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ABSTRACT
Climate change (rainfall events and global warming) affects the survival of alfalfa
(Medicago sativa L.) in winter. Appropriate water management can quickly reduce
the mortality of alfalfa during winter. To determine how changes in water affect
the cold resistance of alfalfa, we explored the root system traits under different
rainfall events and the effects on cold resistance in three alfalfa cultivars. These were
exposed to three simulated rainfall events (SRE) × two phases in a randomized
complete block design with six replications. The three cultivars were WL168, WL353
and WL440, and the three SRE were irrigation once every second day (D2), every
four days (D4) and every eight days (D8). There were two phases: before cold
acclimation and after cold acclimation. Our results demonstrated that a period of
exposure to low temperature was required for alfalfa to achieve maximum cold
resistance. The root system tended toward herringbone branching under D8,
compared with D2 and D4, and demonstrated greater root biomass, crown diameter,
root volume, average link length and topological index. Nevertheless, D8 had less
lateral root length, root surface area, specific root length, root forks and fractal
dimensions. Greater root biomass and topological index were beneficial to cold
resistance in alfalfa, while more lateral roots and root forks inhibited its ability to
survive winter. Alfalfa roots had higher proline, soluble sugar and starch content in
D8 than in D2 and D4. In contrast, there was lower malondialdehyde in D8, indicating
that alfalfa had better cold resistance following a longer irrigation interval before
winter. After examining root biomass, root system traits and physiological indexes
we concluded that WL168 exhibited stronger cold resistance. Our results contribute
to greater understanding of root and cold stress, consequently providing references
for selection of cultivars and field water management to improve cold resistance of
alfalfa in the context of changes in rainfall patterns.
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INTRODUCTION
Alfalfa (Medicago sativa L.) has spread widely because of its productivity and palatability.
The global area planted with alfalfa is about 3.2 × 107 hm2 and is mainly distributed in
the United States, Russia and Argentina (Russelle, 2001). The area planted with alfalfa
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exceeds 4 × 106 hm2 in China (He, 2011), where it is mainly distributed in the high
latitudes. There has been frequent crop failure due to winter conditions in recent years,
such as the “Easter freeze” of 2007 in the United States (Augspurger, 2009) and the
frost in northern China from 2012 to 2020 (Yang et al., 2019). The failure of alfalfa to
overwinter not only causes huge economic losses (Castonguay et al., 2006), but also
reduces biological nitrogen fixation and increases nitrous oxide emissions from agronomic
ecosystems, leading to an increased risk of global warming (Crews & Peoples, 2004;
Robertson, Paul & Harwood, 2000). The IPCC Fifth Assessment Report showed that the
average temperature of the world had risen by 0.85 �C in the past 100 years and by 1 �C
in China over the past few decades (Fang et al., 2018). Two major factors linked to
climate change are likely to affect plant winter survival: changes in precipitation and
temperatures (Bélanger et al., 2002; Bélanger et al., 2001). Extreme low temperature is more
likely to reduce the survival rate of alfalfa in winter owing to reduced snowfall, and greater
temperature fluctuation can make alfalfa break dormancy prematurely, exposing
vulnerable buds to subsequent killing frost and causing sustained damage (Augspurger,
2009). Modeling of global climate change has predicted that alfalfa death due to reduced
snowfall and greater temperature fluctuation will occur more frequently in the future
(Carol, 2013; Ji et al., 2017).

Alfalfa needs to undergo a period of low temperature and a short photoperiod to obtain
its freezing tolerance, and this is known as cold acclimation (Theocharis, Clement & Barka,
2012; Trischuk et al., 2014). Appropriate cultivation measures are also an effective way
to improve cold resistance. Water plays an important role in the winter hardiness of
alfalfa because freezing injury is mainly caused by cell dehydration (Xu et al., 2020a; 2020b;
Zhang et al., 2015). Water can not only affect the cold resistance of alfalfa by changing the
morphology and spatial distribution of the root system, but also protect cells from
low-temperature damage through physiological metabolic pathways (Castonguay et al.,
2006). In addition to precipitation amount, the impact on root growth also includes
precipitation timing and interval. Research has shown that precipitation events have
different effects on various plants, and high-frequency light precipitation events were
found to have a greater impact on herbaceous plants (Schwinning & Sala, 2004;
Schwinning, Starr & Ehleringer, 2003). The root system is key to the ability of alfalfa to
resist low temperature. Plants can regulate root system development in response to
dynamic changes in soil moisture (Comas et al., 2013; Li et al., 2020). Previous studies have
documented that below-ground biomass (BGB) (Larson & Smith, 1963; Liu et al., 2015),
root crown (Larson & Smith, 1963; Liu et al., 2015; Schwab et al., 1996), lateral roots
(Liu et al., 2015; Smith, 1951) and root system spatial distribution (Castonguay et al., 2006)
all affect the cold resistance of alfalfa. According to the cross acclimation theory (Kong &
Henry, 2019a; 2019b), low-frequency heavy precipitation will increase the time plants
spend in drought conditions, and so improve the cold resistance of alfalfa. This is because
drought can enhance the antioxidant capacity and osmotic regulation of plants, including
changes in malondialdehyde (MDA) (Schwab et al., 1996), proline (Pro) (Janska et al.,
2010), soluble sugars (SS) (Trischuk et al., 2014) and starch content (Xu et al., 2020a), and
these are closely related to the cold resistance of alfalfa. MDA reflects the degree of
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membrane lipid peroxidation in the cell membrane, and its content is directly proportional
to the low temperature injury of alfalfa (Schwab et al., 1996). Proline improves the cold
resistance of plants by regulating osmotic balance and increasing protein solubility
(Janska et al., 2010). Soluble sugar acts as osmotic regulator, cryoprotectant, and signaling
molecule to stabilize the cell membrane and scavenge reactive oxygen species under low
temperature (Trischuk et al., 2014). Starch can be broken down into soluble sugar to
improve the cold resistance of alfalfa (Xu et al., 2020a).

Our experiment simulated the effects of different precipitation patterns on alfalfa root
traits and cold resistance. The purpose was to: (1) study the response of root morphology
and spatial distribution to different precipitation events; (2) clarify the relationship
between root traits and cold resistance; (3) explain the effect of different precipitation
patterns on cold resistance; (4) clarify whether precipitation patterns have differences in
the root traits of alfalfa cultivars. These are of great significance since the water
management could prove important for increasing cold resistance.

MATERIALS & METHODS
Experiment location and materials
This experiment was conducted in a controlled greenhouse at the Institute of Animal
Science, Chinese Academy of Agricultural Sciences (Beijing, China) from May to
September 2020, with 25 �C/20 �C (day/night), 14 h/10 h (light/dark) and photosynthetic
photon flux density of 350 mmol·m−2·s−1 at 60–65% relative humidity. Alfalfa seeds
were disinfected with sodium hypochlorite (1% NaClO) for 30 min and washed with
deionized water five times. We then selected seeds of the same size and germinated them in
a Petri dish with 14 h light and 10 h dark at 25 �C. After 72 h we moved three germinant
seeds into one polyvinyl chloride (PVC) pipe with an inner diameter of 18 cm and
height of 50 cm. A nylon mesh bag was placed in each pipe (to facilitate later sampling)
and this was filled with 2.5 kg of sterilized dry mixture with a volume ratio of 4:1 sandy
soil and nutrient soil mixture. The nutrient soil mixture is a cultivation medium
(composed of peat moss and lime), named TS1, produced by Klasmann–Deilmann. TS1
contains 1.6% total nitrogen, 0.1% P2O5, 0.2% K2O (N: P: K = 14:10:18) and 91% of
organic matter, with a conductivity of 0.9 dS/m and pH of 5.8. The water-holding
capacity (WHC) of the mixture was measured to be 38.35%. One plant was left in each
PVC pipe 1 week after transplanting according to its height (about 15 cm), and cultivation
continued for another 2 weeks before subsequent experimentation. The soil moisture
content was kept at 60–65%WHC by weighing the pipe every second day. Weeds and pests
were removed regularly.

Experiment designs and treatments
A randomized complete block design was used, with three alfalfa cultivars (C), three
simulated rainfall events (SRE) and two phases. The three alfalfa C were WL168, WL353
and WL440 (with a fall dormancy score of 2, 4 and 6, respectively; provided by Beijing
Zhengdao Seed Industry Co., Ltd.). These are commonly planted in large areas of northern
China and represent the range in fall dormancy scores of alfalfa C grown in the region.
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The three SRE were: irrigation once every second day (D2), every four days (D4) and
every eight days (D8). D2 represented a high-frequency light precipitation and D8

represented a low-frequency heavy precipitation. The two phases were phase 1 (before cold
acclimation) and phase 2 (after cold acclimation). The combined 3 × 3 × 2 × 6
repetitions = 108 PVC pipes.

According to the preliminary test, the soil moisture content of D2, D4 and D8 before the
next irrigation was about 50%, 40% and 30% of WHC respectively. We carried out three
irrigation interval treatments, and total irrigation quotas remained the same between
different treatments and determined by D2 (keeping the soil moisture content at 60–65%
of the WHC by weighing every second day). After 8 weeks we carried out phase 1 sampling
(3 × 3 × 6 = 54 pipes in total, as shown in Fig. 1). The aboveground and underground
parts were separated and then carefully removed from the nylon mesh bag in each
PVC pipe to minimize damage to the spatial distribution of the root system. The root
surface mixture was washed away gently with distilled water by hand and the roots were
placed evenly in a transparent acrylic tray with 1,200 mL of distilled water. They were then
scanned with a MICROTEK Scan Maker i800plus (Microtek Technology Co., Ltd.,
Shanghai, China) with a resolution of 600 dpi. Immediately after scanning, about
five cm of the root crown was used to determine electrical conductivity and physiological
indicators. We divided the sample into two parts, one part was used for the determination
of LT50, the other part was used for the determination of physiological indicators.
The remainder of the root was measured to calculate biomass. The aboveground and
underground parts were weighed after being placed in an oven at 65 �C for 48 h and the
dry weight were above-ground biomass (AGB) and below-ground biomass (BGB).

The rest half of the experimental plants were moved to an LRH-200-GD low-
temperature light incubator (Taihong Medical Instruments, Guangdong, China) for
the low-temperature experiment (phase 2). The initial temperature was 25 �C/20 �C
(day/night) with a photoperiod of 10 h light and 14 h dark, and the photosynthetic
photon flux density was 350 mmol·m−2·s−1. The temperature was decreased to 5 �C/0 �C

Figure 1 Schematic diagram of experiment processing and sampling. 25/20 �C and 5/0 �C represent
the temperature of alfalfa during normal growth and cold acclimation, respectivel.

Full-size DOI: 10.7717/peerj.11962/fig-1
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(day/night) at a rate of 2 �C·d−1 and the light intensity was decreased to 150 mmol·m−2·s−1

at a rate of 20 mmol·m−2·s−1·d−1, simulating the cold adaptation environment of alfalfa.
Sampling was carried out after a further 72 h of cold acclimation. During this phase of
the experiment, plants were watered as in the previous phase. The root was carefully
rinsed by hand with distilled water after the test and the root crown sample was divided
into two parts. One part was used for the measurement of electrical conductivity and the
other for physiological indicators (kept at −80 �C).

MEASUREMENTS
Root morphological indicators
We used a Win-RHIZO 2017a (Regent Instruments, Inc., Quebec, QC, Canada) to analyze
the scanned images (Fig. 2). The process included thresholding, framing, editing
breakpoints and eliminating loops to obtain the root morphological indicators, root length,
root surface area (RSA), root volume (RV), root forks (RF) and average link length (ALL).
Topological index (TI) and fractal dimensions (FD) were obtained by calculation.

TI is used to reflect the spatial structure of different root systems and is defined as
log altitude (A)/log magnitude (M) where A is the number of links in the longest path
from an exterior link to the most basal link of the root system and M is the total number of
the exterior links (Bouma et al., 2001). When TI is close to 0.5, the root system tends to a
dichotomous branching and when close to 1 it tends to herringbone branching. FD
were obtained according to the box-dimension method (Bouma et al., 2001; Fitter, 1986;
Fitter et al., 1991; Harrar & Hamami, 2007).

Semi-lethal temperature
The semi-lethal temperature (LT50, the temperature at which the relative permeability of
intracellular ions attains 50%) was used to represent the cold resistance of alfalfa in
this study (Anower et al., 2016). We took the five cm underground taproot as the root
crown, and then we cut the root crown into nine pieces of 2–3 mm (based on length
instead of diameter), and these pieces were put into nine 2-mL centrifuge tubes (Xu et al.,

Figure 2 Scanning image of root system under three simulated rainfall events. D2, D4 and D8

represent irrigation once every second day, every 4 days and every 8 days respectively.
Full-size DOI: 10.7717/peerj.11962/fig-2
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2020a). Tubes were placed at 8 �C for 2 h. The subsequent freezing test was conducted in a
ZX-5C constant-temperature circulator (Zhixin Instrument, Shanghai, China) under a
decreasing series of nine temperatures, and tubes with samples were kept in alcohol for 1.5
h at each temperature. The temperatures of the alcohol were different due to the difference
between the LT50 under the two treatments. For the samples collected in phase 1, nine
temperatures were set to 8 �C, 6 �C, 4 �C, 2 �C, 0 �C, −2 �C, −4 �C, −6 �C and −8 �C.
For the samples collected in phase 2, nine temperatures were set to 0 �C, −2 �C, −4 �C,
−6 �C, −8 �C, −10 �C, −12 �C, −14 �C and −16 �C. After 1.5 h at the first temperature in
each phase, one tube was transferred to storage at that temperature; after 1.5 h at the
second temperature another tube was removed for storage at that temperature; and so
on until all nine tubes in each phase were stored at their designated temperatures. We then
removed the pieces of root crown from each 2-mL tube and placed them in one 15-mL
tube and added 5 mL deionized water. This tube was shaken on an HZQ-A gyratory
platform shaker (Hengrui Instrument and Equipment, Changzhou, China) at 120 rpm
for 12 h at 25 �C. Next used a conductivity meter FE38 (Mettler, Shanghai, China) to
measure the electrical conductivity as EL1. The sample was autoclaved at 121 �C for 30 min
and, on remeasuring, its electrical conductivity was found to be EL2. The electrical
conductivity of deionized water was EL. Relative electrolyte leakage can be calculated
according to Eq. (1) and the semi-lethal temperature can be calculated by logistic Eq. (2).
In Eq. (2), x is the freezing temperature, y is the relative electrical leakage and A, B and k
are constants:

Relative electrolyte leakage ð%Þ ¼ ðEL1 � ELÞ=ðEL2 � ELÞ � 100 (1)

y ¼ A=ð1þ B� e�kxÞ � 100% (2)

Root physiological indexes
Physiological indexes were also measured on root crown of alfalfa. Ground the other part
of the crown sample kept at −80 �C into powder and then determined their SS (Buysse &
Merckx, 1993), starch (Buysse & Merckx, 1993), MDA (Dhindsa, Plumb-Dhindsa &
Thorpe, 1981) and Pro content (Bates, 1973).

Malondialdehyde (MDA)
A 0.2-g sample was placed in a 10-ml test tube for determination of MDA. (1) Added 5 mL
0.1% cold trichloroacetic acid (TCA) and then the homogenate was centrifuged at
10,000 r/min for 5 min at 4 �C. (2) To 1 mL aliquot of the supernatant 4 mL 20% TCA
containing 0.5% TBA were added. The mixture was heated at 95 �C for 20 min and then
quickly cooled in an ice-bath. After centrifuging at 4,000 r/min for 15 min, then 2 mL
supernatant was removed to a cuvette and 2 mL deionized water used as control.
(3) The absorbance of the supernatant was measured at 450 nm (OD450), 532 nm (OD532)
and 600 nm (OD600). The MDA content was measured according to Eq. (3), where
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V1 (mL) is the total volume of the supernatant, V2 (mL) is the volume of the measurement
and DW (g) is the weight of the freeze-dried sample:

MDA ðnmol=gDWÞ¼ ½6:452�ðOD532–OD600Þ–0:559�OD450��V1=ðV2�DWÞ (3)

Proline (Pro)
A 0.2-g sample was placed in a 10-ml test tube for Pro determination. (1) Added 5 mL of
3% aqueous sulfosalicylic acid solution and then transferred the sample to a boiling
water bath for 20 min and obtained the Pro extraction after cooling. (2) A 2-mL extraction
was moved to another test tube, 2 mL of glacial acetic acid and 2 mL 2.5% of acidic
ninhydrin solution were added and the extraction was then transferred to a boiling water
bath for 60 min. (3) Added 4 mL of methylbenzene and the tube was shaken after cooling
before being centrifuged at 5,000 r/min for 5 min. (4) Measured the absorbance of the
supernatant at 520 nm and calculated the Pro content according to the standard curve and
Eq. (4), where C is the Pro content obtained from the standard curve, V1 (mL) is the total
volume of the extraction, A (mL) is the volume of the measurement and DW (g) is the
weight of the freeze-dried sample:

Pro ðmg=gDWÞ ¼ ðC� V1=AÞ=DW (4)

Soluble sugar (SS)

A 0.2-g sample was placed in a 50-mL test tube for determination of the soluble sugar.
(1) Added 20 mL deionized water and then transferred the tube to a boiling water bath for
20 min. (2) The tube was centrifuged at 3,500 r/min for 10 min after cooling and the
supernatant transferred to a volumetric flask and diluted to 100 mL as an extraction
solution (the residue was used later to determine starch content). (3) Placed 1 mL of the
extraction solution in another test tube and added 4 mL 2% anthrone ethyl acetate, then
placed the tube in a water bath at 90 �C for 15 min. (4) After the tube had cooled and
measured the absorbance of the extraction solution at 625 nm. The content of soluble
sugar was calculated according to the standard curve and Eq. (5), where C (mg) is the
soluble sugar content according to the standard curve, V1 (mL) is the total volume of
the extraction, A (mL) is the volume of the measurement and DW (g) is the weight of the
freeze-dried sample:

Soluble sugar ð%Þ ¼ ðC� V1Þ=ðA� DW� 106Þ � 100 (5)

Starch

The remaining residue was moved to a 20-mL test tube for determination of the starch.
(1) Added 8 mL of hydrochloric acid and boiled the tube in a water bath for 45 min, then
transferred the contents into a volumetric flask and added 8 mL sodium hydroxide and
diluted it to 50 mL. (2) Placed 1 mL of the supernatant in a volumetric flask and diluted
it to 25 mL as an extraction solution. (3) Added 4 mL of anthrone to 1 mL extraction
solution and placed the tube in a boiling water bath for 5 min. (4) After cooling, the
absorbance was measured at 625 nm. Starch content was calculated according to the
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standard curve and Eq. (6), where C (mg) is the starch content according to the standard
curve, V (mL) is the total volume of the extraction solution, A (mL) is the volume of the
measurement and DW (g) is the weight of the freeze-dried sample:

Starch ð%Þ ¼ C� V� 0:9=ðA� DW� 106Þ � 100 (6)

STATISTICAL ANALYSES
Shapiro–Wilk test and Levene test showed that all data in this experiment obeyed a
normal distribution and satisfied the homogeneity of variance. Data in this study
were subjected to a two-way analysis of variance between treatments using SPSS 20.0
(SPSS Inc., Chicago, IL, USA). Multiple range tests were performed using least significant
differences, and differences were considered significant at p < 0.05 and p < 0.01; ns was not
significant. Principal component analysis (PCA) was also conducted in this experiment.

RESULTS
Biomass
After 8 weeks, BGB and the ratio of BGB to AGB (R/S) growth differed significantly
(p < 0.01) among SRE; nevertheless, there was no significance (p > 0.05) in AGB (Table 1).
As rainfall intervals increased, BGB and R/S showed an increasing trend. D8 had the
highest BGB and R/S (1.01 g and 0.68, respectively) and these were significantly higher
than those of D2. There was no major impact on AGB and R/S (p > 0.05) of the three C
within the same water treatment (Table 1). The BGB of WL440 was 0.64 g, which was
significantly (p < 0.01) lower than that of WL168 and WL353. Further analysis showed
significant interactions between SRE and C on R/S, and the former were found to have
played a more important role (Table 2).

Root morphology
SRE had a little effect (p > 0.05) on the primary root length (PRL) of alfalfa (Table 3). D2

had the longest lateral root length (LRL, 247 cm) followed by D4 and D8. The crown

Table 1 Above-ground biomass, below-ground biomass and the ratio of below-ground biomass to
above-ground biomass among simulated rainfall events or cultivars in phase 1.

Treatments AGB (g) BGB (g) R/S

SRE D2 1.60 ± 0.26 0.64 ± 0.25b 0.45 ± 0.14b

D4 1.74 ± 0.34 0.87 ± 0.30a 0.51 ± 0.14b

D8 1.58 ± 0.23 1.01 ± 0.27a 0.68 ± 0.17a

p value ns <0.01 <0.01

C WL168 1.68 ± 0.19 0.95 ± 0.32a 0.57 ± 0.21

WL353 1.76 ± 0.24 0.93 ± 0.23a 0.56 ± 0.12

WL440 1.47 ± 0.35 0.64 ± 0.20b 0.48 ± 0.16

p value ns <0.01 ns

Note:
Mean values (n = 18) ± standard errors of the mean are shown. Different letters represent a significant difference under
various SRE and C; ns indicates the difference is not significant; and p < 0.05 and p < 0.01 indicate significant difference at
0.05 and 0.01 levels, respectively. AGB, above-ground biomass; BGB, below-ground biomass; R/S, the ratio of BGB to
AGB; SRE, simulated rainfall events; C, cultivars.
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diameters (CD) of D4 and D8 were 4.21 and 4.27 mm, respectively, significantly (p < 0.05)
wider than that of D2. RSA varied significantly (p < 0.01) among the three SRE; D8 had
the minimum at 46.0 cm2. D4 and D8 had the same RV, 0.81 cm3, significantly (p < 0.01)
larger than that of D2. Specific root length (SRL) was significantly (p < 0.01) inversely
proportional to rainfall events. D2 had the greatest SRL, 452 cm/g, followed by D4

(335 cm/g) and D8 (221 cm/g). The three alfalfa C differed significantly (p < 0.01) in LRL,

Table 2 Interaction and simple effect analysis of simulated rainfall events and cultivars on biomass,
root traits and LT50 among in phase 1.

SRE×C SRE C

Sig. Sig. PES Sig. PES

ABG ns – – – –

BGB ns – – – –

R/S <0.05 <0.01 0.250 0.113 0.085

PRL ns – – – –

LRL ns – – – –

CD ns – – –

RSA <0.05 <0.01 0.452 0.074 0.101

RV ns – – – –

SRL <0.01 <0.01 0.414 <0.01 0.349

RF ns – – – –

ALL ns – – – –

TI ns – – – –

FD ns – – – –

LT50-phase1 ns – – – –

LT50-phase2 ns – – – –

Note:
Significance (Sig.) and partial eta squared (PES) are shown, and ns indicates the difference is not significant. A dash (–)
indicates that there was no significant interaction between simulated rainfall events and cultivars. PRL, primary root
length; LRL, lateral root length; CD, crown diameter; RSA, root surface area; RV, root volume; SRL, specific root length;
RF, root forks; ALL, average link length; TI, topological index; FD, fractal dimensions.

Table 3 Root morphological traits among simulated rainfall events or cultivars in phase 1.

Treatments PRL (cm) LRL (cm) CD (mm) RSA (cm2) RV (cm3) SRL (cm/g)

SRE D2 42.40 ± 2.5 247 ± 15a 3.76 ± 0.75b 66.3 ± 9.9a 0.74 ± 0.06b 452 ± 109a

D4 43.46 ± 2.9 214 ± 11b 4.21 ± 0.59a 57.3 ± 9.5b 0.81 ± 0.07a 335 ± 67b

D8 43.28 ± 3.6 162 ± 11c 4.27 ± 0.56a 46.0 ± 9.5c 0.81 ± 0.04a 221 ± 48c

p value ns <0.01 <0.05 <0.01 <0.01 <0.01

C WL168 42.49 ±2.6 185 ± 17b 3.88 ± 0.76 57.8 ± 3.6 0.80 ± 0.07a 277 ± 69b

WL353 42.98 ± 2.9 214 ± 18a 4.24 ± 0.69 59.5 ± 5.0 0.80 ± 0.05a 278 ± 49b

WL440 43.68 ± 3.4 225 ± 24a 4.12 ± 0.51 52.3 ± 5.9 0.75 ± 0.08b 453 ± 114a

p value ns <0.01 ns ns <0.01 <0.01

Note:
Mean values (n = 18) ± standard errors of the mean are shown. Different letters represent a significant difference under
various SRE and C; ns indicates the difference is not significant; and p < 0.05 and p < 0.01 indicate significant differences
at 0.05 and 0.01 levels, respectively.
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but not in PRL (Table 3). WL168 showed a significantly (p < 0.01) shorter LRL than
WL440 and WL353. There was no evidence of a significant difference in CD and RSA
between various C. The RV ofWL168 andWL353 were both 0.80 cm3, a value significantly
(p < 0.01) greater than that of WL440. The SRL of WL168 and WL353 were 277 and
278 cm/g, respectively, much lower than that of WL440. In every treatment combination
(SRE × C), the effect of rainfall events on root surface area and specific root length was
greater than that of C (Table 2).

Root system architecture
Basic information about the root system architecture in phase 1 is shown in Table 4. SRE
had major effects (p < 0.01) on RF, notably on D2 at 1,572. The ALL of D8 was 0.136 cm,
which was significantly longer than that of D2 and D4. Across the three SRE, the TI
ranged from 0.600 to 0.634 and FD ranged from 1.390 to 1.469. The TI and FD showed a
reverse trend. A significant (p < 0.01) effect was detected for RF and ALL in various alfalfa
C, but there was no significant (p > 0.05) difference in TI and FD. WL353 had the
maximum RF, 1,390, which was significantly more than RF in WL168 and WL440.
In contrast, the ALL ofWL353 was 0.117 cm, which was shorter than that of WL440. There
were no major interactions between SRE and C in these four indicators (Table 4).

Semi-lethal temperature
We observed that the cold resistance of alfalfa that had not undergone cold acclimation
was relatively weak (Fig. 3). From phase 1 to phase 2 the LT50 of three SRE decreased by an
average of 8.4 �C, and D2 had the largest decline at 6.1 �C. D8 had the lowest LT50 in both
phases (0.32 and −6.5 �C, respectively). Simultaneously, there were also significant
(p < 0.01) differences in the LT50 in the two phases among the three alfalfa C. The LT50 of
WL168 decreased the most and reached 6.9 �C, followed by WL440 and WL353 (5.9 �C
and 5.8 �C, respectively). WL168 had the greatest cold resistance among the three C in
phase 2, and its LT50 was −6.8 �C.

Principal component analysis (PCA, Kaiser–Meyer-Olkin (KMO) value was 0.728 and
p < 0.01) of 10 variables was used to identify the correlations between the variables and

Table 4 Root spatial traits between simulated rainfall events or cultivars in phase 1.

Treatments RF ALL (cm) TI FD

SRE D2 1,572 ± 242a 0.119 ± 0.015b 0.600 ± 0.020b 1.469 ± 0.043a

D4 1,325 ± 275b 0.117 ± 0.020b 0.621 ± 0.016a 1.444 ± 0.034a

D8 854 ± 118c 0.136 ± 0.018a 0.634 ± 0.022a 1.390 ± 0.042b

p value <0.01 <0.05 <0.01 <0.01

C WL168 1,171 ± 273b 0.107 ± 0.021b 0.622 ± 0.023 1.437 ± 0.050

WL353 1,390 ± 468a 0.117 ± 0.028b 0.610 ± 0.023 1.447 ± 0.045

WL440 1,191 ± 303b 0.147 ± 0.020a 0.623 ± 0.023 1.419 ± 0.044

p value <0.01 <0.01 ns ns

Note:
Mean values (n = 18) ± standard errors of the mean are shown. Different letters represent a significant difference under
various SRE and C; ns indicates the difference is not significant; and p < 0.05 and p < 0.01 indicate significant difference at
the level of 0.05 and 0.01, respectively.
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LT50, which were associated with the first two principal components (Fig. 4). Different
colors denote different SRE and shapes refer to cultivars, and SREs play a more important
role than cultivars in the difference of root traits. PCA axis 1 primarily reflected the
morphological and spatial characteristics of root systems (LRL, RF and TI), which

Figure 3 Semi-lethal temperatures of alfalfa cultivars crowns under different simulated rainfall
events. Mean values (n = 18) ± standard errors of the mean are shown. Different capital letters and
lowercase letters indicate a significant difference between three simulated rainfall events and cultivars at
the same phase at 0.01 and 0.05 level respectively; asterisks (��) indicate that the same treatment had a
significant difference in the two phases at 0.01 level. Full-size DOI: 10.7717/peerj.11962/fig-3

Figure 4 Principal component analysis of 10 variables and the correlations among variables and
LT50. Each arrow represents the eigenvector corresponding to an individual variable. Different colors
denote different SRE and shapes refer to cultivars. AGB, above-ground biomass; BGB, below-ground
biomass; PRL, primary root length; LRL, lateral root length; CD, crown diameter; RSA, root surface area;
RV, root volume; RF, root forks; TI, topological index; FD, fractal dimensions.

Full-size DOI: 10.7717/peerj.11962/fig-4
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accounted for 37.56% of the overall variance in the standardized variables. Axis 2 mainly
reflected the biomass of the alfalfa, explaining 16.82% of the standardized variance
(Table 5). BGB, PRL and RSA were positively correlated with CD, RV and FD, respectively.
LRL was negatively correlated with BGB, CD and RV; and TI was negatively correlated
with RSA, RF and FD. LT50 was positively correlated with LRL, RSA, FD and RF, but
inversely correlated with BGB, CD, RV and TI. Lateral root length, root forks and fractal
dimension may have a greater contribution to the difference in LT50 between plants
(Fig. 3).

Physiological indicators
Compared with phase 1, the MDA content showed an increasing trend in phase 2, and
there were significant (p < 0.01) differences among various rainfall events (Fig. 5).
The content of MDA of D8 increased by 25% from phase 1 to phase 2, which was less than
that of D4 (38%) and D2 (59%). There were no major changes in MDA content between the
three C at 25 �C/20 �C (day/night), but a significant difference appeared after the

Table 5 Component matrix of the first two principal components.

Component

1 2

AB 0.057 0.818

BB −0.403 0.537

PRL −0.121 0.195

LRL 0.826 −0.288

CD −0.199 0.348

RSA 0.779 0.375

RV −0.420 0.544

RF 0.910 0.095

TI −0.624 −0.099

FD 0.746 0.387

Figure 5 Malondialdehyde content under various simulated rainfall events for the three cultivars in
the two phases. Mean values (n = 18) ± standard errors of the mean are shown. Different capital letters
and lowercase letters indicate a significant difference between three simulated rainfall events and cultivars
at the same phase at 0.01 and 0.05 level respectively. Full-size DOI: 10.7717/peerj.11962/fig-5
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low-temperature experiment, and WL168 had a lower MDA content (100.9 nmol·g−1

DW).
The Pro content of the three rainfall events showed significant (p < 0.01) differences

in the two phases (Fig. 6), but there was no significant difference among the three C. D8

had the highest Pro content at 2.61 and 3.26 mg·g−1 DW in phase 1 and phase 2,
respectively, followed by D4 (1.06 and 1.26 mg·g−1 DW) and D2 (0.31 and 0.83 mg·g−1

DW).
The soluble sugar content of the three treatments increased after cold acclimation

(Fig. 7). In the same phase, SRE had a significant (p < 0.01) impact on the soluble sugar
content of alfalfa root, which was manifested as an increasing trend as the rainfall interval
increased. There were major effects (p < 0.01) on the soluble sugar content of the two
phases among the three alfalfa C. WL440 had 118 and 127 mg·g−1 DW soluble sugar
content in phase 1 and phase 2, respectively, significantly higher than those of WL353 and
WL168.

The starch content showed a downward trend at phase 2 for the three rainfall events in
all three C (Fig. 8). In the two within-phase comparisons, SRE had a significant (p < 0.01)
impact on the soluble sugar content of alfalfa roots, while the choice of C did not.
The starch content of D8 was 95.4 and 68.5 mg·g−1 DW in phase 1 and phase 2,
respectively, which was higher than in the other two treatments.

Figure 6 Proline content under various simulated rainfall events for the three cultivars in the two
phases. Mean values (n = 18) ± standard errors of the mean are shown. Different capital letters indi-
cate a significant difference between three simulated rainfall events at the same phase at 0.01 level.

Full-size DOI: 10.7717/peerj.11962/fig-6

Figure 7 Soluble sugar content under various simulated rainfall events and for the three cultivars.
Mean values (n = 18) ± standard errors of the mean are shown. Different capital letters indicate a sig-
nificant difference between the three rainfall events at the same phase at 0.01 level.

Full-size DOI: 10.7717/peerj.11962/fig-7
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DISCUSSION
Root biomass
Swemmer, Knapp & Snyman (2007) and Heisler-White, Knapp & Kelly (2008)
demonstrated that rainfall interval and rainfall amount are the key factors affecting the
allocation of plant biomass. Rainfall events had no significant effect on the AGB of alfalfa,
while longer rainfall intervals increased BGB and R/S (Table 1). This allometric growth
relationship between root and shoot is an adaptive strategy by plants to various soil water
conditions (Padilla et al., 2009). Research has shown that longer rainfall intervals can
enhance the drought resistance of plants by promoting root growth and increasing energy
distribution to underground parts (Den Herder et al., 2010; Jangpromma et al., 2012;
Padilla et al., 2009). There was little difference in AGB between the three C, but the C with
lower fall dormancy level had higher BGB and R/S. Root biomass has been proven to be an
indicator of stress resistance (Bloor, Zwicke & Picon-Cochard, 2018), and the C with a
lower level of fall dormancy distributes more energy to its roots. This also explains, to a
certain extent, why alfalfa with a lower fall dormancy score has better cold resistance
(Oppelt, Kurth & Godbold, 2001; Xu et al., 2020b).

Root morphological traits and architecture
Root plasticity determines the ability of plants to survive in the ever-changing soil
environment (Tian, De Smet & Ding, 2014). The primary root mainly plays a role of fixing,
storing and transporting substances. It has a longer lifespan and slower metabolism, and
there are no significant differences in response to various rainfall events (Gruber et al.,
2013). Lateral roots are the main parts of the root system that absorb water and nutrient;
they have a shorter lifespan, stronger metabolism and lower resistance to abiotic stress,
and are more sensitive to changing environments (Li et al., 2020; Padilla et al., 2009;
Withington et al., 2006). Through research on rice (Oryza sativa L.) and arabidopsis
(Arabidopsis thaliana L.), Pedersen et al. (2021) found that a longer rainfall event results in
an overall altered root system that ranges from changes in root system architecture,
including fewer lateral roots and thicker primary root (Hodge, 2004; Schwab et al., 1996).
Larger root surface area and specific root length are beneficial to the root water absorption
efficiency system (Hassouni et al., 2018), but attention should be given to the cost of

Figure 8 Starch content under various simulated rainfall events for the three cultivars. Mean values
(n = 18) ± standard errors of the mean are shown. Different lowercase letters indicate a significant
difference between the three rainfall events at the same phase at 0.05 level.

Full-size DOI: 10.7717/peerj.11962/fig-8

Li et al. (2021), PeerJ, DOI 10.7717/peerj.11962 14/23

http://dx.doi.org/10.7717/peerj.11962/fig-8
http://dx.doi.org/10.7717/peerj.11962
https://peerj.com/


water absorption under abiotic stress. Lateral roots are the most active part of the entire
root system, and their faster turnover rate also increases the consumption of stored
substances (Guo, Mitchell & Hendricks, 2004; Rewald, Ephrath & Rachmilevitch, 2011;
Withington et al., 2006). D8 has the shortest lateral root length (Table 3) and less
consumption of stored substances, which can explain why alfalfa grown in intervals of
longer rainfall showed better cold resistance in a subsequent low-temperature test (Fig. 2).
Features such as a greater root volume and a small root surface area are evident after a
longer rainfall interval, which enables plants to cope better with unpredictable soil
conditions (Pedersen et al., 2021). Genotypes play an important role in the growth of
plant roots under the same environment conditions and cultivation measures. Root
systems of different cultivars respond differently to change in soil moisture (Tron et al.,
2015). A field study was conducted to analyze the root system development ability of nine
alfalfa cultivars; root biomass, primary root, lateral root, root surface area and root crown
were significantly different among cultivars (Zhang et al., 2002). The three C presented
various root trait responses to rainfall events: alfalfa with a low level of fall dormancy
had shorter lateral roots and specific root length and a larger root volume, consistent with
the results found by Rimi et al. (2010). The spatial structure of a root system can further
describe the distribution of roots in the soil. A study of the effects of rainfall on various
species found that rainfall events have important effects on root system architecture,
including in the roots of herbaceous plants (Kume, Sekiya & Yano, 2006). Root forks and
average link length reflect the branching of plant roots. Root forks are related to water
absorption efficiency (Bauhus, Khanna & Menden, 2000) and average link length
represents the space expansion ability of the root system (Walk, Van Erp & Lynch, 2004).
There is a negative correlation between root forks and average link length, and this
depends on the soil conditions (Schenk & Jackson, 2002a; 2002b). The results of rainfall
events on alfalfa show that a root system under a longer rainfall interval has a longer
average link length, while more root forks appear under shorter rainfall intervals
(Kong et al., 2014). Root systems with a larger number of forks are more advantageous in
resource-rich soil because they can quickly occupy the space available for rapid growth.
Those with a longer average link length can improve competitiveness under water
shortage because root overlap and unnecessary internal competition is reduced (Bauhus,
Khanna & Menden, 2000; Enquist & Niklas, 2002; Guswa, 2010). We verified this trade-off
relationship between root forks and average link length in the three C (Table 4).
Topological index and fractal dimensions are both parameters that describe the root
system architecture. Low-frequency heavy precipitation events are conducive to the
development of herringbone branching in a root system (Table 4). Researcher has divided
the branching patterns into dichotomous and herringbone according to the two extreme
values of the TI, although the branching pattern of most plants falls between the two types
(Fitter, 1986). A root system tends to dichotomous branching when the plant is in
high-nutrient soil and the TI is close to 0.5; the branching pattern tends to herringbone
when resources are scarce and the TI is close to 1 (Fitter & Stickland, 1992; Glimskär, 2000;
Li et al., 2020; Lynch, 2019). Fractal dimensions are also important parameters in
explaining the spatial structure of the root system. The change trend in fractal dimensions

Li et al. (2021), PeerJ, DOI 10.7717/peerj.11962 15/23

http://dx.doi.org/10.7717/peerj.11962
https://peerj.com/


and root forks is consistent in describing the use of space by roots, and our results agreed
with those of Li et al. (2020) and Dannowski & Block (2005). Tron et al. (2015)modeled the
transpiration of 48 root architecture types under 16 drought scenarios and different soil
structures and textures; they reported that root architecture did not fully explain plant
water use and suggested relating specific root architecture with genotype and other
characteristics. Genotypes differ in their localization of root biomass at different depths
under water stress condition; tolerant genotypes produce deeper and more vigorous roots
in the search for water (Farooq et al., 2019). Manschadi et al. (2006) studied root
architectural traits in the adaptation of wheat to water-limited conditions using a
drought-tolerant and drought-susceptible genotype; the tolerant genotype developed a
compact vertical root system allowing it to extract less water during early growth stages but
more as the crop matured. WL168 has the smallest root forks and average link length, and
this is consistent with the study of Farooq et al. (2019).

Semi-lethal temperature and root traits
Alfalfa has to undergo a low-temperature and short-photoperiod process to maximize its
cold resistance (Theocharis, Clement & Barka, 2012), and this characteristic is shown in all
three cultivars (Trischuk et al., 2014). Whether at normal temperature or undergoing
low-temperature stress, the semi-lethal temperature of D8 was significantly lower than that
of the other two (Fig. 2). Simultaneously, the cross acclimation of drought and low
temperature has been confirmed in creeping bentgrass (Agrostis stolonifera L.) (Zhang
et al., 2015) and alfalfa (Xu et al., 2020b), which provides theoretical support for improving
cold resistance of alfalfa by water management. To further understand the relationship
between water and cold resistance, we conducted a PCA analysis among root system traits
and semi-lethal temperature (Fig. 4). The positive correlation factors that affect cold
resistance of alfalfa mainly include below-ground biomass, crown diameter, root volume
and topological index, while the increase in lateral root length, root surface area, root forks
and fractal dimensions reduced the semi-lethal temperature. Some of our conclusions
contradicted previous research (Johnson et al., 1996; Larson & Smith, 1963; Liu et al., 2015;
Smith, 1951), but these differences were mainly caused by environmental factors rather
than by low-temperature stress. The root crown is the most sensitive part of the root
system to temperature changes and is crucial to overwintering and regeneration (Bélanger
et al., 2006; Janska et al., 2010). The plasticity of the root crown is an important strategy for
alfalfa in its adaptation to the cold climate in northern regions. As the crown diameter
increases, the cold resistance of alfalfa is gradually enhanced (Liu et al., 2015; Schwab et al.,
1996). The root biomass is related to the accumulation of organic matter and the
herringbone branching is conducive to alfalfa’s absorption of deeper water in cold
winter, which contribute to improving the plant’s cold resistance (Larson & Smith, 1963;
Viands, 1988). Longer lateral roots accelerate nutrient consumption and are more
susceptible to freezing under low-temperature stress (Schwab et al., 1996;Withington et al.,
2006). Studies have confirmed that low-temperature stress inhibits plant growth (Liu et al.,
2019; Venzhik et al., 2011), but little is known about how these characteristics affect
cold resistance. The above analysis demonstrates the regulatory effect of rainfall events on
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root system traits, and the next step is to manipulate these traits to enhance plant stress
tolerance. It is possible that gene editing technology may allow plant root traits to be
changed and so permit better adaptation to low-temperature environments (Nakamichi
et al., 2016).

Root physiological indexes
In winter, physiological regulation such as osmotic regulation, antioxidant regulation
and induction of antifreeze gene expression is the most important way for plants to adapt
to low-temperature stress (Bertrand et al., 2017; Choudhury et al., 2017; Theocharis,
Clement & Barka, 2012). Research has concluded that it is a significant correlation between
cold resistance and the cell membrane, and plants with stronger cold resistance have a
lower phase-transition temperature (Anower et al., 2016). MDA is the final product of cell
membrane lipid redox, which can destroy the structure and function of proteins,
nucleic acids and polysaccharides. Plants produce a larger amount of MDA under
low-temperature stress, and its content has a significant negative correlation with the
freezing tolerance of alfalfa (Choudhury et al., 2017; Xu et al., 2020a). In addition, excessive
reactive oxygen species (ROS) can also affect cell activity. To reduce ROS damage, cells
maintain their integrity through osmotic regulation (mostly of Pro, soluble sugar and
starch) (Anower et al., 2016; Bertrand et al., 2017; Castonguay et al., 2011). Pro can act not
only as an osmotic regulator or ROS scavenger, but also as a molecular chaperone to
prevent cells from being damaged by low temperature (Castonguay et al., 2011; Kishor
et al., 2005; Nakashima et al., 1998). Studies have proven that soluble sugar and starch are
closely related to the freezing tolerance of alfalfa (Anower et al., 2016; Castonguay et al.,
2006). Soluble sugar can improve the survival rate of alfalfa in winter in two ways: (1) it can
act as an osmotic substance and cryoprotectant to lower the cell freezing point
(Castonguay et al., 2013); and (2) it is a signal molecule that initiates a series of cold
response mechanisms (Bertrand et al., 2017). Starch can be hydrolyzed into soluble sugar
to improve the cold tolerance of alfalfa (Sengupta et al., 2015). In phase 2, the Pro and
soluble sugar content of D8 was still higher than that of the other two cultivars, which
indicated that cold acclimation would maximize the cold resistance of alfalfa, but also that
a longer irrigation interval can accelerate this process (Xu et al., 2020a; Zhang et al., 2015).

CONCLUSIONS
In our study, a low-frequency heavy precipitation significantly enhanced the cold
resistance of alfalfa compared with a high-frequency light precipitation. The increase in
root biomass and crown diameter, and the decrease of lateral root length and root
surface area may have contributed to the difference in LT50 among plants receiving the
different treatments. A fewer root forks and a bigger topological index may reduce the
redundant consumption of the root system, which is beneficial to improve the cold
resistance of alfalfa in a low temperature environment. Alfalfa with high fall dormancy
grade has more below-ground biomass and less lateral root, and these characteristics
are conducive to rapid acquisition of cold resistance. Simultaneously, a longer
irrigation interval facilitated the accumulation of proline and soluble sugar content.
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These conclusions provide support for winter water management of alfalfa and selection of
varieties in areas of high latitude.
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