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Most butterfly and moth larvae (Lepidoptera) are terrestrial. When terrestrial caterpillars
accidentally fall into water, they may drown or be preyed upon by aquatic predators before
they can safely reach land. However, how terrestrial caterpillars escape aquatic
environments and predators remains unclear. In July 2018, we observed a terrestrial
caterpillar actively swimming on the surface of a pond in Japan until it successfully reached
the shore. To further investigate this behaviourin terrestrial caterpillars, we experimentally
placed larvae of 13 moth species (four families) on a water surface under laboratory and
field conditions. All caterpillars floated. Larvae of seven species swam on the water
surface, whereas those of six species did not. Two types of swimming behaviour were
observed; in Dinumma deponens, Hypopyra vespertilio, Spirama retorta, Laelia coenosa,
Lymantria dispar (all Erebidae), and Naranga aenescens (Noctuidae), larvae swung their
bodies rapidly from side to side to propel themselves along the water surface (i.e.,
undulatory swimming); in contrast, larvae of Acosmetia biguttula (Noctuidae) rapidly
moved the abdomen (posterior segments) up and down for propulsion along the water
surface (i.e., flick swimming). Although thoracic legs were not used for undulatory and flick
swimming, rapid movements of the abdomen were used to propel caterpillars on the water
surface. We also observed that undulatory and flick swimming on the water surface aided
caterpillars in escaping aquatic predators under field conditions. In addition, we
investigated the relationship between body size and undulatory swimming on the water
surface in the erebid S. retorta under laboratory conditions. The frequency and speed of
swimming increased with increasing body length. Together, these results show that the
rapid movement of elongated bodies results in forward propulsion on the water surface,
allowing some terrestrial caterpillars to avoid drowning or aquatic predators. We further
suggested potential factors related to morphology, host plant habitat, and defensive
behaviour that may have led to the acquisition of swimming behaviour in terrestrial
caterpillars.
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16 ABSTRACT (word limit: 500)

17 Most butterfly and moth larvae (Lepidoptera) are terrestrial. When terrestrial caterpillars 

18 accidentally fall into water, they may drown or be preyed upon by aquatic predators before they 

19 can safely reach land. However, how terrestrial caterpillars escape aquatic environments and 

20 predators remains unclear. In July 2018, we observed a terrestrial caterpillar actively swimming 

21 on the surface of a pond in Japan until it successfully reached the shore. To further investigate 

22 this behaviour in terrestrial caterpillars, we experimentally placed larvae of 13 moth species (four 

23 families) on a water surface under laboratory and field conditions. All caterpillars floated. Larvae 

24 of seven species swam on the water surface, whereas those of six species did not. Two types of 

25 swimming behaviour were observed; in Dinumma deponens, Hypopyra vespertilio, Spirama 

26 retorta, Laelia coenosa, Lymantria dispar (all Erebidae), and Naranga aenescens (Noctuidae), 

27 larvae swung their bodies rapidly from side to side to propel themselves along the water surface 

28 (i.e., undulatory swimming); in contrast, larvae of Acosmetia biguttula (Noctuidae) rapidly 

29 moved the abdomen (posterior segments) up and down for propulsion along the water surface 

30 (i.e., flick swimming). Although thoracic legs were not used for undulatory and flick swimming, 

31 rapid movements of the abdomen were used to propel caterpillars on the water surface. We also 

32 observed that undulatory and flick swimming on the water surface aided caterpillars in escaping 

33 aquatic predators under field conditions. In addition, we investigated the relationship between 

34 body size and undulatory swimming on the water surface in the erebid S. retorta under 

35 laboratory conditions. The frequency and speed of swimming increased with increasing body 

36 length. Together, these results show that the rapid movement of elongated bodies results in 

37 forward propulsion on the water surface, allowing some terrestrial caterpillars to avoid drowning 

38 or aquatic predators. We further suggested potential factors related to morphology, host plant 

39 habitat, and defensive behaviour that may have led to the acquisition of swimming behaviour in 
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40 terrestrial caterpillars.

41
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45 INTRODUCTION

46 Most terrestrial insects have not adapted to aquatic environments; for example, many terrestrial 

47 insect species only rarely escape from a water surface. However, terrestrial insects such as 

48 locusts, cockroaches, praying mantises, and ants can swim on a water surface using their legs 

49 (Miller, 1972; Franklin, Jander & Ele, 1977; Pflüger & Burrows, 1978; Graham et al., 1987; 

50 Bohn, Thornham & Federle, 2012; Yanoviak & Frederick, 2014; Gripshover, Yanoviak & Gora, 

51 2018). Swimming behaviour has been reported for the adult stages of terrestrial insects, but 

52 rarely for the immature stages.

53     The larvae of butterflies and moths (Lepidoptera) are predominantly terrestrial; however, 

54 approximately 0.5% of 157,000 known species are aquatic at the larval stage (van Nieukerken et 

55 al. 2011; Pabis, 2018). When terrestrial caterpillars accidentally fall into water, they can drown 

56 or be preyed upon by aquatic predators such as fish before they can safely reach land (Gustafsson, 

57 Greenberg & Bergman, 2014; Iguchi et al., 2004). Some caterpillars (i.e., aquatic species) 

58 exhibit behavioural adaptations to aquatic environments and predators to avoid these risks (Pabis, 

59 2018), but the behavioural responses of terrestrial caterpillars to aquatic environments remain 

60 unclear.   

61     On July 20, 2018, we observed a terrestrial caterpillar of Dinumma deponens Walker 

62 (Lepidoptera: Erebidae) moving forward on the water surface of a pond in Unnan, Shimane, 

63 Japan. The caterpillar undulated from side to side, propelling itself forward on the water surface; 

64 it was able to successfully reach the shore (Fig. 1a). The caterpillar may have accidentally fallen 

65 into the pond because D. deponens larvae feed on leaves of the tree species Albizia julibrissin 

66 Durazz. (Fabaceae), which commonly grows along the edges of wetlands (Kishida, 2011). We 

67 placed the same caterpillar on the water surface again and observed the same behaviour (Fig. 1b; 

68 Video S1). This ‘swimming’ behaviour on the water surface appeared to avoid drowning and 
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69 aquatic predators (e.g., water striders; Fig. 1b; Video S1).    

70     To further investigate the swimming behaviour in terrestrial caterpillars, we experimentally 

71 placed the larvae of 13 moth species (belonging to four families), including D. deponens, onto a 

72 water surface and observed their behaviour under laboratory and field conditions. In addition, we 

73 experimentally investigated the relationship between a caterpillar’s body size and swimming 

74 behaviour to clarify how body size can influence propulsive power in water. 

75

76 MATERIALS AND METHODS

77 To test whether terrestrial caterpillars can swim on the water surface, we experimentally placed 

78 the larvae of 13 moth species (from four families) on a water surface and observed their 

79 behaviour under laboratory and field conditions (Table 1). We collected 52 larvae from eight 

80 plant species from June 2019 to July 2019 in Shimane Prefecture and in June 2020 in Hyogo 

81 Prefecture, Japan. We carefully placed each caterpillar (n = 49) on the water surface in a plastic 

82 vessel (390 × 265 × 65 mm) containing 2 L of water (20 mm depth, 25°C) under well-lit 

83 conditions, with an air temperature of 25°C. We also placed the larvae of three species, 

84 Hypopyra vespertilio (Fabricius) (Erebidae), Acosmetia biguttula (Motschulsky) (Noctuidae), 

85 and Theretra oldenlandiae (Fabricius) (Sphingidae), on the surfaces of ponds in Shimane 

86 Prefecture. During each 2-min observation period, we investigated whether the larvae (1) 

87 remained at the water surface (supported by water tension) and (2) moved forward (i.e., swam) 

88 on the water surface. To examine the possible origins of swimming behaviour, we also observed 

89 how caterpillars of each species walk on twigs or leaves (i.e., inching or looping; van 

90 Griethuijsen & Trimmer, 2014; Table 1). We identified each caterpillar based on their 

91 morphological characteristics (Sugi, 1987; Yasuda, 2010, 2012, 2014; Suzuki et al., 2018), and 

92 raised some larvae to the adult stage to confirm their identity (Kishida, 2011).
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93     In caterpillars, various types of behaviour such as anti-predator defences are closely related to 

94 body size (Sugiura & Yamazaki, 2014; Hossie et al., 2015; Sugiura et al., 2020; Sugiura, 2020). 

95 To clarify how caterpillar size can influence propulsive power in water, we experimentally 

96 investigated the relationship between body size and swimming behaviour in the erebid Spirama 

97 retorta (Clerck) (Erebidae). We reared S. retorta larvae from the eggs of two females on A. 

98 julibrissin leaves under laboratory conditions (26–29°C). Spirama retorta passes through seven 

99 larval instars before pupation (Table 2). We measured the body weight of each larva to the 

100 nearest 1 mg using an electronic balance (CJ-620S; Shinko Denshi, Co., Ltd., Tokyo, Japan); we 

101 measured the body length and head capsule width to the nearest 0.01 mm using slide callipers or 

102 an ocular micrometre. We placed 10 larvae per instar individually on the water surface in a 

103 plastic vessel (390 × 265 × 65 mm) with 2 L of water (20 mm depth) under well-lit conditions at 

104 25°C. We filmed the behaviour of the larvae (n = 70) using video cameras (V2; Nikon, Tokyo, 

105 Japan). We played back the footage of the recorded behaviour using iMovie version 10.0.6 

106 (Apple, Inc., Cupertino, CA, USA). During each 2-min observation period, we recorded (1) 

107 whether the larva remained at the water surface (supported by water tension), (2) whether the 

108 larva moved forward (i.e., swam) on the water surface, and (3) the distance (mm) travelled by the 

109 larva in 2 s.

110     To investigate the relationship between larval body length and swimming behaviour in S. 

111 retorta, we ran a generalised linear model with a binomial error distribution and logit link 

112 function (i.e., logistic regression). We used 10 individuals per instar (n = 70) for the analysis. We 

113 used swimming (1) or non-swimming (0) as the binary response variable; we regarded body 

114 length as a fixed factor. We also ran a generalised linear model with a Poisson error distribution 

115 and log link function (i.e., Poisson regression) to investigate the relationship between body size 

116 and swimming distance in S. retorta, analysing 10 individuals per instar (n = 70). We used 
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117 swimming speed (mm/s) as the response variable; we regarded body length as a fixed factor. 

118 When the residual deviance was smaller (underdispersion) or larger (overdispersion) than the 

119 residual degrees of freedom, we used a quasi-binomial or quasi-Poisson error distribution, 

120 respectively, rather than a binomial or Poisson error distribution (Sugiura & Sato, 2018). We 

121 performed all analyses using R software version 3.5.2 (R Core Team, 2019).

122

123 RESULTS

124 All caterpillars examined in this study floated (i.e., remained at the water surface). Larvae from 

125 six of the 13 caterpillar species did not move forward on the water surface, whereas larvae from 

126 seven species (two families: Erebidae and Noctuidae) swam on the water surface (Table 1). Two 

127 types of swimming behaviour were observed (Table 1): larvae of D. deponens, H. vespertilio, S. 

128 retorta, Laelia coenosa (Hübner), Lymantria dispar (Linnaeus) (all Erebidae), and Naranga 

129 aenescens Moore (Noctuidae) swung their bodies side to side quickly to propel themselves on 

130 the water surface (i.e., undulatory swimming; Figs. 1c–e, 2a; Video S2); in contrast, larvae of A. 

131 biguttula (Noctuidae) moved the end of the abdomen (posterior segments) up and down quickly 

132 to propel themselves on the water surface (i.e., flick swimming; Figs. 1f, 2b; Video S3). Thoracic 

133 legs were not used for undulatory and flick swimming (Videos S2, S3). One larva of A. biguttula 

134 was observed escaping from an aquatic predator (Notonecta triguttata Motschulsky) in a pond 

135 (Video S3).

136     The relationship between body size and undulatory swimming in S. retorta was investigated 

137 under laboratory conditions. All larvae floated (Table 2). The frequency of swimming increased 

138 with increasing body length (Fig. 3a; Tables 2 and 3): 0%, 0%, 40%, 70%, 100%, 100%, and 

139 100% of the first, second, third, fourth, fifth, sixth, and seventh instars swam on the water 

140 surface, respectively (Table 2). Furthermore, the swimming speed (mm/s) increased with body 
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141 length (Fig. 3b; Table 4).  

142

143 DISCUSSION

144 Aquatic behaviour on/under the water surface have been reported in some aquatic and semi-

145 aquatic caterpillars (Welch, 1914; Mey & Speidel, 2008; Meneses et al., 2013; Coates & Abel, 

146 2019; De-Freitas, De Agostini & Stefani, 2019). The aquatic larvae of Paracles klagesi 

147 (Rothschild) (Erebidae: Arctiinae) and Neoschoenobia testacealis Hampson (Crambidae) move 

148 and feed under the water surface (Nagasaki, 1992; Meneses et al., 2013), and semi-aquatic larvae 

149 of moths such as Bellura vulnifica (Grote) (Noctuidae) and Ostrinia penitalis (Grote) 

150 (Crambidae) can swim on the water surface (Welch, 1914; Coates & Abel, 2019). However, 

151 whether typically terrestrial caterpillars can swim on or under the water surface has received 

152 little attention. In the present study, we observed the behaviour on water surfaces of 13 terrestrial 

153 caterpillar species from four families under laboratory and field conditions. Among these, seven 

154 species were observed to swim on the water surface (Figs. 1 and 2; Table 1), none broke through 

155 the surface tension. We also observed two types of swimming behaviour on the water surface 

156 (undulatory and flick swimming) in the caterpillars (Figs. 1 and 2; Table 1). The undulatory 

157 swimming observed in this study was similar to anguilliform movement, which has been 

158 reported in slender-bodied animals such as eels, snakes, and centipedes (Graham et al., 1987; 

159 Sfakiotakis, Lane & Davies, 1999; Yasui et al., 2019). The frequency and speed of undulatory 

160 swimming increased with body length in S. retorta larvae (Fig. 3; Tables 3 and 4). Directed 

161 movements on the water surface can help caterpillars to avoid aquatic predators (Video S1). 

162     All of the terrestrial caterpillars used in the present study floated due to water surface tension. 

163 Some, but not all, of these floating caterpillars swam on the water surface (Table 1). Three 

164 factors may influence the acquisition of swimming behaviour in terrestrial caterpillars: (1) 
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165 morphology, (2) host plant habitat, and (3) locomotive and defensive behaviour.

166     Caterpillars that swam had distinct morphological traits such as relatively elongated bodies. In 

167 this study, long-bodied caterpillars were more capable of swimming than those with short bodies 

168 (Fig. 3a; Table 3). This relationship has been suggested to explain the swimming behaviour of 

169 the semi-aquatic caterpillar species B. vulnifica, although its morphological traits were not 

170 quantified (Welch, 1914). In addition, long body setae may assist in floating on the water surface 

171 in hairy caterpillars, such as those of La. coenosa and Ly. dispar (Meyer-Rochow, 2016). 

172 However, these features certainly evolved for reasons other than swimming behaviour, because 

173 long bodies, prolegs, and body hairs have other important functions in their terrestrial habitats, 

174 e.g., they may be involved in natural enemy defence, maintaining their perch, and still others 

175 (Fig. 4; Skelhorn et al., 2010; van Griethuijsen & Trimmer, 2014; Sugiura & Yamazaki, 2014).

176     Caterpillars use silk threads emitted from their spinnerets to disperse aerially (Bell et al., 2005) 

177 or prevent falls from the host plant to the ground (Sugiura & Yamazaki, 2006). However, some 

178 mature caterpillars have also been observed to descend from the host plant to the ground for 

179 pupation (Sugi, 1987). Caterpillars inhabiting host plants growing by the waterside may 

180 accidentally descend into open water. Six of the seven caterpillar species observed swimming in 

181 this study were collected from waterside plants such as A. julibrissin (Table 1). 

182     Terrestrial behaviour may also provide insight into the origins of swimming behaviour in 

183 terrestrial caterpillars. Caterpillars that exhibit undulatory swimming typically locomote in a 

184 characteristic looping manner on leaves or stems (i.e., inching; van Griethuijsen & Trimmer, 

185 2014; Table 1). When disturbed, these caterpillars violently bend their bodies from side to side 

186 (i.e., jerking, twisting, or thrashing behaviour; Gross 1993; Greeney, Dyer & Smilanich, 2012). 

187 Undulating swimming may have originated from this defensive behaviour, rather than walking 

188 behaviour. Caterpillars that exhibit flick swimming typically move their abdomen up and down 
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189 to move on land (i.e., crawling; van Griethuijsen & Trimmer, 2014; Table 1); the similarity of 

190 the flick-swimming and crawling motions suggests that flick swimming originated from crawling 

191 motion.

192

193 CONCLUSIONS

194 Our results showed that some terrestrial caterpillars could swim on the water surface to avoid 

195 drowning and aquatic predators (Table 1; Videos S1, S3). However, this behaviour was observed 

196 in only two of the four lepidopteran families tested: Erebidae and Noctuidae (Table 1). Our 

197 investigation was limited to four families, although the insect order Lepidoptera contains 133 

198 recognised families (Mitter, Davis & Cummings, 2017). Thus, the swimming behaviour observed 

199 in terrestrial caterpillars in this study will probably be found in other lepidopteran families. 

200 However, future studies will likely find that many species of terrestrial caterpillars are unable to 

201 swim. Differences in swimming ability among species should be investigated. Kinematic and 

202 anatomical studies may help elucidate the mechanism of swimming behaviour in lepidopteran 

203 larvae.
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336 Figure legends

337

338 Figure 1  Swimming behaviour in terrestrial caterpillars. (a) Dinumma deponens (Erebidae). 

339 (b) Dinumma deponens swimming on a pond surface. (c) Undulatory swimming in Spirama 

340 retorta (Erebidae). (d) Undulatory swimming in Hypopyra vespertilio (Erebidae). (e) Undulatory 

341 swimming in Laelia coenosa (Erebidae). (f) Flick swimming in Acosmetia biguttula (Noctuidae). 

342 Arrows indicate anal prolegs. Photo credit: (a–d, f) M. Hayashi, (e) S. Sugiura.

343

344 Figure 2  Two types of swimming behaviour in terrestrial caterpillars. (a) Temporal 

345 sequence of undulatory swimming in Hypopyra vespertilio. (b) Temporal sequence of flick 

346 swimming in Acosmetia biguttula. Arrows indicate anal prolegs. Photo credit: (a) S. Sugiura, (b) 

347 M. Hayashi.

348

349 Figure 3  Relationship between body size and swimming behaviour in Spirama retorta. (a) 

350 Relationship between body length and frequency of undulatory swimming (n = 70). (b) 

351 Relationship between body length and swimming speed (mm/s) (n = 70). Lines and blue areas 

352 represent logistic regression lines and 95% confidence intervals derived from generalised linear 

353 models, respectively (Tables 3 and 4). Photo credit: M. Hayashi.

354

355 Figure 4  Larval morphology of Hypopyra vespertilio. (a) A larva on a host plant leaf. (b) A 

356 larva on the water surface. Hypopyra vespertilio larvae have three pairs of thoracic legs (T1–T3) 

357 and five pairs of abdominal prolegs (A3–A6 and A10). Photo credit: S. Sugiura.
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358 Supplementary videos

359

360 Video S1. Undulatory swimming by a Dinumma deponens larva on a pond water surface. 

361 Active swimming aided the larva in evading water striders [Aquarius paludum (Fabricius)]. 

362 Video credit: M. Hayashi.

363

364 Video S2. Undulatory swimming by Hypopyra vespertilio larvae under laboratory and field 

365 conditions. Video credit: S. Sugiura and M. Hayashi.

366

367 Video S3. Flick swimming by Acosmetia biguttula larvae under laboratory and field 

368 conditions. Active swimming aided the larva in evading predation by a backswimmer 

369 (Notonecta triguttata) in the pond. Video credit: M. Hayashi.

370

371
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Table 1(on next page)

Table 1 Swimming behaviour of the caterpillars placed on water surfaces.
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1 Table 1  Swimming Behaviours behaviour of the caterpillars placed on water surfaces.

Family Species Instara

Length 

(mm)

Host plant range Plant species

(sampling)

Habitat

(sampling)

Walking

locomotion

Swimming 

Behaviorbeha

viour

on waterb

Forward movement

on water Frequency 

of swimming % (n)

Erebidae Hypopyra vespertilio M–L 23–70 Fabaceae Albizia julibrissin Lake bank Inching Undulatory 100 (7/7)c

Spirama retorta M–L 8–42 Fabaceae Albizia julibrissin Lake bank Inching Undulatory 100 (3/3)

Dinumma deponens M–L 20–32 Albizia julibrissin Albizia julibrissin Lake bank Inching Undulatory 33 (1/3)

Laelia coenosa L 22–34 Poaceae, Cyperaceae, Typhaceae Typha latifolia Pondside Crawling Undulatory 100 (6/6)

Lymantria dispar L 33–54 Many families Cerasus × yedoensis Urban area Crawling Undulatory 30 (3/10)

Noctuidae Xanthodes transversa M–L 25–42 Malvaceae Hibiscus mutabilis Garden Inching – 0 (0/2)

Acosmetia biguttula M–L 20–38 Bidens Bidens frondosa Pondside Crawling KickingFlick 100 (6/6)c

Naranga aenescens

M–L 13–24 Poaceae Pseudoraphis sordida Paddy field Inching

Undulatory 100 (4/4)

Sarcopolia illoba E–M 19–34 Many families Albizia julibrissin Lake bank Crawling – 0 (0/3)

Britha inambitiosa M–L 13–20 Pterostyrax hispidus Pterostyrax hispidus Streamside Inching – 0 (0/3)

Geometridae Chiasmia defixaria M–L 20–30 Albizia julibrissin Albizia julibrissin Lake bank Inching – 0 (0/3)

Ectropis excellens L 30 Many families Pterostyrax hispidus Streamside Inching – 0 (0/1)

Sphingidae Theretra oldenlandiae E 20 Many families Causonis japonica Garden Crawling – 0 (0/1)c

2

3 aInstar: E, early instar; M, middle instar; L, late instar.

4 bCaterpillar bSwimming behaviour on the water surface: Undulatory, forward movement by undulating; KickingFlick, forward movement by kickingflicking; –, non-forward movement (floating).

5 cOne larva of each species was observed on the water surface of a pond, while other larvae were observed under laboratory conditions.
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Table 2(on next page)

Table 2 Body size and behaviour on the water surface in Spirama retorta larvae.
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1 Table 2  Body size and forward movementbehaviour on the water surface in Spirama retorta larvae.

฀ ฀ ฀ ฀ ฀ ฀ ฀

Instar Body weight (mg)a Body length (mm)a Head width (mm)a Floating (%)

Forward 

movementSwi

mming (%) n

First 0.4 ± 0.2 6.1 ± 0.2 0.4 ± 0.0 100 0 10

Second 8.4 ± 1.1 14.3 ± 0.5 0.7 ± 0.0 100 0 10

Third 27.9 ± 2.0 22.3 ± 0.6 1.3 ± 0.0 100 40 10

Fourth 79.1 ± 5.7 29.2 ± 0.5 2.0 ± 0.0 100 70 10

Fifth 281.6 ± 21.0 44.4 ± 0.9 2.7 ± 0.0 100 100 10

Sixth 587.4 ± 47.6 54.8 ± 1.4 3.5 ± 0.1 100 100 10

Seventh 884.8 ± 72.3 61.1 ± 1.3 4.1 ± 0.0 100 100 10

2

3 aValues are mean ± SE.

4
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Table 3(on next page)

Table 3 Relationship between body size and swimming behaviour in Spirama retorta
larvae obtained using a generalised linear model.
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1 Table 3  Relationship between body size and forward movement on the water surfaceswimming behaviour in Spirama retorta 

2 larvae obtained using a generalised linear model.

฀ ฀ ฀ ฀ ฀ ฀

Response variable Explanatory variable (fixed effect) Coefficient estimate SE t value P value

Forward distance on 

waterSwimming 

behavioura Intercept −7.21997 1.33807 −5.396 <0.0001

฀ Caterpillar body length 0.28593 0.05312 5.383 <0.0001

3

4 aA quasi-binomial error distribution (rather than a binomial error distribution) was used because the residual deviance was smaller 

5 than the residual degrees of freedom (underdispersion).

6
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Table 4(on next page)

Figure 4 Larval morphology of Hypopyra vespertilio.

(a) A larva on a host plant leaf. (b) A larva on the water surface. Hypopyra vespertilio larvae
have three pairs of thoracic legs (T1–T3) and five pairs of abdominal prolegs (A3–A6 and
A10). Photo credit: S. Sugiura.
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1 Table 4  Relationship between body size and forward swimming distance (mm/s) on the water surface in Spirama retorta 

2 larvae obtained using a generalised linear model.

฀ ฀ ฀ ฀ ฀ ฀

Response variable Explanatory variable (fixed effect) Coefficient estimate SE t value P value

Forward distance on 

waterSwimming 

distancea Intercept 0.995874 0.233774 4.26 <0.0001

฀ Caterpillar body length 0.056937 0.004376 13.01 <0.0001

3

4 aA quasi-Poisson error distribution (rather than a Poisson error distribution) was used because the residual deviance was larger than 

5 the residual degrees of freedom (overdispersion).

6
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Figure 1
Figure 1 Swimming behaviour in terrestrial caterpillars.

(a) Dinumma deponens (Erebidae). (b) Dinumma deponens swimming on a pond surface. (c)
Undulatory swimming in Spirama retorta (Erebidae). (d) Undulatory swimming in Hypopyra

vespertilio (Erebidae). (e) Undulatory swimming inLaelia coenosa (Erebidae). (f) Flick
swimming in Acosmetia biguttula (Noctuidae). Arrows indicate anal prolegs. Photo credit:
(a–d, f) M. Hayashi, (e) S. Sugiura.
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Figure 2
Figure 2 Two types of swimming behaviour in terrestrial caterpillars.

(a) Temporal sequence of undulatory swimming in Hypopyra vespertilio. (b) Temporal
sequence of flick swimming in Acosmetia biguttula. Arrows indicate anal prolegs. Photo
credit: (a) S. Sugiura, (b) M. Hayashi.
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Figure 3
Figure 3 Relationship between body size and swimming behaviour in Spirama retorta.

(a) Relationship between body length and frequency of undulatory swimming (n = 70). (b)
Relationship between body length and swimming speed (mm/s) (n = 70). Lines and blue
areas represent logistic regression lines and 95% confidence intervals derived from
generalised linear models, respectively (Tables 3 and 4). Photo credit: M. Hayashi.
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Figure 4
Figure 4 Larval morphology of Hypopyra vespertilio.

(a) A larva on a host plant leaf. (b) A larva on the water surface. Hypopyra vespertilio larvae
have three pairs of thoracic legs (T1–T3) and five pairs of abdominal prolegs (A3–A6 and
A10). Photos: S. Sugiura.
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