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Similar behaviours, including swimming, are exhibited by animals of markedly different
lineages due to convergent evolution. Elucidation of the role selective pressures play in
convergent evolution of behaviours is a fundamental goal in ecology and evolutionary
biology. Although swimming behaviour has been reported in many animals, the
evolutionary and behavioural origins of this behaviour remain unclear. Most butterfly and
moth larvae are terrestrial; however, the larvae of several groups are aquatic. When
terrestrial caterpillars fall into water, they may drown or be preyed upon by aquatic
predators. In July 2018, we observed a terrestrial caterpillar actively swimming on the
surface of a pond in Japan. To further investigate swimming in terrestrial caterpillars, we
experimentally placed the larvae of 13 moth species (four families) on a water surface
under laboratory and field conditions. We documented two types of swimming behaviours
(undulatory and kick swimming) in seven species from two moth families (Noctuidae and
Erebidae). Because some aquatic caterpillar species belong to these moth families, we
posit that the active swimming observed in these terrestrial caterpillars represents
preadaptation to an aquatic environment. Furthermore, we suggest potential factors
related to specific morphologies, host plant habitats, and defensive behaviours that could
lead to the acquisition of swimming behaviour in lepidopterans.
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16 ABSTRACT

17 Similar behaviours, including swimming, are exhibited by animals of markedly different lineages 

18 due to convergent evolution. Elucidation of the role selective pressures play in convergent 

19 evolution of behaviours is a fundamental goal in ecology and evolutionary biology. Although 

20 swimming behaviour has been reported in many animals, the evolutionary and behavioural 

21 origins of this behaviour remain unclear. Most butterfly and moth larvae are terrestrial; however, 

22 the larvae of several groups are aquatic. When terrestrial caterpillars fall into water, they may 

23 drown or be preyed upon by aquatic predators. In July 2018, we observed a terrestrial caterpillar 

24 actively swimming on the surface of a pond in Japan. To further investigate swimming in 

25 terrestrial caterpillars, we experimentally placed the larvae of 13 moth species (four families) on 

26 a water surface under laboratory and field conditions. We documented two types of swimming 

27 behaviours (undulatory and kick swimming) in seven species from two moth families (Noctuidae 

28 and Erebidae). Because some aquatic caterpillar species belong to these moth families, we posit 

29 that the active swimming observed in these terrestrial caterpillars represents preadaptation to an 

30 aquatic environment. Furthermore, we suggest potential factors related to specific morphologies, 

31 host plant habitats, and defensive behaviours that could lead to the acquisition of swimming 

32 behaviour in lepidopterans.

33

34 Keywords: anguilliform, Erebidae, Noctuidae, preadaptive behaviour
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37 INTRODUCTION

38 Similar behaviours, including flying and swimming, are exhibited by animals of markedly 

39 different lineages due to convergent evolution (Gleiss et al., 2011). Elucidation of the role 

40 selective pressures play in the convergent evolution of behaviours is a fundamental goal in 

41 ecology and evolutionary biology (Gleiss et al., 2011). Some terrestrial animals exhibit 

42 swimming behaviour (Miller, 1972; Franklin, Jander & Ele, 1977; Pflüger & Burrows, 1978; 

43 Graham et al., 1987; Bohn, Thornham & Federle, 2012; Yanoviak & Frederick, 2014; 

44 Gripshover, Yanoviak & Gora, 2018; Yasui et al., 2019). Terrestrial insects such as locusts, 

45 cockroaches, praying mantises, and ants use their legs to swim (Miller, 1972; Franklin, Jander & 

46 Ele, 1977; Pflüger & Burrows, 1978; Bohn, Thornham & Federle, 2012; Yanoviak & Frederick, 

47 2014; Gripshover, Yanoviak & Gora, 2018), whereas terrestrial snakes and centipedes swim by 

48 undulating their bodies to propel themselves forward (Graham et al., 1987; Yasui et al., 2019). 

49 The behavioural origins of these behaviours, however, have not fully been elucidated.   

50     The larvae of butterflies and moths (Lepidoptera) are predominantly terrestrial; however, 

51 approximately 0.5% of 165,000 known species are aquatic at the larval stage (Pabis, 2018). 

52 When terrestrial caterpillars fall into water, they can drown or be preyed upon by aquatic 

53 predators such as fish (Gustafsson, Greenberg & Bergman, 2014; Iguchi et al., 2004). Some 

54 caterpillars (i.e., aquatic species) may have evolved behavioural responses to aquatic 

55 environments and predators to avoid these risks (Pabis, 2018), but the evolutionary processes 

56 underlying these aquatic behaviours remain unclear. 

57     On July 20, 2018, we observed a terrestrial caterpillar of Dinumma deponens (Lepidoptera: 

58 Erebidae) swimming on the surface of a pond in Unnan, Shimane, Japan. The caterpillar 

59 undulated from side to side to propel itself forward on the water surface; it was able to 

60 successfully reach the shore (Fig. 1a). The caterpillar may have accidentally fallen into the pond 
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61 because D. deponens larvae feed on the leaves of Albizia julibrissin (Fabaceae) (Kishida, 2011). 

62 We placed the same caterpillar on the water surface again and confirmed its swimming 

63 behaviour (Fig. 1b; Video S1). This active swimming behaviour could aid in evading aquatic 

64 predators (i.e., water striders; Fig. 1b; Video S1). On the basis of this observation, we 

65 hypothesised that terrestrial caterpillars can swim on the water surface.

66     To test this hypothesis, we experimentally placed the larvae of 13 moth species (belonging to 

67 four families), including D. deponens, onto a water surface and observed their behaviours under 

68 laboratory and field conditions. In addition, we experimentally investigated the relationship 

69 between body size and swimming behaviour in a moth species to clarify how body size can 

70 influence propulsive power in water. 

71

72 MATERIALS AND METHODS

73 To test the swimming capacity of terrestrial caterpillars, we experimentally placed the larvae of 

74 13 moth species (from four families) on a water surface and observed their behaviours under 

75 laboratory and field conditions (Table 1). We collected 52 larvae from eight plant species from 

76 June 2019 to July 2019 in Shimane Prefecture and in June 2020 in Hyogo Prefecture, Japan 

77 (Table 1). We carefully placed each caterpillar (n = 49) on the water surface in a plastic vessel 

78 (390 × 265 × 65 mm3, length × width × height) containing 2 L of water (20 mm depth, 25°C) 

79 under well-lit conditions, with an air temperature of 25°C. We also placed two larvae (Hypopyra 

80 vespertilio and Acosmetia biguttula) and one larva (Theretra oldenlandiae) on the surfaces of 

81 ponds in Shimane Prefecture, respectively. During each 2-min observation period, we 

82 investigated (1) whether the larva floated on the water surface and (2) whether the larva moved 

83 forward on the water surface (i.e., swam). To examine the possible behavioural origins of 

84 swimming behaviour, we also observed how caterpillars of each species walk on twigs or leaves 
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85 (i.e., inching or looping; van Griethuijsen & Trimmer, 2014; Table 1). We identified each 

86 lepidopteran species based on the morphological characteristics of the larvae (Sugi, 1987; 

87 Yasuda, 2010, 2012, 2014; Suzuki et al., 2018). We also reared some larvae under laboratory 

88 conditions (25°C) to identify the species based on the morphological characteristics of the 

89 emerged adults (Kishida, 2011).

90     To clarify how caterpillar size can influence propulsive power in water, we experimentally 

91 investigated the relationship between body size and swimming behaviour in the erebid species 

92 Spirama retorta. We reared S. retorta larvae from the eggs of two females that were collected in 

93 Shimane, Japan, in August 2019. We reared the larvae on A. julibrissin leaves under laboratory 

94 conditions (26–29°C). Spirama retorta passes through seven larval instars before pupation 

95 (Table 2). We measured the body weight of each larva to the nearest 1 mg using an electronic 

96 balance (CJ-620S; Shinko Denshi, Co., Ltd., Tokyo, Japan); we measured the body length and 

97 head capsule width to the nearest 0.01 mm using slide callipers or an ocular micrometre. We 

98 placed 10 larvae per instar stage individually on the water surface in a plastic container (390 × 

99 265 × 65 mm3) with 2 L of water (20 mm depth) under well-lit conditions at 25°C. We filmed 

100 the behaviours of the larvae (n = 70) using video cameras (V2; Nikon, Tokyo, Japan). We played 

101 back the footage of the recorded swimming behaviours using iMovie version 10.0.6 (Apple, Inc., 

102 Cupertino, CA, USA). During each 2-min observation period, we recorded (1) whether the larva 

103 floated on the water surface, (2) whether the larva moved forward on the water surface (i.e., 

104 swam), and (3) the distance (mm) the larva had swum in 2 s.

105     To investigate the relationship between larval body size and swimming behaviour in S. retorta, 

106 we ran a generalised linear model with a binomial error distribution and logit link function (i.e., 

107 logistic regression). We used 10 individuals per instar stage (n = 70) for the analysis. We used 

108 swimming (1) or non-swimming (0) as the binary response variable; we regarded body length as 
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109 a fixed factor. We also ran a generalised linear model with a Poisson error distribution and log 

110 link function (i.e., Poisson regression) to investigate the relationship between body size and 

111 swimming distance in S. retorta, analysing 10 individuals per instar stage (n = 70). We used 

112 swimming speed (mm/s) as the response variable; we regarded body length as a fixed factor. 

113 When the residual deviance was smaller (underdispersion) or larger (overdispersion) than the 

114 residual degrees of freedom, we used a quasi-binomial or quasi-Poisson error distribution, 

115 respectively, rather than a binomial or Poisson error distribution (Sugiura & Sato, 2018). We 

116 performed all analyses using R software version 3.5.2 (R Core Team, 2019).

117

118 Results

119 All caterpillars floated in this study. Larvae from six of the 13 caterpillar species did not move 

120 forward on the water surface, whereas larvae from seven species (two families: Erebidae and 

121 Noctuidae) could swim on the water surface (Table 1). Two types of swimming behaviours were 

122 observed (Table 1): larvae of D. deponens, H. vespertilio, S. retorta, Laelia coenosa, Lymantria 

123 dispar (Erebidae), and Naranga aenescens (Noctuidae) swung their bodies side to side quickly to 

124 propel themselves on the water surface (i.e., undulatory swimming; Figs. 1c–d, 2a; Video S2); in 

125 contrast, larvae of A. biguttula (Noctuidae) moved the end of the abdomen up and down quickly 

126 to propel themselves on the water surface (i.e., kick swimming; Fig. 2b; Video S3). Although 

127 thoracic legs were not used for undulatory and kick swimming, quick movements of the anal 

128 prolegs were used to propel the caterpillars on the water surface (Videos S2 and S3). One larva 

129 of A. biguttula was observed kick swimming to escape from an aquatic predator in a pond (Video 

130 S3). 

131     The relationship between body size and swimming behaviour in S. retorta was investigated 

132 under laboratory conditions. All larvae floated (Table 2). The frequency of swimming increased 
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133 with increasing body size: 0%, 0%, 40%, 70%, 100%, 100%, and 100% of the first, second, third, 

134 fourth, fifth, sixth, and seventh instars could swim, respectively (Table 2). Consequently, 

135 swimming frequency increased with body length (Fig. 3a; Tables 2 and 3). Furthermore, the 

136 swimming speed (mm/s) increased with body length (Fig. 3b; Table 4). 

137

138 Discussion

139 Swimming on the water surface has been observed in some aquatic and semi-aquatic caterpillars, 

140 such as those of Bellura vulnifica (Noctuidae) (Welch, 1914), Paracles klagesi (Erebidae) 

141 (Meneses et al., 2013), and Ostrinia penitalis (Crambidae) (Coates & Abel, 2019). However, 

142 terrestrial caterpillars are not considered good swimmers (Pabis, 2018). In the present study, we 

143 observed two types of active swimming (undulatory and kick swimming) in terrestrial 

144 caterpillars (Figs. 1, 2; Table 1). Undulatory swimming (anguilliform) has been reported in 

145 slender-bodied animals such as eels, snakes, and centipedes (Graham et al., 1987; Yasui et al., 

146 2019; Sfakiotakis, Lane & Davies, 1999). The frequency and speed of undulatory swimming in 

147 larvae increased with body length (Fig. 3; Tables 3 and 4). High-speed swimming can help 

148 caterpillars to avoid aquatic predators (Video S1). The kick swimming observed in A. biguttula 

149 was similar to the kick action of a human swimming stroke (i.e., ‘dolphin kick’ of the ‘butterfly 

150 stroke’). However, not all caterpillar species can swim (Table 1). We propose three factors that 

151 may influence the acquisition of swimming behaviour in lepidopterans: (1) specific morphology, 

152 (2) host plant habitats, and (3) locomotive and defensive behaviours in terrestrial caterpillars.

153     Swimming caterpillars exhibit distinct morphological traits, such as relatively elongated 

154 bodies. In this study, long-bodied caterpillars were more capable of swimming, compared with 

155 short-bodied caterpillars (Fig. 3a; Table 3). The same pattern has been suggested to explain 

156 swimming behaviour in the aquatic caterpillar species B. vulnifica, although morphological traits 
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157 were not quantified (Welch, 1914). In addition, anal prolegs could be used in a manner similar to 

158 that of tail fins. Quick movements of elongated bodies and anal prolegs could therefore result in 

159 forward propulsive power on a water surface (Fig. 1). Furthermore, long body hairs can assist in 

160 floating on the water surface in hairy caterpillars, such as those of La. coenosa and Ly. dispar 

161 (Meyer-Rochow, 2016). However, these morphological characters may have evolved for reasons 

162 other than swimming because long bodies, prolegs, and body hairs have other important 

163 functionsmimicking plant twigs, gripping stems, and defending against predators, respectively 

164 (Fig. 4; Skelhorn et al., 2010; van Griethuijsen & Trimmer, 2014; Sugiura & Yamazaki, 2014). 

165     Caterpillars use silk threads produced from head spinnerets as lifelines to drop from host 

166 plants (Sugiura & Yamazaki, 2006). However, caterpillars inhabiting host plants growing by the 

167 waterside may accidentally fall into water. Six of the seven caterpillar species observed 

168 swimming in this study were collected from waterside plants, such as A. julibrissin (Table 1). 

169 Therefore, active swimming behaviour could help these caterpillars survive in a waterside 

170 environment.

171     Terrestrial behaviours may also provide insight into the behavioural origins of swimming in 

172 terrestrial caterpillars. Undulatory swimmers typically locomote in a characteristic looping 

173 manner on leaves or stems (i.e., inching; van Griethuijsen & Trimmer, 2014; Table 1). When 

174 disturbed, these caterpillars violently bend their bodies from side to side. Undulatory swimming 

175 may therefore have originated from this defensive behaviour, rather than walking behaviour. 

176 Caterpillars that exhibited kick-swimming behaviour typically move their abdomen up and down 

177 to move on land (i.e., crawling; van Griethuijsen & Trimmer, 2014; Table 1); the similarity of 

178 the kick-swimming and crawling motions suggests that kick swimming originated from the 

179 crawling motion.

180     Swimming behaviour was observed in two lepidopteran familiesErebidae and Noctuidae 
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181 (Table 1). These moth families also include some aquatic caterpillar species (Welch, 1914; 

182 Meneses et al., 2013). Therefore, we posit that active swimming in terrestrial caterpillars 

183 represents preadaptation to an aquatic environment. Although the insect order Lepidoptera 

184 contains 133 recognised families (Mitter, Davis & Cummings, 2017), our investigation was 

185 limited to four families. Active swimming will likely be found in other lepidopteran families 

186 (e.g., Crambidae) that include aquatic caterpillar species.

187
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290 Figure legends

291

292 Figure 1  Swimming behaviour in terrestrial caterpillars. (a) Dinumma deponens. (b) 

293 Dinumma deponens swimming on the surface of a pond. (c) Undulatory swimming in Spirama 

294 retorta. (d) Undulatory swimming in Hypopyra vespertilio. (e) Kick swimming in Acosmetia 

295 biguttula. (f) Undulatory swimming in Laelia coenosa. Arrows indicate anal prolegs, which may 

296 function in a manner similar to that of tail fins.

297

298 Figure 2  Active swimming in terrestrial caterpillars. (a) Temporal sequence of undulatory 

299 swimming in Hypopyra vespertilio. (b) Temporal sequence of kick swimming in Acosmetia 

300 biguttula. 

301

302 Figure 3  Relationship between body size and swimming behaviour in Spirama retorta. (a) 

303 Relationship between body length and swimming behaviour (n = 70). (b) Relationship between 

304 body length and swimming speed (mm/s) (n = 70). Lines and blue areas represent regression 

305 lines and 95% confidence intervals derived from generalised linear models, respectively (Tables 

306 3 and 4).

307

308 Figure 4  Larval morphology of Hypopyra vespertilio. (a) A larva on a host plant leaf. (b) A 

309 larva on the water surface. Hypopyra vespertilio larvae have three pairs of thoracic legs (T1–T3) 

310 and five pairs of abdominal prolegs (A3–A6 and A10).

311

312
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313 Supplementary videos

314

315 Video S1  Undulatory swimming by a Dinumma deponens larva on the water surface of a 

316 pond. 

317 Active swimming could aid in evading water striders (Aquarius paludum).

318

319 Video S2  Undulatory swimming by Hypopyra vespertilio larvae under laboratory and field 

320 conditions.

321

322 Video S3. Kick swimming by Acosmetia biguttula larvae under laboratory and field 

323 conditions.

324 Active swimming could aid in evading predation by backswimmers (Notonecta triguttata) in the 

325 pond.

326

327

328 The English in this document has been checked by at least two professional editors, both native 

329 speakers of English. For a certificate, please see:

330 http://www.textcheck.com/certificate/b1ud93

331
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Table 1(on next page)

Table 1 Swimming and other behaviours of the caterpillars placed on the water surface.
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Table 1  Swimming and other behaviours of the caterpillars placed on the water surface. 

        
      

     

Family 

  

Subfamily 

  

Species 

  

Instar 

  

Body length  

(mm) 

Host plant range 

 

Plant species 

(sampling) 

Habitat 

(sampling) 

Walking  

 

Behavior on the water surface 

  

Swimming  

% (n) 

Erebidae Erebinae Hypopyra vespertilio Middle-late 23–70 Fabaceae Albizia julibrissin  Lake bank locomotion Undulatory swimming 100 (7/7) † 

  Spirama retorta Middle-late 8–42 Fabaceae Albizia julibrissin  Lake bank Inching Undulatory swimming 100 (3/3) 

 Scoliopteryginae Dinumma deponens Middle-late 20–32 Albizia julibrissin Albizia julibrissin  Lake bank Inching Undulatory swimming / floating 33 (1/3) 

 Lymantriinae Laelia coenosa  Late 22–34 Poaceae, Cyperaceae, 

Typhaceae 

Typha latifolia L. Pondside 

Inching 

Undulatory swimming 100 (6/6) 

  Lymantria dispar Late 33–54 Many families Cerasus × yedoensis Urban area Crawling Undulatory swimming / floating 30 (3/10) 

Noctuidae Bagisarinae Xanthodes transversa  Middle-late 25–42 Malvaceae Hibiscus mutabilis Garden Crawling Floating 0 (0/2) 

 Condicinae Acosmetia biguttula Middle-late 20–38 Bidens Bidens frondosa Pondside  Inching Kick swimming 100 (6/6) † 

 

Eustrotiinae 

  

Naranga aenescens 

  

Middle-late 

  

13–24 

 

Poaceae 

 

Pseudoraphis sordida 

 

Abandoned 

paddy field Crawling 

Undulatory swimming 

  

100 (4/4) 

  

 Hadeninae Sarcopolia illoba Early-middle 19–34 Many families Albizia julibrissin  Lake bank Inching Floating 0 (0/3) 

 Phytometrinae Britha inambitiosa Middle-late 13–20 Pterostyrax hispidus Pterostyrax hispidus Streamside Crawling Floating 0 (0/3) 

Geometridae Ennominae Chiasmia defixaria Middle-late 20–30 Albizia julibrissin Albizia julibrissin  Lake bank Inching Floating 0 (0/3) 

  Ectropis excellens  Late 30 Many families Pterostyrax hispidus  Streamside Inching Floating 0 (0/1) 

Sphingidae Macroglossinae Theretra oldenlandiae  Early 20 Many families Causonis japonica  Garden Inching Floating 0 (0/1) † 

 

† One larva of each species was observed on the water surface of a pond, while other larvae were observed under laboratory conditions. 
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Table 2 Body size and swimming behaviour of Spirama retortalarvae.
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1 Table 2  Body size and swimming behaviour of Spirama retorta larvae.

฀ ฀ ฀ ฀ ฀ ฀ ฀

Instar Body weight (mg) † Body length (mm) † Head width (mm) † Floating (%) Swimming (%) n

First 0.4 ± 0.2 6.1 ± 0.2 0.4 ± 0.0 100 0 10

Second 8.4 ± 1.1 14.3 ± 0.5 0.7 ± 0.0 100 0 10

Third 27.9 ± 2.0 22.3 ± 0.6 1.3 ± 0.0 100 40 10

Fourth 79.1 ± 5.7 29.2 ± 0.5 2.0 ± 0.0 100 70 10

Fifth 281.6 ± 21.0 44.4 ± 0.9 2.7 ± 0.0 100 100 10

Sixth 587.4 ± 47.6 54.8 ± 1.4 3.5 ± 0.1 100 100 10

Seventh 884.8 ± 72.3 61.1 ± 1.3 4.1 ± 0.0 100 100 10

2

3 † Values are mean ± SE.

4
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Table 3 Relationship between body size and swimming behaviour in Spirama
retortalarvae obtained using a generalised linear model.
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1 Table 3  Relationship between body size and swimming behaviour in Spirama retorta larvae obtained using a generalised 

2 linear model.

฀ ฀ ฀ ฀ ฀ ฀

Response variable Explanatory variable (fixed effect) Coefficient estimate SE t value P value

Swimming behavior † Intercept −7.21997 1.33807 −5.396 <0.0001

฀ Caterpillar body length 0.28593 0.05312 5.383 <0.0001

3

4 † A quasi-binomial error distribution (rather than a binomial error distribution) was used because the residual deviance was smaller 

5 than the residual degrees of freedom (underdispersion).

6
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Table 4 Relationship between body size and swimming distance (mm/s) in Spirama
retorta larvae obtained using a generalised linear model.
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1 Table 4  Relationship between body size and swimming distance (mm/s) in Spirama retorta larvae obtained using a 

2 generalised linear model.

฀ ฀ ฀ ฀ ฀ ฀

Response variable Explanatory variable (fixed effect) Coefficient estimate SE t value P value

Swimming distance † Intercept 0.995874 0.233774 4.26 <0.0001

฀ Caterpillar body length 0.056937 0.004376 13.01 <0.0001

3

4 † A quasi-Poisson error distribution (rather than a Poisson error distribution) was used because the residual deviance was larger than 

5 the residual degrees of freedom (overdispersion).

6
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Figure 1
Figure 1 Swimming behaviour in terrestrial caterpillars.

(a) Dinumma deponens.(b) Dinumma deponens swimming on the surface of a pond. (c)
Undulatory swimming in Spirama retorta. (d) Undulatory swimming in Hypopyra vespertilio.
(e) Kick swimming in Acosmetia biguttula. (f) Undulatory swimming in Laeliacoenosa. Arrows
indicate anal prolegs,which may function in a manner similar to that of tail fins.
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Figure 2
Figure 2 Active swimming in terrestrial caterpillars.

(a) Temporal sequence of undulatory swimmingin Hypopyra vespertilio. (b) Temporal
sequence of kick swimming in Acosmetia biguttula.
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Figure 3
Figure 3 Relationship between body size and swimming behaviour in Spirama retorta.

(a) Relationship between body length and swimming behaviour (n= 70). (b) Relationship
between body length and swimming speed (mm/s) (n= 70). Lines and blue areas represent
regression lines and 95% confidence intervals derived from generalised linear models,
respectively (Tables 3 and 4).
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Figure 4
Figure 4 Larval morphology of Hypopyra vespertilio.

(a) A larva on a host plant leaf. (b) A larva on the water surface. Hypopyra vespertilio larvae
have three pairs of thoracic legs (T1–T3) and five pairs of abdominal prolegs (A3–A6 and
A10).
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