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Most butterfly and moth larvae (Lepidoptera) are terrestrial. When terrestrial 

caterpillars accidentally fall into water, they may drown or be preyed upon by 

aquatic predators before they can safely reach land. However, how terrestrial 

caterpillars escape aquatic environments and predators remains unclear. In July 

2018, we observed a terrestrial caterpillar actively moving forward on the surface 

of a pond in Japan until it successfully reached the shore. To further investigate 

this behaviour in terrestrial caterpillars, we experimentally placed larvae of 13 

moth species (four families) on a water surface under laboratory and field 

conditions. All caterpillars floated. Larvae of seven caterpillar species moved 

forward on the water surface, whereas those of six species did not. Two types of 

behaviours were observed; in Dinumma deponens, Hypopyra vespertilio, Spirama 

retorta, Laelia coenosa, Lymantria dispar (all Erebidae), and Naranga aenescens 

(Noctuidae), larvae swung their bodies rapidly from side to side to propel 

themselves along the water surface (i.e., undulatory behaviour); in contrast, 

larvae of Acosmetia biguttula (Noctuidae) rapidly moved the end of the abdomen 

up and down for propulsion along the water surface (i.e., kicking behaviour). 

Although thoracic legs were not used for undulatory and kicking behaviour, rapid 

movements of the anal prolegs were used to propel caterpillars on the water 

surface. We also observed that undulatory and kicking behaviour on the water 

surface aided caterpillars in escaping aquatic predators under field conditions. In 

addition, we investigated the relationship between body size and undulatory 

behaviour on the water surface in the erebid S. retorta under laboratory 

conditions. The frequency and speed of forward movement on the water surface 

increased with increasing body length. Together, these results show that the 

rapid movement of elongated bodies results in forward propulsion on the water 

surface, allowing some terrestrial caterpillars to avoid drowning or aquatic 
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predators. We further suggested potential factors related to morphology, host 

plant habitat, and defensive behaviours that may have led to the acquisition of 
water 

surface behaviour in terrestrial caterpillars. 
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16 ABSTRACT (word limit: 500) 

17 Most butterfly and moth larvae (Lepidoptera) are terrestrial. When terrestrial caterpillars 
 

18 accidentally fall into water, they may drown or be preyed upon by aquatic predators before they 
 

19 can safely reach land. However, how terrestrial caterpillars escape aquatic environments and 
 

20 predators remains unclear. In July 2018, we observed a terrestrial caterpillar actively moving 
 

21 forward on the surface of a pond in Japan until it successfully reached the shore. To further 
 

22 investigate this behaviour in terrestrial caterpillars, we experimentally placed larvae of 13 moth 
 

23 species (four families) on a water surface under laboratory and field conditions. All caterpillars 
 

24 floated. Larvae of seven caterpillar species moved forward on the water surface, whereas those 
 

25 of six species did not. Two types of behaviours were observed; in Dinumma deponens, Hypopyra 
 

26 vespertilio, Spirama retorta, Laelia coenosa, Lymantria dispar (Erebidae), and Naranga 
 

27 aenescens (Noctuidae), larvae swung their bodies rapidly from side to side to propel themselves 
 

28 along the water surface (i.e., undulatory behaviour); in contrast, larvae of Acosmetia biguttula 
 

29 (Noctuidae) rapidly moved the end of the abdomen up and down for propulsion along the water 
 

30 surface (i.e., kicking behaviour). Although thoracic legs were not used for undulatory and 
 

31 kicking behaviour, rapid movements of the anal prolegs were used to propel caterpillars on the 
 

32 water surface. We also observed that undulatory and kicking behaviour on the water surface 
 

33 aided caterpillars in escaping aquatic predators under field conditions. In addition, we 
 

34 investigated the relationship between body size and undulatory behaviour on the water surface in 
 

35 the erebid S. retorta under laboratory conditions. The frequency and speed of forward movement 
 

36 on the water surface increased with increasing body length. Together, these results show that the 
 

37 rapid movement of elongated bodies results in forward propulsion on the water surface, allowing 
 

38 some terrestrial caterpillars to avoid drowning or aquatic predators. We further suggested 
 

39 potential factors related to morphology, host plant habitat, and defensive behaviours that may 
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40 have led to the acquisition of water surface behaviour in terrestrial caterpillars. 

41 

42 Keywords: aquatic behaviour, anguilliform, Erebidae, Lepidoptera, Noctuidae 
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45 INTRODUCTION 

46 Most terrestrial insects have not adapted to aquatic environments; for example, many terrestrial 
 

47 insect species only rarely escape from a water surface. However, terrestrial insects such as 
 

48 locusts, cockroaches, praying mantises, and ants can successfully move forward on a water 
 

49 surface using their legs (Miller, 1972; Franklin, Jander & Ele, 1977; Pflüger & Burrows, 1978; 
 

50 Graham et al., 1987; Bohn, Thornham & Federle, 2012; Yanoviak & Frederick, 2014; 
 

51 Gripshover, Yanoviak & Gora, 2018). Forward movement on a water surface has been reported 
 

52 during for the adult stages of terrestrial insects, but rarely during for the immature stages. 
 

53 The larvae of butterflies and moths (Lepidoptera) are predominantly terrestrial; however, 
 

54 approximately 0.5% of 165,000 known species are aquatic at the larval stage (Pabis, 2018). 
 

55 When terrestrial caterpillars accidentally fall into water, they can drown or be preyed upon by 
 

56 aquatic predators such as fish before they can safely reach land (Gustafsson, Greenberg & 
 

57 Bergman, 2014; Iguchi et al., 2004). Some caterpillars (i.e. aquatic species) exhibit behavioural 
 

58 adaptations to aquatic environments and predators to avoid these risks (Pabis, 2018), but the 
 

59 behavioural responses of terrestrial caterpillars to aquatic environments remain unclear. 
 

60 On July 20, 2018, we observed a terrestrial caterpillar of Dinumma deponens (Lepidoptera: 
 

61 Erebidae) moving forward on the water surface of a pond in Unnan, Shimane, Japan. The 
 

62 caterpillar undulated from side to side, to propeling itself forward on the water surface; it was able to 
 

63 successfully reach the shore (Fig. 1a). The caterpillar may have accidentally fallen into the pond 
 

64 because D. deponens larvae feed on leaves of the tree species Albizia julibrissin (Fabaceae), 
 

65 which commonly grows in riparian forests along the edges of wetlands (Kishida, 2011). We placed the 

same caterpillar on 
 

66 the water surface again and observed the same behaviour (Fig. 1b; Video S1). This active 
 

67 behaviour on the water surface appeared to aid the caterpillar in evading aquatic predators (e.g., 
 

68 water striders; Fig. 1b; Video S1). On the basis of this observation, we hypothesised that some 
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69 terrestrial caterpillars can exhibit forward movement on the water surface. 
 

70 To test this hypothesis, we experimentally placed the larvae of 13 moth species (belonging to 
 

71 four families), including D. deponens, onto a water surface and observed their behaviours under 
 

72 laboratory and field conditions. In addition, we experimentally investigated the relationship 
 

73 between a caterpillar’s body size and behaviour on the water surface in a moth species to clarify how 

body size 
 

74 can influence propulsive power in water. 

75 

76 MATERIALS AND METHODS 

77 To test whether terrestrial caterpillars can exhibit forward movement on the water surface, we 
 

78 experimentally placed the larvae of 13 moth species (from four families) on a water surface and 
 

79 observed their behaviours under laboratory and field conditions (Table 1). We collected 52 
 

80 larvae from eight plant species from June 2019 to July 2019 in Shimane Prefecture and in June 
 

81 2020 in Hyogo Prefecture, Japan. We carefully placed each caterpillar (n = 49) on the water 
 

82 surface in a plastic vessel (390 × 265 × 65 mm3, length × width × height) containing 2 L of water 
 

83 (20 mm depth, 25°C) under well-lit conditions, with an air temperature of 25°C. We also placed 
 

84 the larvae of three species, Hypopyra vespertilio (Erebidae), Acosmetia biguttula (Noctuidae), 
 

85 and Theretra oldenlandiae (Sphingidae), on the surfaces of ponds in Shimane Prefecture. During 
 

86 each 2-min observation period, we investigated whether the larvae (1) remained at the water 
 

87 surface (supported by water tension) and (2) moved forward on the water surface. To examine 
 

88 the possible origins of this movement behaviour, we also observed how caterpillars of each 
 

89 species walk on twigs or leaves (i.e., inching or looping; van Griethuijsen & Trimmer, 2014; 
 

90 Table 1). We identified each lepidopteran speciescaterpillar based on their morphological characteristics 

of 
 

91 the larvae (Sugi, 1987; Yasuda, 2010, 2012, 2014; Suzuki et al., 2018). ), and or We also reared raised 

some 
 

92 larvae under laboratory conditions (25°C) to the adult stage to confirm their identify the species based on 

the morphological 
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93  

94  

95  

9692 characteristics of the emerged adults (Kishida, 2011). 
 

9793 In caterpillars, various behaviours such as anti-predator defences are closely related to body 
 

9894 size (Sugiura & Yamazaki, 2014; Hossie et al., 2015; Sugiura et al., 2020; Sugiura, 2020). To 
 

9995 clarify how caterpillar size can influence propulsive power in water, we experimentally 
 

10096 investigated the relationship between body size and behaviour on the water surface in the erebid 
 

10197 Spirama retorta (Erebidae). We reared S. retorta larvae from the eggs of two females on A. 
 

10298 julibrissin leaves under laboratory conditions (26–29°C). Spirama retorta passes through seven 
 

10399 larval instars before pupation (Table 2). We measured the body weight of each larva to the 
 

104100 nearest 1 mg using an electronic balance (CJ-620S; Shinko Denshi, Co., Ltd., Tokyo, Japan); we 
 

105101 measured the body length and head capsule width to the nearest 0.01 mm using slide callipers or 
 

106102 an ocular micrometre. We placed 10 larvae per instar stage individually on the water surface in a 
 

107103 plastic container (390 × 265 × 65 mm3) with 2 L of water (20 mm depth) under well-lit 
 

108104 conditions at 25°C. We filmed the behaviours of the larvae (n = 70) using video cameras (V2; 
 

109105 Nikon, Tokyo, Japan). We played back the footage of the recorded behaviours using iMovie 
 

110106 version 10.0.6 (Apple, Inc., Cupertino, CA, USA). During each 2-min observation period, we 
 

111107 recorded (1) whether the larva remained at the water surface (supported by water tension), (2) 
 

112108 whether the larva moved forward on the water surface, and (3) the distance (mm) travelled by the 
 

113109 larva in 2 s. 
 

114110 To investigate the relationship between larval body length and behaviour on the water surface 
 

115111 in S. retorta, we ran a generalised linear model with a binomial error distribution and logit link 
 

116112 function (i.e., logistic regression). We used 10 individuals per instar stage (n = 70) for the 
 

117113 analysis. We used forward movement (1) or non-forward movement (0) as the binary response 
 

118114 variable; we regarded body length as a fixed factor. We also ran a generalised linear model with 
 

119115 a Poisson error distribution and log link function (i.e., Poisson regression) to investigate the 
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120116 relationship between body size and movement distance in S. retorta, analysing 10 individuals per 
 

121117 instar stage (n = 70). We used forward speed (mm/s) as the response variable; we regarded body 
 

122118 length as a fixed factor. When the residual deviance was smaller (underdispersion) or larger 
 

123119 (overdispersion) than the residual degrees of freedom, we used a quasi-binomial or quasi-Poisson 
 

124120 error distribution, respectively, rather than a binomial or Poisson error distribution (Sugiura & 
 

125121 Sato, 2018). We performed all analyses using R software version 3.5.2 (R Core Team, 

2019). 123 

124 RESULTS 

125 All caterpillars examined in this study floated (i.e., remained at the water surface). Larvae from 
 

126 six of the 13 caterpillar species did not move forward on the water surface, whereas larvae from 
 

127 seven species (two families: Erebidae and Noctuidae) exhibited forward movement on the water 
 

128 surface (Table 1). Two types of behaviours were observed (Table 1): larvae of D. deponens, H. 
 

129 vespertilio, S. retorta, Laelia coenosa, Lymantria dispar (all Erebidae), and Naranga aenescens 
 

130 (Noctuidae) swung their bodies side to side quickly to propel themselves on the water surface 
 

131 (i.e., undulatory behaviour; Figs. 1c–d, 2a; Video S2); in contrast, larvae of A. biguttula 
 

132 (Noctuidae) moved the end of the abdomen up and down quickly to propel themselves on the 
 

133 water surface (i.e., kicking behaviour; Fig. 2b; Video S3). Although thoracic legs were not used 
 

134 for undulatory and kicking behaviour, quick movements of the anal prolegs were used to propel 
 

135 the caterpillars on the water surface (Videos S2, S3). One larva of A. biguttula was observed 
 

136 escaping from an aquatic predator in a pond (Video S3). 
 

137 The relationship between body size and behaviour on the water surface in S. retorta was 
 

138 investigated under laboratory conditions. All larvae floated (Table 2). The frequency of forward 
 

139 movement on the water surface increased with increasing body length (Fig. 3a; Tables 2 and 3): 
 

140 0%, 0%, 40%, 70%, 100%, 100%, and 100% of the first, second, third, fourth, fifth, sixth, and 

Commented [WD6]: No. These movement include the 

entire terminus of the abdomen and not just the prolegs. This 

is an abdominal flick involving the last ?4 segments o the 

abdomen.  The terminal segments are slowly bent ventrally, 

and then kicked upward/backward propelling the larva 

forward. 

 

 



 
 

Manuscript to be reviewed 

PeerJ reviewing PDF | (2020:07:50831:1:2:NEW 15 
Feb 2021) 

 

 

 

 

 

141 seventh instars exhibited forward movement on the water surface, respectively (Table 2). 
 

142 Furthermore, the forward speed (mm/s) increased with body length (Fig. 3b; Table 4). 

143 

144 DISCUSSION 

145 Aquatic behaviours have been reported in some aquatic and semi-aquatic caterpillars (Welch, 
 

146 1914; Mey & Speidel, 2008; Meneses et al., 2013; Coates & Abel, 2019; De-Freitas, De Agostini 
 

147 & Stefani, 2019). For example, aThe aquatic larvae of woolly bear moths such asof Paracles laboulbeni 
 

148 and P. klagesi (Erebidae: Arctiinae) can submerge and movefeed under the water surface (Mey & 

Speidel, 
 

149 2008; Meneses et al., 2013), and semi-aquatic larvae of moths such as Bellura vulnifica 
 

150 (Noctuidae) and Ostrinia penitalis (Crambidae) can move forward on the water surface (Welch, 
 

151 1914; Coates & Abel, 2019). However, whether typically terrestrial caterpillars can move forward on or 
 

152 under the water surface has remained unclearreceived little attention. In the present study, we observed 

the behaviour on 
 

153 water surfaces of 13 terrestrial caterpillar species from four families under laboratory and field 
 

154 conditions. Among these, seven species were observed to move forward on the water surface 
 

155 (Figs. 1 and 2; Table 1), although none of the larvae were submergedbroke through the surface tension. 

We also observed two 
 

156 types of forward movement on the water surface (undulatory and kicking flicking behaviour) in the 
 

157 terrestrial caterpillars (Figs. 1 and 2; Table 1). The undulatory behaviour observed in this study 
 

158 was similar to anguilliform movement, which has been reported in slender-bodied animals such 
 

159 as eels, snakes, and centipedes (Graham et al., 1987; Yasui et al., 2019; Sfakiotakis, Lane & 
 

160 Davies, 1999). The frequency and speed of forward movement on the water surface increased 
 

161 with body length in S. retorta larvae (Fig. 3; Tables 3 and 4). High-speedDirected movements on the 

water 
 

162 surface can help caterpillars to avoid aquatic predators (Video S1). The kicking flicking behaviour 
 

163 observed in A. biguttula was similar to the kicking action of a human swimming stroke (i.e., 

164  

165163 ‘dolphin kick’ of the ‘butterfly stroke’). 
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166164 All of the terrestrial caterpillars used in the present study floated due to water surface tension. 
 

167165 Some, but not all, of these floating caterpillars exhibited forward movement on the water surface 
 

168166 (Table 1). Three factors may influence forward movement on the water surface in terrestrial 
 

169167 caterpillars: (1) morphology, (2) host plant habitat, and (3) locomotive and defensive behaviours. 
 

170168 Caterpillars that exhibited forward movement on the water surface had distinct morphological 
 

171169 traits such as relatively elongated bodies. In this study, long-bodied caterpillars were more 
 

172170 capable of forward movement on the water surface than those with short bodies (Fig. 3a; Table 
 

173171 3). This relationship has been suggested to explain the behaviour of the semi-aquatic caterpillar 
 

174172 species Bellura. vulnifica at the water surface, although its morphological traits were not 

quantified 
 

175173 (Welch, 1914). In addition, anal prolegs could be used in a manner similar to that of tail fins 
 

176174 (Figs. 1 and 2). Quick movements of elongated bodies and anal prolegs could result in forward 
 

177175 propulsive power on a water surface (Figs. 1 and 2). Furthermore, long body setae may assist in 
 

178176 floating on the water surface in hairy caterpillars, such as those of La. coenosa and Ly. dispar 
 

177 (Meyer-Rochow, 2016).  

178 However, these features certainly evolved for reasons 
 

179 other than aquatic behavior, because long bodies, prolegs, and body hairs have other important 
 

179 functions in their terrestrial habitats, e.g., they may be involved in background matching, natural enemy 

defense, maintaining their perch, and still othersHowever, these setae likely evolved for reasons 

180  

181 other than aquatic behaviour because long bodies, prolegs, and body hairs have other important 

182  

183180 functions such as mimicking plant twigs, gripping stems, and defending against predators (Fig. 4; 
 

184181 Skelhorn et al., 2010; van Griethuijsen & Trimmer, 2014; Sugiura & Yamazaki, 2014). 
 

185182 Caterpillars use silk threads produced from their spinnerets as a lifelines to prevent falls from the host 
 

186183 plant to the ground (Sugiura & Yamazaki, 2006). However, some mature caterpillars have also 
 

187184 been observed to descend from the host plant to the ground for pupation (Sugi, 1987). 
 

188185 Caterpillars inhabiting host plants growing by the waterside may accidentally fall descend into 

open 
 

189186 water. Six of the seven caterpillar species that exhibited forward movement on the water surface 
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190187 in this study were collected from waterside plants such as A. julibrissin (Table 1). For example, a 
 

191188 D. deponens larva successfully reached the pond shore by moving forward on the water surface 
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192189 (Fig. 1a); thus, active movement at the water surface could help terrestrial caterpillars to escape 
 

193190 from aquatic environments. 
 

194191 Terrestrial behaviours may also provide insight into the origins of aquatic behaviours in 
 

195192 terrestrial caterpillars. Caterpillar species that undulate on the water surface typically locomote in 
 

196193 a characteristic looping manner on leaves or stems (i.e., inching; van Griethuijsen & Trimmer, 
 

197194 2014; Table 1). When disturbed, these caterpillars violently bend their bodies from side to side 
 

198195 (i.e., jerking, twisting, or thrashing behaviour; Gross 1993; Greeney, Dyer & Smilanich, 2012). 
 

199196 Undulating behaviour on the water surface may have originated from this defensive behaviour, 
 

200197 rather than walking behaviour. Caterpillars that exhibited kicking behaviour at the water surface 
 

201198 typically move their abdomen up and down to move on land (i.e., crawling; van Griethuijsen & 
 

202199 Trimmer, 2014; Table 1); the similarity of the kicking and crawling motions suggests that 
 

203200 kicking behaviour on the water surface originated from crawling 

motion. 201 

202 CONCLUSIONS 

203 Our results showed that some terrestrial caterpillars exhibited forward movement on the water 
 

204 surface to avoid drowning and aquatic predators (Table 1; Videos S1, S3). However, this 
 

205 behaviour was observed in only two of the four lepidopteran families tested: Erebidae and Noctuidae 

(Table 1). 
 

206 Our investigation was limited to four families, although the insect order Lepidoptera contains 
 

207 133 recognised families (Mitter, Davis & Cummings, 2017). Thus, the aquatic behaviour 
 

208 observed in terrestrial caterpillars in this study will likely be found in other lepidopteran families. 
 

209 Further kinematic and anatomical studies are required to understand the mechanism of aquatic 
 

210 behaviours in lepidopteran larvae. 

211 
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334 Figure legends 

335 

336 Figure 1 Behaviours of terrestrial caterpillars on the water surface. (a) Dinumma deponens 
 

337 (Erebidae). (b) Dinumma deponens moving forward on a pond surface. (c) Undulatory behaviour 
 

338 in Spirama retorta (Erebidae). (d) Undulatory behaviour in Hypopyra vespertilio (Erebidae). (e) 
 

339 Kicking behaviour in Acosmetia biguttula (Noctuidae). (f) Undulatory behaviour in Laelia 
 

340 coenosa (Erebidae). Arrows indicate anal prolegs, which may function in a manner similar to 
 

341 that of tail fins. Photos: (a)–(e) M. Hayashi, (f) S. Sugiura.  

342   

343 Figure 2 Two types of caterpillar behaviours on the water surface. (a) Temporal sequence of 
 

344 undulatory behaviour in Hypopyra vespertilio. (b) Temporal sequence of kicking behaviour in 
 

345 Acosmetia biguttula. Arrows indicate anal prolegs, which may function in a manner similar to 
 

346 that of tail fins. Photos: M. Hayashi. 

347 

348 Figure 3 Relationship between body size and behaviour on the water surface in Spirama 
 

349 retorta. (a) Relationship between body length and frequency of forward movement on the water 
 

350 surface (n = 70). (b) Relationship between body length and forward distance (mm/s) (n = 70). 
 

351 Lines and blue areas represent regression lines and 95% confidence intervals derived from 
 

352 generalised linear models, respectively (Tables 3 and 4). Photos: M. Hayashi. 

353 

354 Figure 4 Larval morphology of Hypopyra vespertilio. (a) A larva on a host plant leaf. (b) A 
 

355 larva on the water surface. Hypopyra vespertilio larvae have three pairs of thoracic legs (T1–T3) 
 

356 and five pairs of abdominal prolegs (A3–A6 and A10). Photos: S. Sugiura. 
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357 Supplementary videos 
 

358 
 

359 Video S1. Undulatory behaviour by a Dinumma deponens larva on a pond water surface. 
 

360 Active movement aided the larva in evading water striders (Aquarius paludum). Movie: M. 
 

361 Hayashi. 

362 

363 Video S2. Undulatory behaviour by Hypopyra vespertilio larvae on water surfaces under 
 

364 laboratory and field conditions. Movie: M. Hayashi. 

365 

366 Video S3. Kicking behaviour by Acosmetia biguttula larvae on water surfaces under 
 

367 laboratory and field conditions. Active movement aided the larva in evading predation by a 
 

368 backswimmer (Notonecta triguttata) in the pond. Movie: M. Hayashi. 

369 

370 
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1 Table 1   Behaviours of the caterpillars placed on water surfaces. 
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 Family Species Instara Length 

(mm) 

 

 
Host plant range 

 

Plant species 

(sampling) 

 

Habitat 

(sampling) 

 

Walking 

locomotion 

Behavior 

on waterb 

 

Forward movement 

on water % (n) 
 

Erebidae 
 

Hypopyra vespertilio 
 

M–L 
 

23–70 
 

Fabaceae 
 

Albizia julibrissin 
 

Lake bank 
 

Inching 
 

Undulatory 
 

100 (7/7)c 

 Spirama retorta M–L 8–42 Fabaceae Albizia julibrissin Lake bank Inching Undulatory 100 (3/3) 

 Dinumma deponens M–L 20–32 Albizia julibrissin Albizia julibrissin Lake bank Inching Undulatory 33 (1/3) 

 Laelia coenosa L 22–34 Poaceae, Cyperaceae, Typhaceae Typha latifolia Pondside Crawling Undulatory 100 (6/6) 

 Lymantria dispar L 33–54 Many families Cerasus × yedoensis Urban area Crawling Undulatory 30 (3/10) 

Noctuidae Xanthodes transversa M–L 25–42 Malvaceae Hibiscus mutabilis Garden Inching – 0 (0/2) 

 Acosmetia biguttula 

Naranga aenescens 

M–L 
 
 

M–L 

20–38 
 
 

13–24 

Bidens 
 
 

Poaceae 

Bidens frondosa 
 
 

Pseudoraphis sordida 

Pondside 
 
 

Paddy field 

Crawling 
 
 

Inching 

Kicking 

Undulatory 

100 (6/6)c
 

100 (4/4) 

 Sarcopolia illoba E–M 19–34 Many families Albizia julibrissin Lake bank Crawling – 0 (0/3) 

 Britha inambitiosa M–L 13–20 Pterostyrax hispidus Pterostyrax hispidus Streamside Inching – 0 (0/3) 

Geometridae Chiasmia defixaria M–L 20–30 Albizia julibrissin Albizia julibrissin Lake bank Inching – 0 (0/3) 

 Ectropis excellens L 30 Many families Pterostyrax hispidus Streamside Inching – 0 (0/1) 

Sphingidae Theretra oldenlandiae E 20 Many families Causonis japonica Garden Crawling – 0 (0/1)c 

2           

3 aInstar: E, early instar; M, middle instar; L, late instar. 

4 bCaterpillar behaviour on the water surface: Undulatory, forward movement by undulating; Kicking, forward movement by kicking; –, non-forward movement (floating). 

5 cOne larva of each species was observed on the water surface of a pond, while other larvae were observed under laboratory conditions. 
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Table 2 Body size and forward movement on the water surface in Spirama 

retorta 

larvae. 
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1 Table 2 Body size and forward movement on the water surface in Spirama retorta larvae. 
 

 ฀ ฀ ฀ ฀ ฀ ฀ ฀  

Instar Body weight (mg)a Body length (mm)a Head width (mm)a Floating (%) Forward movement (%)  n 

First 0.4 ± 0.2 6.1 ± 0.2 0.4 ± 0.0 100 0  10 

Second 8.4 ± 1.1 14.3 ± 0.5 0.7 ± 0.0 100 0  10 

Third 27.9 ± 2.0 22.3 ± 0.6 1.3 ± 0.0 100 40  10 

Fourth 79.1 ± 5.7 29.2 ± 0.5 2.0 ± 0.0 100 70  10 

Fifth 281.6 ± 21.0 44.4 ± 0.9 2.7 ± 0.0 100 100  10 

Sixth 587.4 ± 47.6 54.8 ± 1.4 3.5 ± 0.1 100 100  10 

Seventh 884.8 ± 72.3 61.1 ± 1.3 4.1 ± 0.0 100 100  10 

2         

3 aValues are mean ± SE. 
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Table 3 Relationship between body size and forward movement on the water 

surface in 

Spirama retorta larvae obtained using a generalised linear model. 
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1 Table 3 Relationship between body size and forward movement on the water surface in Spirama retorta larvae obtained 

2 using a generalised linear model. 
 

 ฀ ฀ ฀ ฀ ฀  ฀ 

Response variable Explanatory variable (fixed effect) Coefficient estimate SE  t value P value 

Forward distance on watera Intercept −7.21997 1.33807  −5.396 <0.0001 

฀ Caterpillar body length 0.28593 0.05312  5.383 <0.0001 

3        

4 aA quasi-binomial error distribution (rather than a binomial error distribution) was used because the residual deviance was smaller 

5 than the residual degrees of freedom (underdispersion). 
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Table 4 Relationship between body size and forward distance (mm/s) on the 

water surface in Spirama retorta larvae obtained using a generalised linear 

model. 
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1 Table 4 Relationship between body size and forward distance (mm/s) on the water surface in Spirama retorta larvae obtained 

2 using a generalised linear model. 
 

 ฀ ฀ ฀ ฀ ฀  ฀ 

Response variable Explanatory variable (fixed effect) Coefficient estimate SE  t value P value 

Forward distance on watera Intercept 0.995874 0.233774  4.26 <0.0001 

฀ Caterpillar body length 0.056937 0.004376  13.01 <0.0001 

3        

4 aA quasi-Poisson error distribution (rather than a Poisson error distribution) was used because the residual deviance was larger than 

5 the residual degrees of freedom (overdispersion). 
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Figure 1 Behaviours of terrestrial caterpillars on the water surface. 
 

(a) Dinumma deponens (Erebidae). (b) Dinumma deponens moving forward on a 

pond surface. (c) Undulatory behaviour in Spirama retorta (Erebidae). (d) 

Undulatory behaviour in Hypopyra vespertilio (Erebidae). (e) Kicking behaviour in 

Acosmetia biguttula (Noctuidae). (f) Undulatory behaviour in Laelia coenosa 

(Erebidae). Arrows indicate anal prolegs, which may function in a manner similar to 

that of tail fins. Photos: (a)–(e) M. Hayashi, (f) S. Sugiura. 


