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Most butterfly and moth larvae (Lepidoptera) are terrestrial. When terrestrial caterpillars
accidentally fall into water, they may drown or be preyed upon by aquatic predators before
they can safely reach land. However, how terrestrial caterpillars escape aquatic
environments and predators remains unclear. In July 2018, we observed a terrestrial
caterpillar actively swimming on the surface of a pond in Japan until it successfully reached
the shore. To further investigate this behaviourin terrestrial caterpillars, we experimentally
placed larvae of 13 moth species (four families) on a water surface under laboratory and
field conditions. All caterpillars floated. Larvae of seven species swam on the water
surface, whereas those of six species did not. Two types of swimming behaviour were
observed; in Dinumma deponens, Hypopyra vespertilio, Spirama retorta, Laelia coenosa,
Lymantria dispar (all Erebidae), and Naranga aenescens (Noctuidae), larvae swung their
bodies rapidly from side to side to propel themselves along the water surface (i.e.,
undulatory swimming); in contrast, larvae of Acosmetia biguttula (Noctuidae) rapidly
moved the abdomen (posterior segments) up and down for propulsion along the water
surface (i.e., flick swimming). Although thoracic legs were not used for undulatory and flick
swimming, rapid movements of the abdomen were used to propel caterpillars on the water
surface. We also observed that undulatory and flick swimming on the water surface aided
caterpillars in escaping aquatic predators under field conditions. In addition, we
investigated the relationship between body size and undulatory swimming on the water
surface in the erebid S. retorta under laboratory conditions. The frequency and speed of
swimming increased with increasing body length. Together, these results show that the
rapid movement of elongated bodies results in forward propulsion on the water surface,
allowing some terrestrial caterpillars to avoid drowning or aquatic predators. We further
suggested potential factors related to morphology, host plant habitat, and defensive
behaviour that may have led to the acquisition of swimming behaviour in terrestrial

caterpillars.
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ABSTRACT (word limit: 500)

Most butterfly and moth larvae (Lepidoptera) are terrestrial. When terrestrial caterpillars
accidentally fall into water, they may drown or be preyed upon by aquatic predators before they
can safely reach land. However, how terrestrial caterpillars escape aquatic environments and
predators remains unclear. In July 2018, we observed a terrestrial caterpillar actively swimming
on the surface of a pond in Japan until it successfully reached the shore. To further investigate
this behaviour in terrestrial caterpillars, we experimentally placed larvae of 13 moth species (four
families) on a water surface under laboratory and field conditions. All caterpillars floated. Larvae
of seven species swam on the water surface, whereas those of six species did not. Two types of
swimming behaviour were observed; in Dinumma deponens, Hypopyra vespertilio, Spirama
retorta, Laelia coenosa, Lymantria dispar (all Erebidae), and Naranga aenescens (Noctuidae),
larvae swung their bodies rapidly from side to side to propel themselves along the water surface
(i.e., undulatory swimming); in contrast, larvae of Acosmetia biguttula (Noctuidae) rapidly
moved the abdomen (posterior segments) up and down for propulsion along the water surface
(i.e., flick swimming). Although thoracic legs were not used for undulatory and flick swimming,
rapid movements of the abdomen were used to propel caterpillars on the water surface. We also
observed that undulatory and flick swimming on the water surface aided caterpillars in escaping
aquatic predators under field conditions. In addition, we investigated the relationship between
body size and undulatory swimming on the water surface in the erebid S. reforta under
laboratory conditions. The frequency and speed of swimming increased with increasing body
length. Together, these results show that the rapid movement of elongated bodies results in
forward propulsion on the water surface, allowing some terrestrial caterpillars to avoid drowning
or aquatic predators. We further suggested potential factors related to morphology, host plant

habitat, and defensive behaviour that may have led to the acquisition of swimming behaviour in
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INTRODUCTION

Most terrestrial insects have not adapted to aquatic environments; for example, many terrestrial
insect species only rarely escape from a water surface. However, terrestrial insects such as
locusts, cockroaches, praying mantises, and ants can swim on a water surface using their legs
(Miller, 1972; Franklin, Jander & Ele, 1977, Pfliiger & Burrows, 1978; Graham et al., 1987;
Bohn, Thornham & Federle, 2012; Yanoviak & Frederick, 2014, Gripshover, Yanoviak & Gora,
2018). Swimming behaviour has been reported for the adult stages of terrestrial insects, but
rarely for the immature stages.

The larvae of butterflies and moths (Lepidoptera) are predominantly terrestrial; however,
approximately 0.5% of 157,000 known species are aquatic at the larval stage (van Nieukerken et
al. 2011; Pabis, 2018). When terrestrial caterpillars accidentally fall into water, they can drown
or be preyed upon by aquatic predators such as fish before they can safely reach land (Gustafsson,
Greenberg & Bergman, 2014, Iguchi et al., 2004). Some caterpillars (i.e., aquatic species)
exhibit behavioural adaptations to aquatic environments and predators to avoid these risks (Pabis,
2018), but the behavioural responses of terrestrial caterpillars to aquatic environments remain
unclear.

On July 20, 2018, we observed a terrestrial caterpillar of Dinumma deponens Walker
(Lepidoptera: Erebidae) moving forward on the water surface of a pond in Unnan, Shimane,
Japan. The caterpillar undulated from side to side, propelling itself forward on the water surface;
it was able to successfully reach the shore (Fig. 1a). The caterpillar may have accidentally fallen
into the pond because D. deponens larvae feed on leaves of the tree species Albizia julibrissin
Durazz. (Fabaceae), which commonly grows along the edges of wetlands (Kishida, 2011). We
placed the same caterpillar on the water surface again and observed the same behaviour (Fig. 1b;

Video S1). This ‘swimming’ behaviour on the water surface appeared to avoid drowning and
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aquatic predators (e.g., water striders; Fig. 1b; Video S1).

To further investigate the swimming behaviour in terrestrial caterpillars, we experimentally
placed the larvae of 13 moth species (belonging to four families), including D. deponens, onto a
water surface and observed their behaviour under laboratory and field conditions. In addition, we
experimentally investigated the relationship between a caterpillar’s body size and swimming

behaviour to clarify how body size can influence propulsive power in water.

MATERIALS AND METHODS

To test whether terrestrial caterpillars can swim on the water surface, we experimentally placed
the larvae of 13 moth species (from four families) on a water surface and observed their
behaviour under laboratory and field conditions (Table 1). We collected 52 larvae from eight
plant species from June 2019 to July 2019 in Shimane Prefecture and in June 2020 in Hyogo
Prefecture, Japan. We carefully placed each caterpillar (n = 49) on the water surface in a plastic
vessel (390 x 265 x 65 mm) containing 2 L of water (20 mm depth, 25°C) under well-lit
conditions, with an air temperature of 25°C. We also placed the larvae of three species,
Hypopyra vespertilio (Fabricius) (Erebidae), Acosmetia biguttula (Motschulsky) (Noctuidae),
and Theretra oldenlandiae (Fabricius) (Sphingidae), on the surfaces of ponds in Shimane
Prefecture. During each 2-min observation period, we investigated whether the larvae (1)
remained at the water surface (supported by water tension) and (2) moved forward (i.e., swam)
on the water surface. To examine the possible origins of swimming behaviour, we also observed
how caterpillars of each species walk on twigs or leaves (i.e., inching or looping; van
Griethuijsen & Trimmer, 2014; Table 1). We identified each caterpillar based on their
morphological characteristics (Sugi, 1987, Yasuda, 2010, 2012, 2014, Suzuki et al., 2018), and

raised some larvae to the adult stage to confirm their identity (Kishida, 2011).
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93 In caterpillars, various types of behaviour such as anti-predator defences are closely related to
94  body size (Sugiura & Yamazaki, 2014, Hossie et al., 2015; Sugiura et al., 2020; Sugiura, 2020).
95 To clarify how caterpillar size can influence propulsive power in water, we experimentally
96 investigated the relationship between body size and swimming behaviour in the erebid Spirama
97 retorta (Clerck) (Erebidae). We reared S. retorta larvae from the eggs of two females on A.
98  julibrissin leaves under laboratory conditions (26—29°C). Spirama retorta passes through seven
99 larval instars before pupation (Table 2). We measured the body weight of each larva to the
100 nearest I mg using an electronic balance (CJ-620S; Shinko Denshi, Co., Ltd., Tokyo, Japan); we
101  measured the body length and head capsule width to the nearest 0.01 mm using slide callipers or
102 an ocular micrometre. We placed 10 larvae per instar individually on the water surface in a
103 plastic vessel (390 x 265 x 65 mm) with 2 L of water (20 mm depth) under well-lit conditions at
104 25°C. We filmed the behaviour of the larvae (n = 70) using video cameras (V2; Nikon, Tokyo,
105 Japan). We played back the footage of the recorded behaviour using iMovie version 10.0.6
106  (Apple, Inc., Cupertino, CA, USA). During each 2-min observation period, we recorded (1)
107  whether the larva remained at the water surface (supported by water tension), (2) whether the
108 larva moved forward (i.e., swam) on the water surface, and (3) the distance (mm) travelled by the
109 larvain2s.
110 To investigate the relationship between larval body length and swimming behaviour in S.
111  retorta, we ran a generalised linear model with a binomial error distribution and logit link
112 function (i.e., logistic regression). We used 10 individuals per instar (z = 70) for the analysis. We
113 used swimming (1) or non-swimming (0) as the binary response variable; we regarded body
114 length as a fixed factor. We also ran a generalised linear model with a Poisson error distribution
115 and log link function (i.e., Poisson regression) to investigate the relationship between body size

116 and swimming distance in S. retorta, analysing 10 individuals per instar (n = 70). We used
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swimming speed (mm/s) as the response variable; we regarded body length as a fixed factor.
When the residual deviance was smaller (underdispersion) or larger (overdispersion) than the
residual degrees of freedom, we used a quasi-binomial or quasi-Poisson error distribution,

respectively, rather than a binomial or Poisson error distribution (Sugiura & Sato, 2018). We

performed all analyses using R software version 3.5.2 (R Core Team, 2019).

RESULTS

All caterpillars examined in this study floated (i.e., remained at the water surface). Larvae from
six of the 13 caterpillar species did not move forward on the water surface, whereas larvae from
seven species (two families: Erebidae and Noctuidae) swam on the water surface (Table 1). Two
types of swimming behaviour were observed (Table 1): larvae of D. deponens, H. vespertilio, S.
retorta, Laelia coenosa (Hiibner), Lymantria dispar (Linnaeus) (all Erebidae), and Naranga
aenescens Moore (Noctuidae) swung their bodies side to side quickly to propel themselves on
the water surface (i.e., undulatory swimming; Figs. 1c—e, 2a; Video S2); in contrast, larvae of 4.
biguttula (Noctuidae) moved the end of the abdomen (posterior segments) up and down quickly
to propel themselves on the water surface (i.e., flick swimming; Figs. 1f, 2b; Video S3). Thoracic
legs were not used for undulatory and flick swimming (Videos S2, S3). One larva of A. biguttula
was observed escaping from an aquatic predator (Notonecta triguttata Motschulsky) in a pond
(Video S3).

The relationship between body size and undulatory swimming in S. retorta was investigated
under laboratory conditions. All larvae floated (Table 2). The frequency of swimming increased
with increasing body length (Fig. 3a; Tables 2 and 3): 0%, 0%, 40%, 70%, 100%, 100%, and
100% of the first, second, third, fourth, fifth, sixth, and seventh instars swam on the water

surface, respectively (Table 2). Furthermore, the swimming speed (mm/s) increased with body
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length (Fig. 3b; Table 4).

DISCUSSION
Aquatic behaviour on/under the water surface have been reported in some aquatic and semi-
aquatic caterpillars (Welch, 1914; Mey & Speidel, 2008; Meneses et al., 2013, Coates & Abel,
2019, De-Freitas, De Agostini & Stefani, 2019). The aquatic larvae of Paracles klagesi
(Rothschild) (Erebidae: Arctiinae) and Neoschoenobia testacealis Hampson (Crambidae) move
and feed under the water surface (Nagasaki, 1992; Meneses et al., 2013), and semi-aquatic larvae
of moths such as Bellura vulnifica (Grote) (Noctuidae) and Ostrinia penitalis (Grote)
(Crambidae) can swim on the water surface (Welch, 1914, Coates & Abel, 2019). However,
whether typically terrestrial caterpillars can swim on or under the water surface has received
little attention. In the present study, we observed the behaviour on water surfaces of 13 terrestrial
caterpillar species from four families under laboratory and field conditions. Among these, seven
species were observed to swim on the water surface (Figs. 1 and 2; Table 1), none broke through
the surface tension. We also observed two types of swimming behaviour on the water surface
(undulatory and flick swimming) in the caterpillars (Figs. 1 and 2; Table 1). The undulatory
swimming observed in this study was similar to anguilliform movement, which has been
reported in slender-bodied animals such as eels, snakes, and centipedes (Graham et al., 1987,
Stfakiotakis, Lane & Davies, 1999, Yasui et al., 2019). The frequency and speed of undulatory
swimming increased with body length in S. retorta larvae (Fig. 3; Tables 3 and 4). Directed
movements on the water surface can help caterpillars to avoid aquatic predators (Video S1).

All of the terrestrial caterpillars used in the present study floated due to water surface tension.
Some, but not all, of these floating caterpillars swam on the water surface (Table 1). Three

factors may influence the acquisition of swimming behaviour in terrestrial caterpillars: (1)

Peer] reviewing PDF | (2020:07:50831:2:0:NEW 21 Apr 2021)



PeerJ

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

morphology, (2) host plant habitat, and (3) locomotive and defensive behaviour.

Caterpillars that swam had distinct morphological traits such as relatively elongated bodies. In
this study, long-bodied caterpillars were more capable of swimming than those with short bodies
(Fig. 3a; Table 3). This relationship has been suggested to explain the swimming behaviour of
the semi-aquatic caterpillar species @lniﬁca, although its morphological traits were not
quantified (Welch, 1914). In addition, long body setae may assist in floating on the water surface
in hairy caterpillars, such as those of La. coenosa and Ly.@par (Meyer-Rochow, 2016).
However, these features certainly evolved for reasons other than swimming behaviour, because
long bodies, prolegs, and body hairs have other important functions in their terrestrial habitats,
e.g., they may be involved in natural enemy defence, maintaining their perch, and still others
(Fig. 4; Skelhorn et al., 2010; van Griethuijsen & Trimmer, 2014, Sugiura & Yamazaki, 2014).

Caterpillars use silk threads en@ from their spinnerets to disperse aerially (Bell et al., 2005)
or prevent falls from the host pla! the ground (Sugiura & Yamazaki, 2006). @vever, some
mature caterpillars have also been observed to descend from the host plant to the ground for
pupation (Sugi, 1987). Caterpillars inhabiting host plants growing by the Water@may
accidentally descend into open water. Six of the seven caterpillar species observed swimming in
this study were collected from waterside plants such as 4. julibrissin (Table 1).

Terrestrial behavi@ may also provide insight into the origins of swimming behaviour in
terrestrial caterpillars.@erpillars that exhibit undulatory swimming typically locomote in a
characteristic looping manner on leaves or stems (i.e., inching; van Griethuijsen & Trimmer,
2014; Table 1). When disturbed@se caterpillars violently bend their bodies from side to side
(i.e., jerking, twisting, or thrashing behaviour; Gross 1993; Greeney, Dyer & Smilanich, 2012).
Undulating swimming may have originated from this defensive behaviour, rather than walking

behaviour. Caterpillars that exhibit flick swimming typically move their abdomen up and down @
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to move on land (i.e., crawling; van Griethuijsen & Trimmer, 2014; Table 1); the similarity of
the flick-swimming and crawling motions suggests that flick swimmininated from crawling

motion.

CONCLUSIONS

Our results showed that some terrestrial caterpillars could swim on the water surface to avoid
drowning and aquatic predators (Table 1; Videos S1, S3). However, this b@viour was observed
in only two of the four lepidopteran families tested: Erebidae and Noctuidae (Table 1). Our
investigation was limited to four families, although the insect order Lepidoptera contains 133
recognised families (Mitter, Davis & Cummings, 2017). T@the swimming behaviour observed
in terrestrial caterpillars in this study will probably be found in other lepidopteran families.
However, future studies will likely find that many species of terrestrial caterpillars are unable to
swim. Differences in swimming ability among species should be investigated. Kinematic and
anatomical studies m@lelp elucidate the mechanism of swimming behaviour in lepidopteran

larvae.
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Figure legends

Figure 1 Swimming behaviour in terrestrial caterpillars. (a) Dinumma deponens (Erebidae).
(b) Dinumma deponens swimming on a pond surface. (¢) Undulatory swimming in Spirama

retorta (Erebidae). (d) Undulatory swimming in Hypopyra vespertilio (Erebidae). (e) Undulatory
swimming in Laelia coenosa (Erebidae). (f) Flick swimming in Acosmetia biguttula (Noctuidae).

Arrows indicate anal prolegs. Photo credit: (a—d, f) M. Hayashi, (e) S. Sugiura.

Figure 2 Two types of swimming behaviour in terrestrial caterpillars. (a) Temporal
sequence of undulatory swimming in Hypopyra vespertilio. (b) Temporal sequence of flick
swimming in Acosmetia biguttula. Arrows indicate anal prolegs. Photo credit: (a) S. Sugiura, (b)

M. Hayashi.

Figure 3 Relationship between body size and swimming behaviour in Spirama retorta. (a)
Relationship between body length and frequency of undulatory swimming (n = 70). (b)
Relationship between body length and swimming speed (mm/s) (» = 70). Lines and blue areas
represent logistic regression lines and 95% confidence intervals derived from generalised linear

models, respectively (Tables 3 and 4). Photo credit: M. Hayashi.

Figure 4 Larval morphology of Hypopyra vespertilio. (a) A larva on a host plant leaf. (b) A

larva on the water surface. Hypopyra vespertilio larvae have three pairs of thoracic legs (T1-T3)

and five pairs of abdominal prolegs (A3—A6 and A10). Photo credit: S. Sugiura.
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Supplementary videos

Video S1. Undulatory swimming by a Dinumma deponens larva on a pond water surface.
Active swimming aided the larva in evading water striders [Aquarius paludum (Fabricius)].

Video credit: M. Hayashi.

Video S2. Undulatory swimming by Hypopyra vespertilio larvae under laboratory and field

conditions. Video credit: S. Sugiura and M. Hayashi.

Video S3. Flick swimming by Acosmetia biguttula larvae under laboratory and field

conditions. Active swimming aided the larva in evading predation by a backswimmer

(Notonecta triguttata) in the pond. Video credit: M. Hayashi.

Peer] reviewing PDF | (2020:07:50831:2:0:NEW 21 Apr 2021)



PeerJ Manuscript to be reviewed

Table 1l(on next page)

Table 1 Swimming behaviour of the caterpillars placed on water surfaces.
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Table 1 Swimming Behavieurs-behaviour of the caterpillars placed on water surfaces.
Length Swimming
(mm) Behaviorbeha
Family Species Instar® viour Forward movement
Host plant range Plant species Habitat Walking et en-water-Frequency
(sampling) (sampling) locomotion of swimming % (n)
Erebidae Hypopyra vespertilio M-L 23-70 Fabaceae Albizia julibrissin Lake bank Inching Undulatory 100 (7/7)¢
Spirama retorta M-L 842 Fabaceae Albizia julibrissin Lake bank Inching Undulatory 100 (3/3)
Dinumma deponens M-L 20-32 Albizia julibrissin Albizia julibrissin Lake bank Inching Undulatory 33 (1/3)
Laelia coenosa L 22-34 Poaceae, Cyperaceae, Typhaceae Typha latifolia Pondside Crawling Undulatory 100 (6/6)
Lymantria dispar L 33-54 Many families Cerasus * yedoensis Urban area Crawling Undulatory 30 (3/10)
Noctuidae Xanthodes transversa M-L 25-42 Malvaceae Hibiscus mutabilis Garden Inching - 0(0/2)
Acosmetia biguttula M-L 20-38 Bidens Bidens frondosa Pondside Crawling KiekingFlick 100 (6/6)°
Naranga aenescens Undulatory 100 (4/4)
M-L 13-24 Poaceae Pseudoraphis sordida Paddy field Inching
Sarcopolia illoba E-M 19-34 Many families Albizia julibrissin Lake bank Crawling - 0(0/3)
Britha inambitiosa M-L 13-20 Pterostyrax hispidus Pterostyrax hispidus Streamside Inching - 0(0/3)
Geometridae ~ Chiasmia defixaria M-L 20-30 Albizia julibrissin Albizia julibrissin Lake bank Inching - 0(0/3)
Ectropis excellens L 30 Many families Pterostyrax hispidus Streamside Inching - 0 (0/1)
Sphingidae Theretra oldenlandiae ~ E 20 Many families Causonis japonica Garden Crawling - 0 (0/1)¢

Instar: E, early instar; M, middle instar; L, late instar.

*Caterpilar*Swimming behaviour on the water surface: Undulatory, forward movement by undulating; KiekingFlick, forward movement by kiekingflicking; —, non-forward movement (floating).

°One larva of each species was observed on the water surface of a pond, while other larvae were observed under laboratory conditions.

Peer] reviewing PDF | (2020:07:50831:2:0:NEW 21 Apr 2021)



PeerJ Manuscript to be reviewed

Peer] reviewing PDF | (2020:07:50831:2:0:NEW 21 Apr 2021)



PeerJ Manuscript to be reviewed

Table 2(on next page)

Table 2 Body size and behaviour on the water surface in Spirama retorta larvae.
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1 Table2 Body size and forward-moevementbehaviour on the water surface in Spirama retorta larvae.
U H N n n [J

Forward-
movementSwi
Instar Body weight (mg)* Body length (mm)* Head width (mm)* Floating (%)  mming (%)

First 0.4+0.2 6.1+0.2 04+0.0 100 0

Second 84+1.1 143 +0.5 0.7+0.0 100 0

Third 279+2.0 223+0.6 1.3+£0.0 100 40
Fourth 79.1 £5.7 29.2+0.5 2.0+0.0 100 70
Fifth 281.6 +£21.0 444+ 0.9 2.7+£0.0 100 100
Sixth 587.4+47.6 548+14 35+0.1 100 100
Seventh 884.8+£72.3 61.1+1.3 41+0.0 100 100

10
10
10
10
10
10
10

2
3 aValues are mean + SE.
4
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Table 3 Relationship between body size and swimming behaviour in Spirama retorta
larvae obtained using a generalised linear model.
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Table 3 Relationship between body size and ferward-movement-on-the-water-surfaceswimming behaviour in Spirama retorta

larvae obtained using a generalised linear model.

[l U [l U N (]
Response variable Explanatory variable (fixed effect) Coefficient estimate SE t value P value
Forward-distanee-on-

waterSwimming

behaviour? Intercept =7.21997 1.33807 —5.396 <0.0001
0 Caterpillar body length 0.28593 0.05312 5.383 <0.0001

aA quasi-binomial error distribution (rather than a binomial error distribution) was used because the residual deviance was smaller

than the residual degrees of freedom (underdispersion).
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Table 4(on next page)
Figure 4 Larval morphology of Hypopyra vespertilio.

(a) A larva on a host plant leaf. (b) A larva on the water surface. Hypopyra vespertilio larvae

have three pairs of thoracic legs (T1-T3) and five pairs of abdominal prolegs (A3-A6 and
A10). Photo credit: S. Sugiura.
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1 Table4 Relationship between body size and ferward-swimming distance (mm/s) en-the-water-surfaee-in Spirama retorta

2 larvae obtained using a generalised linear model.

O U U (] (] W
Response variable Explanatory variable (fixed effect) = Coefficient estimate SE t value P value
Forward-distanee-on-

waterSwimming

distance? Intercept 0.995874 0.233774 4.26 <0.0001
0 Caterpillar body length 0.056937 0.004376 13.01 <0.0001

aA quasi-Poisson error distribution (rather than a Poisson error distribution) was used because the residual deviance was larger than

the residual degrees of freedom (overdispersion).

AN »n kA W
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Figure 1

Figure 1 Swimming behaviour in terrestrial caterpillars.

(a) Dinumma deponens (Erebidae). (b) Dinumma deponens swimming on a pond surface. (c)
Undulatory swimming in Spirama retorta (Erebidae). (d) Undulatory swimming in Hypopyra
vespertilio (Erebidae). (e) Undulatory swimming inLaelia coenosa (Erebidae). (f) Flick
swimming in Acosmetia biguttula (Noctuidae). Arrows indicate anal prolegs. Photo credit:

(a-d, f) M. Hayashi, (e) S. Sugiura.
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Figure 2

Figure 2 Two types of swimming behaviour in terrestrial caterpillars.

(a) Temporal sequence of undulatory swimming in Hypopyra vespertilio. (b) Temporal

sequence of flick swimming in Acosmetia biguttula. Arrows indicate anal prolegs. Photo

credit: (a) S. Sugiura, (b) M. Hayashi.
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Figure 3

Figure 3 Relationship between body size and swimming behaviour in Spirama retorta.

(a) Relationship between body length and frequency of undulatory swimming (n = 70). (b)
Relationship between body length and swimming speed (mm/s) (n = 70). Lines and blue
areas represent logistic regression lines and 95% confidence intervals derived from

generalised linear models, respectively (Tables 3 and 4). Photo credit: M. Hayashi.
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Figure 4

Figure 4 Larval morphology of Hypopyra vespertilio.

(a) A larva on a host plant leaf. (b) A larva on the water surface. Hypopyra vespertilio larvae

have three pairs of thoracic legs (T1-T3) and five pairs of abdominal prolegs (A3-A6 and

A10). Photos: S. Sugiura.
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