klingenberg et al., 2003; 349Monteiro et al., 2005; Zelditch et al., 2008; Jojíc et al., 2012). Presence of these modules 350(ascending ramus and alveolar region) represents differences in functional specializations 351between different regions of the jaw for biting and food manipulation (Hiiemae, 2000; 352Badyaev & Foresman, 2004). The shape of the ascending ramus has evolved to support 353muscle insertion of masseter, pterygoid and temporal muscles which are related to jaw 354movement and mastication (Herring et al., 2001). The alveolar region specializes in 355supporting the dentition and loading capacity, which are important for the masticatory 356apparatus to resist tension-compression forces applied to the bone structure (Cox, 2008). 357Finding the same results for all species could indicate that ecomorphological plasticity of the 358jaw does not affect its modularity, also suggesting that this partition is evolutionarily stable 359and functionally appropriate for the ecology of these species (Koyabu et al., 2011). 360Regarding cranial modularity, differences found in module partitions among species could 361reflect ecological differences in foraging behavior and niche partitioning and their relation 362with morphological specializations reported for these three species (Giannini & Kalko, 2004; 363York & Billings, 2009). These modules (neurocranium and splanchnocranium) represent 364functional specializations in different areas of the skull; the neurocranium exemplifies 365morphological specializations for muscle insertion and brain development, and the 366splachnocranium for biting biomechanics and masticatory activity (Hallgrimsson et al., 2004, 367Goswami & Polly, 2010, Wellens et al., 2013). The latter is reported to be in turn related to 368morphological diversification in the dentition (Santana et al., 2011) and rostrum (Nogueira et 369al., 2009; Santana et al., 2010; Santana & Dumont, 2011). Other tested hypotheses that 370evaluated alternative sources of variation that could explain the presence of these modules in 371bats (e.g. developmental, genetic or ecological) have been rejected, suggesting a strong 372correlation between evolutionary conservatism in these modules and its functionality 373(Goswami, 2007; Santana & Lofgren, 2013). Modifications in the neurocranium are 374associated with differences between trophic guilds in such a way that cranial structure

45

46

47

375influences functional importance and recruitment of masseter, pterygoid and temporal 376muscles during biting (Herring et al., 2001). Additionally, the neurocranium is related to brain 377development that, in bats, co-varies with foraging behavior and mating systems (Pedersen, 3782000; Reep & Bhatnagar, 2000; Pitnick et al., 2006). 379Functionality of the masticatory apparatus will depend on the correlation between cranium 380and mandible structure (Hiiemae, 2000), this correlation was evident from the PLS results, 381which showed that cranial-mandibular integration explained approximately 80% of the shape 382 variation in all species (Table 3). This integration is due to multiple factors that divide the 383morphological correlation into regions specialized for muscle insertion (neurocranium and 384ascending ramus) and regions specialized for biting biomechanics (splachnocranium and 385alveolar region); these regions together comprise the functional and morphological aspects of 386trophic diversification and fitness in mammals (Freeman, 1998; Cornette et al., 2013). 387Morphological integration between the neurocranium and the ascending ramus relates to 388muscle recruitment, and, depending on the feeding behavior and characteristics of the diet, the 389functional importance of specific muscles will change, altering the morphology of the skull 390and jaw in order to work as a functional unit and produce the optimal bite force for each 391species (Santana et al., 2010). Consequently, it can be deduced that the morphology of the 392neurocranium and the ascending ramus will vary jointly, forming a component of a functional 393unit that will correlate with variation in the rostrum, and that is more important in loading 394capacity and pressure resistance during biting (Cornette et al., 2013). 395Rostrum shape variation in rhinolopid bats has been attributed to evolutionary processes of 396ecological specialization resulting in niche partitioning among ecomorphologically similar 397species (Santana et al., 2012). These processes respond mainly to functional requirements 398based on an organism's alimentary and nutritional needs, which relate to shape diversity for 399exploiting particular resources (Nogueira et al., 2009; Labonne et al., 2014). The 400splachnocranium and alveolar region form the rostrum. These modules correlate functionally 401with biting biomechanics (Dumont & Herrel, 2003), generating functional convergences in 402load capacity of pressure points in both the cranial and mandibular structures (Herring et al., 4032001; Badyaev & Foresman, 2004). 404It is established that in these points of pressure the relationship between the proportional 405importance of tension-compression forces is the same in the cranium and mandible, 406integrating the two structures (Herring et al., 2001). Accordingly, cranial-mandibular

49

50

407morphological integration found in this study reveals the presence of a functional unit of the 408skull and jaw, subdivided into two different modules reflecting the functional requirements 409for both muscle insertion and biting biomechanics (Santana et al., 2010; Cornette et al., 2013). 410

411Geographic patterns vs. Morphological variation

412Our findings may be explained on the basis of two hypotheses that reflect different aspects of 413the evolutionary history of the genus Carollia. Our results reveal: 1) morphological 414differences at a phylogroup level for these species, which could be an indicator of ongoing 415processes of speciation, and 2) geographic patterns of morphological variation in these species 416are influenced by geographic isolation of populations occurring in the Andes. 417For this genus, a phylogroup is defined as a group of individuals that share evolutionary 418history and a geographic location (Hoffmann & Baker, 2003). In C. brevicauda two different 419phylogroups have been identified. Both are distributed in Colombia: one covers the Andean, 420Pacific regions and a portion of the Amazonian region; and the second covers the Caribbean 421region and a portion of the Orinoquean region. Carollia perspicillata includes three different 422phylogroups, two of which are present in Colombia, one covering the Pacific and Caribbean 423 regions, whereas the other covers the Andean, Amazonian and Orinoquean regions 424(Hoffmann & Baker, 2003). In Colombia, only one of the four phylogroups described for C. 425castanea is present; that phylogroup is present in the Pacific region and it is suggested that 426another phylogroup could be present in a small portion of the Amazonian region (Pine 1972; 427Hoffmann & Baker, 2003).

428The patterns found in this study fit with the distribution of these phylogroups, rising the 429hypothesis that morphological differences between phylogroups can be detected based on the 430geographical distribution of their morphological variation, further suggesting that our results 431might shed light on ongoing processes of speciation within *C. brevicauda* and *C. perspicillata* 432(Marchiori et al., 2014). This is supported by the idea that for phyllostomid bats the processes 433of speciation and diversification in the neotropics are related to the orogeny of the Andes 434(Hoffmann & Baker, 2003; Velazco & Patterson, 2013). However, our results only give 435preliminary evidence to this conclusion due to the uncertainty of the exact genetic 436compatibility between our specimens and proposed phylogroups, so it is suggested for further 437studies to combine both morphometric and molecular techniques to evaluate this particular 438hypothesis.

53

54

55

440remain unsolved (Jarrín et al., 2010), so our results could provide insight into this topic.
441Nevertheless, it will be necessary to perform more detailed studies testing the link between
442intraspecific morphological differences and the distribution of the phylogroups in the
443neotropics, in order to detect the presence of undescribed species.
444Our second hypothesis focuses on intraspecific ecological differences. Limiting similarity has
445been described as the main factor that determines the composition of species in the genus
446*Carollia*; this contends that species that are more similar ecomorphologically will tend not to
447coexist thereby avoiding competitive exclusion, and hence more morphologically dissimilar
448species will coexist (York & Papes, 2007). More recent studies have invalidated this
449hypothesis, showing that morphologically similar species share environmental space, and that
450dissimilar species coexist less often (Jarrín & Menéndez-Guerrero, 2011). Our results agree
451with those reported by Jarrín and Menéndez-Guerrero (2011) in Ecuador, revealing that *C*.
452*castanea* is the species with the most differentiated ecomorphology and distribution of its
453morphological variation; conflicting with the limiting similarity hypothesis for this genus in
454the northern Andes.

439It has been postulated that several species in this genus are different species complexes that

455Jarrín and Menéndez-Guerrero (2011) propose that the Andes represent a geographic barrier 456for C. castanea, isolating populations and generating morphological differences between 457them. As a conclusion, they stipulate that large body size is a buffer that allows large-bodied 458species to cross the Andes, maintaining the gene flow and morphological similarities among 459populations. Our study does not support this. Our results are contrary to those from Ecuador 460in two ways: 1) we found that for larger species (C. brevicauda and C. perspicillata) not only 461Andean populations are the only ones morphologically differentiated from other populations 462across the country, but also populations on opposite versants of the Andes are similar; 2) all 463C. castanea populations across the country showed the same patterns, such that the Andes do 464not represent a geographic barrier isolating populations from different regions. Based on our 465results, we hypothesize that only populations present in the Andes are different in their cranial 466shape from populations in the rest of Colombia. In this way, the northernmost region of the 467Andes acted more like an independent and isolated environmental region rather than a barrier 468splitting lowland areas. Inconsistencies between our results and those reported for bats in 469Ecuador (Jarrín & Menéndez-Guerrero, 2011) may be due to environmental differences 470between the central and northern Andes. The Andes of Ecuador form one single mountain

57

58

59

471range, while in Colombia the Andes form three mountain ranges, leading to major ecosystem 472heterogeneity in the interandean valleys of Colombia (Josse et al., 2009). This could represent 473a wider range of environments to which species may adapt, occupying greater niche diversity 474without competition (Bloch et al., 2011; Ramos Pereira & Palmeirim, 2013). 475Finally, by comparing results from Ecuador with ours we do not support the hypothesis that 476large body size favors larger species to cross altitudinal barriers, stabilizing genetic pools and 477morphologies among populations. Our results elucidate that Andean populations of large-478bodied species are morphologically different from populations at lower altitudes, which could 479be a consequence of gene flow interruption between them. Recently, an inverse relation 480between body size and altitude was discovered in *C. perspicillata*, where body size decreases 481along an altitudinal gradient (Barros et al., 2014), supporting our conclusion that large species 482in this genus do not have a competitive advantage in this regard.

484Conclusion

483

485Intraspecific shape variation shows species-specific patterns with *C. castanea* being the most 486divergent species morphologically, which could indicate ecological differences between 487species as a consequence of niche partitioning. Strong correlation between the shape of the 488skull and jaw indicates significant cranial-mandibular morphological integration for all 489species; this integration corresponds to functional convergences between both structures. 490Partitions for cranial modularity were species-specific, whereas those for mandibular 491modularity were the same across all species. Patterns found for cranial modularity indicate 492that other non-functional factors should be considered when analyzing this feature. In larger 493species (*C. brevicauda* and *C. perspicillata*), Andean populations were cranially 494morphologically different from other populations, refuting the suggestion that the northern 495Andes represent a geographic barrier, and instead supporting the idea that the northern Andes 496represent an independent region that isolates populations occurring there. Finally, and 497contrary to the idea of large body size acting as a buffer for species in this genus, the smaller 498*C. castanea* was the only species that did not show a morphological response to the altitudinal 499barrier of the Andes.

500

501Acknowledgments

61

62

63

502We would like to thank to Sergio Solari (CTUA), Claudia Medina (IAvH-M), Hugo López 503and Hugo Mantilla-Meluk (ICN) for granting us access to all the collections and allow us to 504review the material. We thank to Julio Mario Hoyos (Pontificia Universidad Javeriana) for 505comments and orientation during the initial stages of the study. Also, authors thank to Richard 506Stevens from the TTU for comments and revision of the English version. First author thank to 507Laura Castañeda-Gómez for helpful input on earlier drafts of the English version and figures 508amendment and to Suzanne Hand of the University of New South Wales for deep content 509revision of the final version of the manuscript. Finally, we would like to thank Virginia 510Abdala, Liliana Davalos and one anonymous reviewer for their helpful comments and 511questions on earlier drafts of the manuscript.

512

513References

514Aguirre L, Herrel A, Damme R, Matthysen E. 2002. Ecomorphological analysis of trophic 515niche partitioning in a tropical savannah bat community. *P Roy Soc Lond B Bio* 516269:12711278. doi: 10.1098/rspb.2002.2011

517Allen H. 1890. Description of a new species of bat of the genus *Carollia*, and remarks on 518*Carollia brevicauda*. P Am *Philos Soc* 28: 19- 26.

519Badyaev AV, Foresman KR. 2004. Evolution of morphological integration. I. Functional units 520channel stress-induced variation in shrew mandibles. *Am Nat* 163:868–79. doi:

52110.1086/386551

522Baker RJ, Solari S, Hoffman FG. 2002. A new Central American species from the *Carollia* 523*brevicauda* complex. *Occasional Papers* 1–11.

524De Barros L, da Fortes RR. 2014. The Application of Bergmann's Rule to Carollia 525perspicillata (Mammalia, Chiroptera). *Chiroptera Neotropical* 20:1243-1251.

526Beldade P, Koops K, Brakefield PM. 2002. Developmental constraints versus flexibility in 527morphological evolution. *Nature* 416:844-847. doi:10.1038/416844a.

528Berg M, Cheong O, van Kreveld M, Overmars M. 2000. Computational Geometry: 529Algorithms and Applications. Springer, Berlín.

530Blaker AA. 1976. Field photography: Beginning and advanced techniques. W.H. Freeman and 531Co, San Francisco.

65

66

67

532Bloch C, Stevens R, Willig M. 2011. Body size and resource competition in New World bats:

533a test of spatial scaling laws. *Ecography* 34:460–468. doi: 10.1111/j.1600-0587.2010.06270.x

534Bookstein FL, Chernoff B, Elder RL, Humphries JM, Smith GR. 1985. Morphometrics in

535evolutionary biology: the geometry of size and shape change, with examples from fishes.

536Academy of Natural Sciences of Philadelphia, Philadelphia.

537Cox PG. 2008. A quantitative analysis of the Eutherian orbit: correlations with masticatory

538apparatus. Biol Rev Camb Philos Soc 83:35-69. doi: 10.1111/j.1469-185X.2007.00031.x

539Cornette R, Baylac M, Souter T, Herrel A. 2013. Does shape co-variation between the skull

540and the mandible have functional consequences? A 3D approach for a 3D problem. J Anat

541223:329–36. doi: 10.1111/joa.12086

542Cuartas C, Muñoz J, González M. 2001. A new species of Carollia Gray, 1838 (Chiroptera:

543Phyllostomidae) from Colombia. Actualidades Biológicas 23: 63–73.

544Dumont ER. 1997. Cranial shape in fruit, nectar, and exudate feeders: implications for

545interpreting the fossil record. Am J Phys Anthropol 102:187–202.

546Dumont ER. 1999. The effect of food hardness on feeding behaviour in frugivorous bats

547(Phyllostomidae): an experimental study. *J Zool* 248: 219–229. doi: 10.1111/j.1469-

5487998.1999.tb01198.x

549Dumont ER, Herrel A. 2003. The effects of gape angle and bite point on bite force in bats. J

550Exp Biol. doi: 10.1242/jeb.00375

551Dumont ER, Piccirillo J. 2005. Finite-element analysis of biting behavior and bone stress in

552the facial skeletons of bats. Anat Rec 283: 319–330. doi: 10.1002/ar.a.20165

553Dumont ER. 2007. Feeding mechanisms in bats: variation within the constraints of flight.

554Integrative and Comparative Biology 47:137–146. doi:10.1093/icb/icm007

555Dumont ER, Davalos L, Goldberg A, Santana SE, Rex K, Voigt CC. 2012. Morphological

556innovation, diversification and invasion of a new adaptive zone. P Roy Soc Lond B Bio. doi:

55710.1098/rspb.2011.2005

558Freeman PW. 1998. Form, function, and evolution in skulls and teeth of bats. Papers in

559Natural Resources 9: 1–19.

560Freeman PW. 2000. Macroevolution in Microchiroptera: recoupling morphology and ecology

561with phylogeny. *Mammalogy Papers: University of Nebraska* 2: 317-335.

69

70

71

562Garcia G, Hingst-Zaher E, Cerqueira R, Marroig G. 2014. Quantitative Genetics and 563Modularity in Cranial and Mandibular Morphology of Calomys expulsus. *Evol Biol.* doi: 56410.1007/s11692-014-9293-4

565Giannini N, Kalko E. 2004. Trophic structure in a large assemblage of phyllostomid bats in 566Panama. *Oikos* 105:209–220. doi: 10.1111/j.0030-1299.2004.12690.x

567Goswami A. 2007. Cranial modularity and sequence heterochrony in mammals. *Evolution &* 568*Development* 9:290–298 doi: 10.1111/j.1525-142x.2007.00161.x

569Goswami A, Polly PD. 2010. The influence of modularity on cranial morphological disparity 570in Carnivora and Primates (Mammalia). *PLoS ONE* 5:e9517. doi:

57110.1371/journal.pone.0009517

572Goswami A, Smaers JB, Soligo C, Polly PD. 2014 The macroevolutionary consequences of 573phenotypic integration: from development to deep time. *Phil. Trans. R. Soc. B* 369:

57420130254. doi: 10.1098/rstb.2013.0254

575Gray JE. 1838. A revision of the genera of bats (Vespertilionidæ), and the description of some 576new genera and species. *Magazine of Zoology and Botany* 2: 483–505.

577Hallgrímsson B, Willmore K, Dorval C, Cooper D. 2004. Craniofacial variability and 578modularity in macaques and mice. *J Exp Zool* 302: 207-225. doi: 10.1002/jez.b.21002 579Hahn WL. 1905. A new bat from Mexico. *P Biol Soc Wash* 18: 247-248.

580Hammer O, Harper DA, Ryan PD. 2001. PAST: Paleontological statistical software package 581for education and data analysis, Version 1.39. Available at: http://folk.uio.no/ohammer/past 582Herring SW, Rafferty KL, Liu ZJ, Marshall CD. 2001. Jaw muscles and the skull in 583mammals: the biomechanics of mastication. *Comparative Biochemistry and Physiology-Part* 584*A* 131: 207–219.

585Herring SW, Rafferty KL, Liu ZJ, Marshall CD. 2001. Jaw muscles and the skull in 586mammals: the biomechanics of mastication. *Comp Biochem Phys A* 131: 207–219. 587doi:10.1016/S1095-6433(01)00472-X

588Hiiemae KM. 2000. Feeding in Mammals. In: Schwenk K (ed). Feeding: Form, Function and 589Evolution in Tetrapod Vertebrates. Academic Press. p 399-436.

590Hoffmann F, Baker R. 2003. Comparative phylogeography of short-tailed bats (Carollia:

591Phyllostomidae). *Mol Ecol* 12:3403–3414. doi: 10.1046/j.1365-294X.2003.02009.x

592Jarrín P, Flores C, Salcedo J. 2010. Morphological variation in the short-tailed fruit bat 593(*Carollia*) in Ecuador, with comments on the practical and philosophical aspects of

73

74

75

- 594boundaries among species. *Integrative zoology* 5: 226–240. doi: 10.1111/j.1749-5954877.2010.00208.x
- 596Jarrín P, Menendez-Guerrero PA. 2011. Environmental components and boundaries of
- 597morphological variation in the short-tailed fruit bat (Carollia spp.) in Ecuador. Acta
- 598*Chiropterologica* 13: 319–340. doi:10.3161/150811011X624802
- 599Jojić V, Blagojević J, Vujošević M. 2012. Two-module organization of the mandible in the
- 600yellow-necked mouse: a comparison between two different morphometric approaches. J Evol
- 601*Biol* 25: 2489–2500. doi: 10.1111/j.1420-9101.2012.02612.x
- 602Jojić V, Blagojević J, Ivanović A, Bugarski-Stanojević V, Vujošević M. 2007. Morphological
- 603Integration of the Mandible in Yellow-necked Field mice: The Effects of B Chromosomes.
- 604 Journal of Mammalogy 88: 689-695.
- 605Josse C, Cuesta F, Navarro G, Barrena V, Cabrera E, Chacón-Moreno E, Ferreira W, Peralvo
- 606M, Saito J, Tovar A. 2009. Ecosistemas de los Andes del Norte y Centro: Bolivia, Colombia,
- 607Ecuador, Perú y Venezuela. Secretaría General de la Comunidad Andina, Lima.
- 608Klingenberg CP, Mebus K. 2003. Developmental integration in a complex morphological
- 609structure: how distinct are the modules in the mouse mandible? Evol Dev 5:522-531. doi:
- 61010.1046/j.1525-142X.2003.03057.x
- 611Klingenberg CP, Leamy LJ, Cheverud JM. 2004. Integration and Modularity of Quantitative
- 612Trait Locus Effects on Geometric Shape in the Mouse Mandible. Genetics 166: 1909-1921.
- 613doi: 10.1534/genetics.166.4.1909.
- 614Klingenberg CP. 2008. Morphological Integration and Developmental Modularity. Annual
- 615Review of Ecology, Evolution, and Systematics 39: 115–132. doi:
- 61610.1146/annurev.ecolsys.37.091305.110054
- 617Klingenberg CP. 2009. Morphometric integration and modularity in configurations of
- 618landmarks: tools for evaluating a priori hypotheses. Evol Dev 11: 405–421. doi:
- 61910.1111/j.1525-142X.2009.00347.x
- 620Klingenberg CP. 2011. MorphoJ: an integrated software package for geometric
- 621morphometrics. Mol Ecol Resour 11:353–7. doi: 10.1111/j.1755-0998.2010.02924.x
- 622Klingenberg CP. 2013. Visualizations in geometric morphometrics: how to read and how to
- 623make graphs showing shape changes. *Hystrix* 24: 15-24. doi:10.4404/hystrix-24.1-7691.
- 624Klingenberg CP. 2014. Studying morphological integration and modularity at multiple levels:
- 625concepts and analysis. *Philos T Roy Soc B* 369: 20130249. doi: 10.1098/rstb.2013.0249.
- 77
- 78
- 79

- 626Koyabu D, Endo H, Mitgutsch C, Suwa G, Catania KC. 2011. Heterochrony and 627developmental modularity of cranial osteogenesis in lipotyphlan mammals. *EvoDevo* 2: 21. 628doi: 10.1186/2041-9139-2-21
- 629Koyabu D, Werneburg I, Morimoto N. 2014. Mammalian skull heterochrony reveals modular 630evolution and a link between cranial development and brain size. *Nature* 5: 3625. doi: 63110.1038/ncomms4625
- 632Labonne G, Navarro N, Laffont R, Chateau-Smith C, Montuire S. 2014. Developmental 633integration in a functional unit: deciphering processes from adult dental morphology. *Evol* 634Dev 16:224–232. doi: 10.1111/ede.12085.
- 635Linnaeus C. 1758. Systema Naturae. Laurentii Salvii. Holmiae: Impensis Direct, Stockholm. 636Lopez J, Vaughan C. 2007. Food niche overlap among neotropical frugivorous bats in Costa 637Rica. *Rev Biol Trop* 55: 301-313.
- 638Mantilla-Meluk H, Jiménez-Ortega A, Baker R. 2009. Phyllostomid bats of Colombia: 639Annotated checklist, distribution, and biogeography. Special Publications: Museum of Texas 640Tech University 56: 1-37.
- 641Marchiori AB, Bartholomei-Santos ML. 2014. Intraspecific variation in Aegla longirostri 642(Crustacea: Decapoda: Anomura) revealed by geometric morphometrics: evidence for 643ongoing speciation? *Biol J Linn Soc* 112: 31–39. doi: 10.1111/bij.12256.
- 644McLellan LJ. 1984. A morphometric analysis of Carollia (Chiroptera, Phyllostomidae). 645*American Museum novitates* 2791: 1-35.
- 646Monteiro LR, Bonato V. 2005. Evolutionary integration and morphological diversification in 647complex morphological structures: mandible shape divergence in spiny rats (Rodentia, 648Echimyidae). *Evol Dev* 7: 429–439. doi: 10.1111/j.1525-142X.2005.05047.x
- 649Monteiro LR, Nogueira MR. 2010. Adaptive radiations, ecological specialization, and the 650evolutionary integration of complex morphological structures. *Evolution* 64:724-744. 651doi: 10.1111/j.1558-5646.2009.00857.x
- 652Monteiro LR, Nogueira MR. 2011. Evolutionary patterns and processes in the radiation of

653phyllostomid bats. BMC evolutionary biology. doi: 10.1186/1471-2148-11-137

- 654Muñoz J, Cuartas C, Gonzáles M. 2004. A new species of bat genus *Carollia* Gray, 1838 655(Chiroptera: Phyllostomidae) is described from Colombia. Actualidades Biológicas 26: 80-90.
- 656Muscarella R, Fleming TH. 2007. The role of frugivorous bats in tropical forest succession.
- 657Biological Reviews. doi: 10.1111/j.1469-185X.2007.00026.x
- 81
- 82
- 83

- 658Nogueira MR, Peracchi AL, Monteiro LR. 2009. Morphological correlates of bite force and 659diet in the skull and mandible of phyllostomid bats. Functional Ecology 23: 715-723. doi: 66010.1111/j.1365-2435.2009.01549.x
- 661Pacheco V, Solari S, Velazco P. 2004. A new species of Carollia (Chiroptera:
- 662Phyllostomidae) from the Andes of Peru and Bolivia. Occasional Papers 236: 1-16.
- 663Pavan AC, Martins F, Santos FR. 2011. Patterns of diversification in two species of short-
- 664tailed bats (Carollia Gray, 1838): the effects of historical fragmentation of Brazilian
- 665rainforests. Biol J Linn Soc 102: 527–539. doi: 10.1111/j.1095-8312.2010.01601.x
- 666Pedersen SC. 2000. Skull growth and the acoustical axis of the head in bats. In: Pedersen SC,
- 667Adams RA (eds). Ontogeny, Functional Ecology, and Evolution of Bats. Cambridge 668University Press. pp 174-214.
- 669Pine RH. 1972. The bats of the genus *Carollia*. Technical Monograph, Texas Agricultural 670Experimental Station, Texas A & M University 8: 1–125.
- 671Pitnick S, Jones KE, Wilkinson GS. 2006. Mating system and brain size in bats. P Roy Soc B 672Bio 273: 719–724. doi: 10.1098/rspb.2005.3367
- 673Pereira M, Palmeirim J. 2013. Latitudinal Diversity Gradients in New World Bats: Are They
- 674a Consequence of Niche Conservatism? PLoS ONE. doi: 10.1371/journal.pone.0069245
- 675Reep RL, Bhatnagar KP. 2000. Brain ontogeny and ecomorphology in bats. In: Pedersen SC,
- 676Adams RA (eds) Ontogeny, Functional Ecology, and Evolution of Bats. Cambridge 677University Press. p 137-174.
- 678Robert P, Escoufier Y. 1976. A Unifying Tool for Linear Multivariate Statistical Methods: 679The RV-Coefficient. Applied Statistics 25: 257–265.
- 680Rohlf JF. 1990. Rotational fit Procrustes Methods. In: Rohlf JF, Bookstein FL (eds)
- 681Proceedings of the Michigan Morphometrics Workshop. University of Michigan Museum of 682Zoology, Ann Arbor, pp 227–236.
- 683Rohlf FJ, Loy A, Corti M. 1996. Morphometric analysis of Old World Talpidae (Mammalia, 684Insectivora) using partial-warp scores. *Syst Biol* 45: 344-362.
- 685Rohlf FJ. 1999. Shape statistics: Procrustes superimpositions and tangent spaces. *J Classif* 16: 686197–223.
- 687Rohlf FJ, Corti M. 2000. Use of two-block partial least-squares to study covariation in shape. 688*Syst Biol* 49: 740–753.

85

86

87

- 689Rohlf FJ, Bookstein FL. 2003. Computing the uniform component of shape variation. *Syst* 690*Biol* 52: 66–69.
- 691Rohlf FJ. 2010. TPSDig2, Version 2.16. Stony Brook, NY: Department of Ecology and 692Evolution, State University of New York. Available at: http://life.bio.sunysb.edu/morph 693Rojas D, Vale Á, Ferrero V, Navarro L. 2012. The role of frugivory in the diversification of

694bats in the Neotropics. J Biogeogr 39:1948–1960

- 695Santana SE, Dumont ER, Davis JL. 2010. Mechanics of bite force production and its 696relationship to diet in bats. *Functional Ecology* 24: 776-784. doi: 10.1111/j.1365-6972435.2010.01703.x
- 698Santana SE, Dumont ER. 2011. Do roost-excavating bats have stronger skulls? *Biol J Linn* 699*Soc* 102: 1-10. doi: 10.1111/j.1095-8312.2010.01551.x
- 700Santana SE, Strait S, Dumont ER. 2011. The better to eat you with: functional correlates of 701tooth structure in bats. *Functional Ecology* 25: 839-847. doi: 10.1111/j.1365-7022435.2011.01832.x
- 703Santana SE, Lofgren SE. 2013. Does nasal echolocation influence the modularity of the 704mammal skull? *J Evolution Biol* 26: 2520-2526. doi: 10.1111/jeb.12235
- 705Schinz HR. 1821. Das Thierreich eingetheilt nach dem Bau der Thiere als Grundlage ihrer 706Naturgeschichte und der vergleichenden Anatomie von dem Herrn Ritter von Cuvier. 707Stuttgart, Germany.
- 708Solari S, Baker RJ. 2006. Mitochondrial DNA sequence, karyotypic, and morphological 709variation in the *Carollia castanea* species complex (Chiroptera: Phyllostomidae) with 710description of a new species. *Occasional Papers* 254: 1–16.
- 711Venditti C, Meade A, Pagel M. 2011. Multiple routes to mammalian diversity. *Nature* 479: 712393-396. doi: 10.1038/nature10516
- 713Velazco PM, Patterson BD. 2013. Diversification of the yellow-shouldered bats, genus 714Sturnira (Chiroptera, Phyllostomidae), in the New World tropics. *Mol Phylogenet Evol* 68: 715683-698. doi:10.1016/j.ympev.2013.04.016
- 716Villalobos F, Rangel TF, Diniz-Filho JF. 2013 Phylogenetic fields of species: cross-species 717patterns of phylogenetic structure and geographical coexistence. *Proc R Soc B* 280: 20122570 718doi:10.1098/rspb.2012.2570

89

90

91

719Wellens H, Kuijpers-Jagtman AM. 2013. Geometric morphometric analysis of craniofacial 720variation, ontogeny and modularity in a cross-sectional sample of modern humans. *J Anat* 721222: 397-409. doi: 10.1111/joa.12027

722Wright AJ, Van den Bussche, Lim BK, Engstrom MD, Baker R. 1999. Systematics of the 723Genera *Carollia* and *Rhinophylla* based on cytochrome-b gene. *J Mammal* 80: 1202-1213. 724York H, Papes M. 2007. Limiting similarity and species assemblages in the short-tailed fruit 725bats. *J Zoology* 273:249–256. doi: 10.1111/j.1469-7998.2007.00321.x

726York H, Billings S. 2009. Stable-isotope Analysis of Diets of Short-tailed Fruit Bats 727(Chiroptera: Phyllostomidae: *Carollia*). *J Mammal* 90:1469-1477. doi: 10.1644/08-MAMM-728A-382R.1

729Zelditch ML, Swiderski DL, Sheets HD, Fink WL. 2004. Geometric morphometrics for 730biologists. Elsevier Academic Press, San Diego.

731Zelditch ML, Wood AR, Bonett RM. 2008. Modularity of the rodent mandible: integrating 732bones, muscles, and teeth. *Evol Dev* 10: 756-768. doi: 10.1111/j.1525-142X.2008.00290.x 733Zurc D, Velazco P. 2010. Morphological and morphometric analyses of *Carollia colombiana* 734Cuartas et al. 2001 and *C. monohernandez*i Muñoz et al. 2004 (Phyllostomidae: Carollinae) in 735Colombia. *Chiroptera Neotropical* 16: 549–567.

Fig. 1 Map showing geographical distribution of locations sampled for *Carollia perspicillata* 737(concentric circles), *C. brevicauda* (grey circles) and *C. castanea* (black circles), within the 738biogeographic regions present in Colombia.

Fig. 2 Landmarks configurations used in this study for the analysis of shape variation of skull 740(A) and jaw (B).

Fig 3 *A priori* hypotheses tested on *C. brevicauda*, *C. castanea* and *C. perspicillata* for 742cranial and mandibular modularity. (a) Cranial modularity divides the cranium into 743neurocranium (grey-solid lines) and splachnocranium (black-dotted lines). (b) Mandibular 744modularity divides the jaw into ascending ramus (grey-solid lines) and alveolar region (black-745dotted lines).

Fig. 4 Transformation grids for the first Principal Component (PC) of the RWA. Grids depict 747intraspecific cranial morphological variation. From left to right are the grids for all species, *C.* 748*brevicauda* (a), *C. castanea* (b) and *C. perspicillata* (c).

Fig. 5 Transformation grids for the first Principal Component (PC) of the RWA. Grids depict 750intraspecific mandibular morphological variation. From top to bottom are the grids for all 751species, *C. brevicauda* (a), *C. castanea* (b) and *C. perspicillata* (c).

Fig. 6 Patterns recovered for cranial modularity for *C. brevicauda* (a), *C. castanea* (b), and *C.* 753*perspicillata* (c), showing the neurocranium (grey-solid lines) and the splachnocranium 754(black-dotted lines). Thicker lines and dots highlight the region where modularity varies 755between species.