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ABSTRACT
Silene ciliata Pourr. (Caryophyllaceae) is a species with a highly disjunct distribution
which inhabits the alpine mountains of the Mediterranean Basin. We investigated
the phylogeny and phylogeography of the species to (a) clarify the long-suggested
division of S. ciliata into two subspecies, (b) evaluate its phylogenetic origin and
(c) assess whether the species’ diversification patterns were affected by the
Mediterranean relief. For this purpose, we collected DNA from 25 populations of the
species that inhabit the mountains of Portugal, Spain, France, Italy, former Yugoslav
Republic of Macedonia, Bulgaria and Greece and studied the plastid regions rbcL,
rps16 and trnL. Major intraspecific variation was supported by all analyses, while the
possibility of the existence of more varieties or subspecies was not favoured. Plastid
DNA (cpDNA) evidence was in accordance with the division of S. ciliata into the
two subspecies, one spreading west (Iberian Peninsula and Central Massif) and the
other east of the Alps region (Italian and Balkan Peninsula). This study proposes
that the species’ geographically disconnected distribution has probably derived from
vicariance processes and from the Alps acting as a barrier to the species’ dispersal.
The monophyletic origin of the species is highly supported. cpDNA patterns were
shown independent of the chromosome evolution in the populations and could
have resulted from a combination of geographic factors providing links and barriers,
climatic adversities and evolutionary processes that took place during Quaternary
glaciations.

Subjects Biogeography, Evolutionary Studies, Genetics, Plant Science, Taxonomy
Keywords Silene ciliata, Mediterranean Basin, cpDNA markers, Pleistocene glaciations,
Phylogeography, Phylogeny, Alpine plant, Subspecies, Silene genus

INTRODUCTION
Alpine environments provide interesting frameworks for answering phylogeographic

and phylogenetic questions that remain unresolved from a botanical perspective. Plant

species in mountain ecosystems face challenges for survival and adaptation to different

environmental conditions and fluctuations (Körner, 2003). High altitude habitats often

follow an island-like structure due to significant levels of isolation and fragmentation

(Pawłowski, 1970), thus leading to adaptive divergence and, finally, speciation events
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(Wiens, 2004). These inland habitat patches could harbour greater species diversity

compared to a seamless area of the same extent (Quinn & Harrison, 1988). Nunataks

and peripheral glacial refugia inside mountain ranges are thought to have sheltered a wide

range of biological and genetic diversity during the Pleistocene glacial-interglacial periods

(Hewitt, 2000; Taberlet et al., 1998).

Various phylogeographic and phylogenetic surveys have been conducted for floristic

taxa of the Alps (Schönswetter et al., 2005), while the rest of the European mountain ranges

and the processes occurring inside them during glaciations have generally been overlooked

(Hewitt, 2001). Nevertheless, interest in Mediterranean mountain systems has gradually

been increasing (e.g., Vargas, 2003; Mas de Xaxars et al., 2015). The Mediterranean Basin

has undoubtedly played a crucial role in shaping the genetic and distributional patterns

of many species, since it provided them with sanctuary during glaciations (Médail &

Diadema, 2009) and served as a starting point for the recolonization of northern latitudes

(Petit et al., 2003; Tzedakis et al., 2002). Indeed, the Southern Mediterranean Peninsulas

(i.e., Iberian, Italian and Balkan) are considered important glacial refugia for many

plant and animal species (e.g., Taberlet et al., 1998; Hewitt, 2000; Hewitt, 2004), and

Mediterranean mountains have been considered potential refugia for alpine plants (Vargas,

2003; Hughes, Woodward & Gibbard, 2006).

Silene L. is a genus that has caught the attention of many scientists due to its many

interesting attributes, making it a potential “model system” in ecology and evolution

(Bernasconi et al., 2009). Yet, its phylogeny still remains perplexing and unclear (Oxelman

et al., 2000; Greenberg & Donoghue, 2011). Half of Silene species inhabit the Mediterranean

Basin (Greuter, 1995) and c. 87 of them are found in altitudes above the treeline (based on

Jalas & Suominen, 1988 and supported by Zángheri & Brilli-Cattarini, 1976; Castroviejo et

al., 1986–2001; Strid & Tan, 2002). The majority of Silene species are diploid with 2n = 20

or 2n = 24 (Bari, 1973). The latest taxonomic classification can be found in Greenberg &

Donoghue (2011). Many recent studies have tried to clarify the phylogeny of its tribes and

sections (e.g., Oxelman et al., 2000; Rautenberg et al., 2008; Rautenberg et al., 2010).

Although Silene species in alpine environments have been included in phylogenetic and

phylogeographic studies of the genus Silene (e.g., Abbott et al., 1995; Popp et al., 2005),

those native to Mediterranean mountains have been understudied. Silene ciliata is a no-

table species in the genus Silene, because it presents a circum-mediterranean distribution

around mountain ranges and above the treeline. Taxonomists have consistently divided

it into two subspecies based on habit differences and disjunct geographical distribution.

These are S. ciliata subsp. graefferi (referred to as the “Italian race”), which is principally

found in the Italian and the Balkan Peninsula, and S. ciliata subsp. ciliata, (referred to as

the “Spanish race”), which occupies the Iberian Peninsula (Blackburn, 1933). Blackburn

(1933) recorded large morphological and cytological variation both between and within

the two races. She concluded that the prime differences inside the “Italian race” are size,

leaf form, hairiness and flower colour, whereas variation in the “Spanish race” is unravelled

in all features of the plant. For the western populations several other subspecies or varieties

have long been proposed (e.g., Silene ciliata subsp arvatica Lag. in Varied .Ci. (1805),
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Silene ciliata subsp. elegans (Link. ex Brot.) Rivas Martı́nez in Brotero, 1804), although the

validation of these subcategories remains unsolved with available taxonomical data (Nieto

Feliner, 1985). This species also stands out for its extraordinary variability of ploidy levels

in natural populations (i.e., 2n = 24, 36, 48, 72, 84, 96, 120, 144, 168, 192, 240; Blackburn,

1933; Küpfer, 1974). In particular, subsp. ciliata is reported to vary from diploid to 20-ploid

complements, whereas in subsp. graefferi only diploid and tetraploid plants are described

(Blackburn, 1933; Küpfer, 1974; Tutin et al., 1993).

We followed a phylogenetic and phylogeographic approach to this species to gain

insight into the diversification processes that have taken place in alpine environments

of Mediterranean high mountains. To our knowledge, this is the first study to cover the

vast majority of the alpine Mediterranean area with the aid of molecular marker evidence.

We hypothesize that: (1) in spite of its heterogeneity discussed by Blackburn in 1933,

the species is of monophyletic origin; (2) this heterogeneity is reflected in great cpDNA

diversification that could explain the sub-classification of this species into two distinct

subspecies as proposed by Blackburn (1933) and maintained by Tutin et al. (1993) and;

(3) differentiation patterns are essentially determined by the geomorphology and spatial

location of the Mediterranean mountain ranges.

MATERIAL AND METHODS
Studied species
Silene ciliata Pourr. (subsect. Fruticulosae, Caryophyllaceae) is endemic to Europe and

inhabits the main Mediterranean mountain ranges in the northern half of Mediterranean

Basin countries spreading along the Iberian Peninsula, the Central Massif, the Apennines

and the Balkan Peninsula (Tutin et al., 1993). It is an alpine, chamaephytic, perennial,

cushion plant, which typically forms pulviniform rosettes of up to 2 cm in height

and 15 cm in diameter with high variability in size. Each plant has an average of

13 ± 11 cm (mean ± SD) flowering stems that reach 15 cm in height and bear 1–5 flowers

(Giménez-Benavides, Escudero & Iriondo, 2007).

Taxon selection
Twenty-five specimens of S. ciliata populations covering the species distribution range

were sampled for this study (Fig. 1). Plant material was obtained from herbarium spec-

imens or directly from the field and stored as silica gel-dried material (Table 1). All field

studies carried out by the authors were conducted with the permission of “Junta de Castilla

y León” and “Comunidad de Madrid” (approval code numbers: 20144360000894 and

10/117476.9/14, respectively). To assess possible intrapopulation cpDNA variation, DNA

from four additional individuals of the Cen3 population was also extracted and amplified.

For the estimation of the phylogeny of the polymorphic cpDNA region, eight additional

species of genus Silene, phylogenetically close to Silene ciliata, were included in the study.

The selection of these species was based on the most recent phylogenetic studies of Sileneae

(Sloan et al., 2009; Greenberg & Donoghue, 2011) and the availability of the required

polymorphic cpDNA regions. The search was performed in the GenBank sequence
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Figure 1 Map of our sampled populations of Silene ciliata. Distribution of sampled S. ciliata popula-
tions in the Mediterranean Basin. Acronyms were derived from the name of the mountain system where
samples were collected: Can, Cantabrian Range; Ibe, Iberian System; Pyr, Pyrenees range; Cen, Central
System; Mas, Central Massif; Ari, Aridaia range; Bal, Balkan-Rhodope mountain system; Din, Dinaric
Alps; Ape, Apennines range.

database, and the species selected as outgroups were S. latifolia Poiret, S. uniflora Roth, S.

vulgaris (Moench) Garcke and -phylogenetically closer to S. ciliata—S. acaulis (L.) Jacq, S.

otites (L.) Wibel, S. nutans L., S. paradoxa L. and S. schafta S. G. Gmel. ex Hohen. Although

S. borderei Jordan and S. legionensis Lag. are classified in the same section as S. ciliata

in recent Floras (e.g., Flora Europaea, Tutin et al., 1993; Flora Iberica; Castroviejo et al.,

1986–2001), we did not consider them because they are not included in the phylogenetic

study of Sileneae by Greenberg & Donoghue (2011). The accession numbers of all outgroup

regions are listed in Table S3.

DNA markers
In this phylogenetic and phylogeographic approach, we chose maternally inherited plastid

DNA (hereafter cpDNA) as the focus of our study, since it provides a conservative and

enduring record of plant migrational spread (McCauley, 1997; Irwin, 2002) compared to

biparentally inherited nuclear markers that show recombination (Petit, Kremer & Wagner,

1993; Heuertz et al., 2004).

Each of the 25 extracted DNA samples was amplified for the rbcL, rps16 and trnL

polymorphic cpDNA regions. These regions were selected from the 12 regions that

had previously shown major variation and the best amplification profile (Shaw et al.,

2005; Shaw et al., 2007).

DNA extraction and amplification
For DNA extraction, approximately 20 mg of dried leaf tissue of each plant sample

were weighed. Extractions were performed following the protocol of Qiagen Plant DNA

extraction kit (QIAGEN Inc., CA, USA) with some modifications. The primers used

and the PCR conditions applied for each marker, as well as the primer sequences and

references, are listed in Table S2. The PCR mix was prepared using PureTaq Ready-To-Go

PCR beads (GE Healthcare, Uppsala, Sweden).
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Table 1 Details of the sampled populations of Silene ciliata. DNA samples of Silene ciliata used for the
study. The table shows the acronym given to each sampled population (“Name”), the “Country” where
these populations were collected, “Altitude” and MGRS coordinates. A more detailed version of this table
can be found in Table S1.

Name Country Altitude (m) MGRS

Can1 ES 1,642 29TQH4477

Can2 ES 1,900 30TUN3712

Can3 ES 1,881 30TUN5150

Ibe1 ES 1,900 30TVM9646

Ibe2 ES 2,278 30TWM0276

Pyr1 ES 1,931 30TYN2920

Pyr2 ES 1,350–1,780 30TYN4026

Pyr3 ES 2,100–2,200 31T CG7967

Pyr5 ES 2,161 31TDG1980

Cen2 ES 1,950 30TTK7079

Cen3 ES 2,340 30TVL2104

Cen1 POR 1,900 29TPE1783

Mas FR 1,560 31TDL8119

Pyr4 FR 2,190 31TDH3461

Ari GR 2,182 34TFL0142

Bal3 GR 1,800 35TKF5580

Bal4 GR 1,800 35TKF5307

Bal5 GR 1,800 35TKF5586

Bal6 GR 2,060 35TKF5632

Bal1 BU 1,900 34TGM0365

Bal2 BU 2,600 34TGM0229

Din MAC 2,480 34TEM2771

Ape1 IT 1,950 33TUH8528

Ape2 IT 1,366 33TUH7979

Ape3 IT 2,000 33TVG2225

Data analyses
Sequencing results were evaluated and corrected manually before being subjected to

multiple alignment. The manual corrections were made to check whether the differences

found among some bases of the sequences were unique/repeated in some of the sequences

and to ensure the presence of gaps. Contigs were assembled and edited with Sequencher

4.1.4 (Gene Codes Corp., MI, USA), Bioedit (Hall, 1999) and ClustalW (Thompson,

Higgins & Gibson, 1994). In the latter, default settings were used.

The number of variation and informative sites of our aligned sequences was deter-

mined using DnaSP v.5.10.01 (Librado & Rozas, 2009). The phylogenetic analyses were

performed using two different statistical approaches (“Bayesian inference” and “Maximum

likelihood”) for verification reasons. In the Bayesian analysis, sequence data were first

introduced to jModeltest (Posada, 2008) to determine the best fitting evolutionary model

according to the AIC criterion. This process was followed to generate a dendrogram for
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each polymorphic cpDNA region, plus one dendrogram that included all polymorphic

cpDNA regions together. The suggested model for rbcL was [HKY], for rps16 [GTR + G],

for trnL [HKY + I] and for the tree including all markers [GTR + G]. These models were

then inserted into MrBayes 3.1.2 (Huelsenbeck et al., 2001) and posterior probabilities

(hereafter PP) were estimated using the Markov chain Monte Carlo (MCMC) method.

Four Markov chains were run in parallel for 10,000,000 generations and sampled every 100

generations. The first 100 generations were set as the “burn-in” period, while the rest were

used to calculate the 50% majority rule consensus phylogeny and posterior probability.

The resulting dendrogram archives were revised with FigTree v. 1.3.1 (Rambaut, 2009). A

maximum likelihood dendrogram including all the polymorphic cpDNA regions together

was also generated with PhyML 3.0 (Guindon et al., 2010) under the same evolutionary

model used for the Bayesian analysis. The reliability of the branches was calculated through

bootstrapping, after producing 1,000 bootstrapped data sets. All outputs were compared

and analysed to infer the evolutionary history of our study species.

Next, each group of polymorphic cpDNA region sequences was analysed with TCS 1.2.1

(Clement, Posada & Crandall, 2000) and classified according to statistically parsimonious

haplotype groups. The haplotype groups were linked by the program, constructing a

network of mutation steps, which visualized the genetic distance between them. For

the construction of the haplotype networks, deletions were not treated as polymorphic

sites, while the analysis was performed under the default of 95% connection limit. To

facilitate interpretation, a total cpDNA haplotype network was created with this method.

In addition, haplotype networks of rbcL, rps16 and trnL regions were obtained separately

to check the congruence between markers. Likewise, total neighbour-net analysis network

including all three cpDNA regions together was also designed using Splits Tree v. 4.13.1

(Huson & Bryant, 2006) and following the uncorrected p-distance between individuals.

The support for each branch was tested using the bootstrapping method with 1,000

replicates. One final test was performed with the Bayesian Analysis of Population Structure

6 (BAPS, Corander et al., 2008). This Bayesian approach is conditioned on the geographical

sampling information available. The actual analysis is performed using a systematic

hierarchical Bayesian approach, where a Markov chain Monte Carlo (MCMC) estimation

is used whenever the number of possible partitions is too large to be handled with exact

calculations. We chose BAPS software to infer the best genetic structure, considering the

coordinates of each sample, and ran a test of spatial clustering of individuals, with five

replicates for each possible number of groups (K).

RESULTS
Chloroplast haplotype and intrapopulation variation
After multiple alignment evaluation of the three polymorphic cpDNA regions, the final

length of the study region resulted in 564 nucleotides for rbcL, 756 nucleotides for rps16

and 509 nucleotides for trnL. Thus, the length of the combined matrix of an “all-marker”

region was 1,829 nucleotides. The number of variable sites among chloroplast markers

ranged from 4 to 25, while that of parsimony informative sites ranged from 3 to 16
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Figure 2 Bayesian dendrogram. Bayesian consensus dendrogram of the “all-marker” cpDNA sequence of Silene ciliata.

Table 2 Characteristics of the polymorphic cpDNA regions. Characteristics of the three polymorphic
cpDNA regions and the “all-marker” region studied in Silene ciliata. The length of the products after
amplification with the corresponding marker and alignment editing, and the variable and parsimony
sites of each product ensued from the DnaSP analysis are shown.

Chloroplast
marker

Length of selected
region

Variable
(polymorphic) sites

Parsimony
informative sites

rbcL 564 bp 4 3

rps16 753 bp 25 16

trnL 513 bp 18 11

all 1,830 bp 47 30

(Table 2). Sequences were submitted to GenBank (accession numbers are available in

Table S4).

The intrapopulation study showed no divergence for rbcL and inconsistent polymor-

phisms (i.e., only present in one individual and probably associated to sequencing errors)

in one and two bases for rps16 and trnL, respectively. Therefore, we considered that the

evidence for intrapopulation variation was not strong enough to require further testing.

Phylogeny, genetic distance analyses and population structure
No incongruence in results was found among the single markers. Therefore, we essentially

used a combined study because all the markers are in the chloroplast genome. The resulting

“all-marker” dendrogram from the Bayesian analysis (Fig. 2) revealed two distinct groups,

one including all individuals in the western region (i.e., the Iberian Peninsula and France)
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and another one including all individuals in the eastern region (i.e., the Italian and

Balkan Peninsulas). However, the calculated 65% PP for the “eastern group” did not

provide a significant difference between the two groups. On the other hand, significant

differentiation (100% PP) was found between S. ciliata individuals and the outgroups.

Strikingly, two S. ciliata individuals, Pyr1 and Pyr4, were located between the outgroups

and the rest of S. ciliata, and were significantly different from them as well as from each

other. Both Pyr1 and Pyr4 branches were long, implying high substitution rates. One

overarching clade was observed (99% PP) in the “eastern group”, and the Din population

was the only one branching off this clade. The “western group” consisted of one clade

(78% PP), but also had many separate individual branches. The maximum likelihood

dendrogram obtained with the bootstrapping method did not differ, either in formation or

in significance of branches support, from the Bayesian dendrogram.

In the haplotype network approach, the overall analysis (Fig. 3) corroborated the

existence of two (eastern–western) groups and found higher haplotype diversification

in the western group. Of all the eastern populations, the Din haplotype had the nearest

position to the western group, which was in agreement with the results obtained from the

dendrogram. Sequences assembled into 24 haplotypes, with 12 haplotypes including only

western region sequences, 10 haplotypes including only eastern region sequences and two

haplotypes outside the network (Pyr1 and Pyr4). Only eastern region sequences Ape1 and

Ape2 shared the same haplotype pattern, and no shared haplotype patterns were found

between the “eastern” and “western” groups. Moreover, the haplotype network revealed

a close relationship between the haplotype pattern of Ape3 and some Balkan populations

and among the haplotype pattern of Pyr2 and some Central System populations. The

rbcL haplotype network (Fig. S1) was selected to visualise the geographic distribution of

haplotypes by regions, as it showed the most representative and parsimonious patterns of

the three cpDNA regions, when analysed separately (Fig. 5). In that network, Cen2 and

Bal1 haplotypes were prevalent in the western and eastern regions, respectively.

The neighbour-net method suggested a grouping pattern that was in accordance with

the one obtained using the haplotype network approach. Besides that, it provided a chance

to delve deeper into the differences among S. ciliata sampled populations. The all-inclusive

neighbour-net network (Fig. 4) confirmed the classification of all studied populations into

a western and an eastern region, which was 91.6% statistically supported. Furthermore,

some distances inside the network were noteworthy because they verified previous results.

This is the case of the observed 98.4% difference in the distance between Cen1 and the

rest of Central System populations (implied by the haplotype network). The Italian Ape3

showed a minor differentiation (77.1%) that was also noticed in the haplotype network

and in the dendrograms. Last but not least, the eastern population Din was placed in the

“western” group.

The Bayesian spatial clustering of populations resulted in an optimal grouping of

K = 2. This supported the western–eastern region division of populations noted in

previous analyses. Only the Balkan population Din deviated once more from this division,

clustering with the western-region populations.
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Figure 3 Total cpDNA haplotype network. Combined haplotype network analysis including all cpDNA
markers and showing the relationships between the cpDNA parsimony haplotype groups. Rectangles
and ovals depict haplotypes that belong to the western and eastern groups, respectively. The patterns of
individuals Pyr1 and Pyr4 are segregating from the rest of the haplotypes.
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Figure 4 Neighbour-net analyses of the total matrix. Neighbour-net analyses of rbcL (A), rps16 (B)
and trnL (C) based on uncorrected p-distances. Numbers denote significant bootstrapping values. The
eastern and western groups of S. ciliata populations are indicated by grey-shaded clusters. Blue letters
correspond to the eastern group and red letters to the western group.

Figure 5 Distribution and frequency ratios of rbcL haplotypes. Distribution and frequency ratios of
S. ciliata haplotypes for rbcL (see Fig. 4A) in the mountain systems of this study. The proportion of
different haplotypes at each location is shown in the circles.

DISCUSSION
Genetic diversity in the cpDNA of S. ciliata: a comparative
approach
This study reveals high haplotype variability and therefore supports the hypothesis of high

cpDNA diversification among S. ciliata populations. Similar results have been reported
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in previous studies on other Silene species, such as S. latifolia (Ingvarsson & Taylor, 2002),

S. vulgaris (Štorchová & Olson, 2004) and S. dioica (Hathaway, Malm & Prentice, 2009),

among others. Yet, S. ciliata is ranked among the most varied. Low levels of cpDNA

diversification and no diversification at all have been found in S. hifacensis (Prentice et

al., 2003) and S. sennenii (López-Vinyallonga et al., 2012), respectively, although this may

be due to their narrow distributions and low population sizes (Gitzendanner & Soltis, 2000;

López-Pujol et al., 2009; López-Vinyallonga et al., 2012). Considering this, we suggest that

the variation detected in S. ciliata is the outcome of a relatively ancient, wider distribution

range, followed by a gradual splintering caused by a series of ice ages, as proposed for

many other high-elevation species (reviewed by Nieto Feliner, 2014). An alternative

explanation to vicariance is that diversification patterns resulted from dispersal. However,

long-distance dispersal events most likely played a minor role given that S. ciliata seeds lack

any specialized dispersal structure and, thus, most seeds are barochorously dispersed at

distances of less than 1 m (Lara-Romero et al., 2014). Finally, although the step node of the

species is dated around 10 million years ago (Sloan et al., 2009), and the diversification of

the southern European alpine flora has been correlated with the climatic oscillations of the

Pleistocene (Kadereit, Griebeler & Comes, 2004), we have no information about the date of

the crown node. Therefore, we have no evidence of the period when the diversification into

the two subspecies took place.

Interpreting the distinction of S. ciliata between western and
eastern regions and their origin
No evidence was found against the classification of S. ciliata into a western and an eastern

race (Blackburn, 1933; Tutin et al., 1993). Hence, we propose maintaining the names Silene

ciliata subsp. ciliata and S. ciliata subsp. graefferi to describe the noted clustering of S.

ciliata individuals into a western and eastern group, respectively. On the other hand,

both dendrograms indicated a significant difference between S. ciliata individuals and

the outgroups which, together with the nonessential divergence between populations,

corroborates the monophyly of our species.

Tracing back to the species’ differentiation, we hypothesize that populations of an

ancestor of S. ciliata dominated the Mediterranean Basin. At the onset of glacial period

climatic oscillations in the late Tertiary and in the Quaternary period, these ancestral

populations might have been forced to migrate to favourable areas, while those unable

to encounter a glacial refugium because of distance, time or natural barriers perished.

Given that we are dealing with an alpine species, S. ciliata populations could have migrated

following the paths that constitute links between neighbouring mountains. The Alps

mountain range system seems to have posed a persistent and significant hurdle for this

species’ migration. A rigorous example supporting this theory is that during Quaternary

glaciations, the Alps, in contrast to the Mediterranean mountains, were extensively covered

with ice sheets (Hughes, Woodward & Gibbard, 2006; but see Stehlik et al., 2002). This is

in accordance with previous phylogeographic studies (e.g., Taberlet et al., 1998; Hewitt,

2000) and may explain why S. ciliata populations have not been found there. Moreover,
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it would account for the observed disconnected distribution and division of the species

into the western and eastern groups, since the geographical borders formed by the two

groups coincide with the location of the Alps. A similar grouping pattern has been found

in the Mediterranean for Androsace vitaliana (Vargas, 2003) and Heliosperma (Frajman

& Oxelman, 2007), genera with the barrier shifting west and east of the Alps region,

respectively. Disjunction in distribution, possibly resulting from the Alps and distinction

into two subspecies has recently been proposed in Artemisia eriantha, another alpine plant

distributed along the Alps and many Mediterranean mountains (Sanz et al., 2014), which

also supports our hypothesis.

Evolutionary processes and geo-climatic effects on western and
eastern populations
Apart from the significant difference found between eastern and western cpDNA

sequences, further important diversification was found inside each group. Polyploidization

is an evolutionary mechanism that has generated evolutionary lineages during the

Pleistocene (Stebbins, 1984). The number of chromosomes of S. ciliata is mostly n = 24

or n = 48, although populations with much higher levels of ploidy have been described

in S. ciliata subsp. ciliata (Blackburn, 1933; Küpfer, 1974; Tutin et al., 1993). Hence, we

propose that this mechanism could explain some of the differentiation within S. ciliata.

Nevertheless, considering available chromosome data, we found no relationship between

chromosome number and the clustering obtained in our results. Variation may have also

resulted from slow mutation events inside disjunct refugia during periods of adverse

climatic conditions (Sanz et al., 2014) either as an outcome of elevational range shifts

(lowland glacial refugia) or in situ endurance (nunataks). Additionally, other sources of

diversification like genetic drift associated to low population sizes and prolonged isolation

should be considered (Young, Boyle & Brown, 1996).

Regarding the western group, genetic diversity is apparent in the Pyrenees mountain

range and has led to the genetic disaffiliation of the range into a western and an eastern

section. This is in line with the genetic break found in Artemisia eriantha (Sanz et al., 2014).

Another component of the western group diversification was introduced by the highly

divergent Cen1 sequence of Serra da Estrela, suggesting high isolation of this population.

On the other hand, the merging of Pyr2 sequence with Central System S. ciliata individuals

may imply braided migrational paths between these populations during glacial-interglacial

events.

Interestingly, the degree of divergence recorded in the eastern group of S. ciliata is higher

than that in the western group. This observation has also been made for temperate trees

and shrub taxa (Petit et al., 2003). This higher genetic diversity and the existence of more

unique haplotypes, especially in the Balkan Peninsula, might be due to the additional effect

of the complex orography and restricted territorial extent of existing refugia, which did

not facilitate exchange among populations. More specifically, the various orientations of

mountain chains in the Balkans may have acted as a barrier to migration (Tzedakis, 2004).

The individuals from the western part of the eastern groups (e.g., Ari and Din) showed
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some important differences in certain analyses (see Figs. 3 and 4). This might be related

to the nature of the east Balkan slopes, which have a more gentle relief compared to the

steep west mountains (Reed, Kryštufek & Eastwood, 2004), thereby fostering higher levels

of isolation. Further differentiation in Din could be because the Dinaric Alps were much

less affected by glaciations than the rest of the Mediterranean mountain systems (Frajman

& Oxelman, 2007), resulting in the maintenance of relict populations. Lastly, the close

relationship of Italian Ape3 with some Balkan populations (especially Bal4) might result

from the proposed land connection of the north Italian and Balkan Peninsulas during the

early Holocene (approx. 20–16 ka BP) (Lambeck et al., 2004) which would have facilitated

dispersal events between the two regions.

The Pyrenees case
The Bayesian and maximum likelihood analyses showed that Pyr1 and Pyr4 differed

from the outgroups as well as from the rest of S. ciliata individuals and were situated in

an intermediate position between them in the dendrogram (see Fig. 2). Similar results

were found in the rest of the analyses. We surmised that this pattern could be another

example of the Pyrenees range acting as a stable hybrid zone, as argued in Chorthipopus

parallelus (Hewitt, 1993) and Saxifraga subsect. Triplinervium (Mas de Xaxars et al., 2015).

At any rate, the rise of hybrid zones due to glaciations, and hence, the preservation of

different species genomic information via gene flow (Harrison, 1990) are linked with

high altitudes (Hewitt, 2001 and references therein). In the case of Pyr1 and Pyr4, their

haplotype patterns may have resulted from chloroplast capture between S. ciliata and

other congeneric, sympatric species (Rieseberg & Soltis, 1991). After all, the geographical

contact of congeneric species causing chloroplast sharing has been reported in other

studies including species in the same genus, like S. latifolia and S. dioica (Prentice, Malm &

Hathaway, 2008), as well as in other plant groups (e.g., Gardner et al., 2004; Okuyama et al.,

2005). Given the number of haplotype patterns detected inside the species, the alternative

explanation of Pyr1 and Pyr4 resulting from lineage sorting is another option that cannot

be readily rejected (Galtier & Daubin, 2008).

Conclusions and future prospects
Our results confirm the monophyly of S. ciliata due to the differences found between the

studied populations and the outgroups and reveal a clear west-to-east division of S. ciliata

populations with the borderline set in the region of the Alps. This division validates the

past classification of the species into two subspecies; S. ciliata subsp. ciliata found west

of the Alps (“Spanish race”, Blackburn, 1933) and S. ciliata subsp. graefferi located east of

the Alps (“Italian race”, Blackburn, 1933). Major intraspecific variation is supported by all

analyses, but none of them supports the occurrence of additional varieties or subspecies

(according to Küpfer, 1974; Castroviejo et al., 1986–2001). In addition, we suggest that

geographic and climatic factors may have played a central role in the evolutionary history

of the species and the formation of the two subspecies. Further analyses including more

individuals and cpDNA markers, as well as mitochondrial DNA (mtDNA) markers

and nuclear ribosomal internal transcribed spacer (nrITS) regions, are encouraged to
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secure conclusions of this role and clarify the status of unsolved-incongruent populations.

Molecular clocks, the inclusion of additional congeneric species and increased sampling

effort are necessary to resolve the remaining questions.
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and Alvaro Bueno for plant collection and Lori De Hond for linguistic assistance.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the AdAptA project (CGL2012-33528) of the Spanish

Ministry of Economy and Competitiveness and an ERASMUS mobility grant. The

funders had no role in study design, data collection and analysis, decision to publish, or

preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

AdAptA: CGL2012-33528.

ERASMUS mobility grant.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Ifigeneia Kyrkou conceived and designed the experiments, performed the experiments,

analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,

prepared figures and/or tables.
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Sierra del Teleno y Sierra de la Cabrera. Vol. 2. Madrid: Editorial CSIC-CSIC Press.

Nieto Feliner G. 2014. Patterns and processes in plant phylogeography in the Mediterranean
Basin. A review. Perspectives in Plant Ecology, Evolution and Systematics 16:265–278
DOI 10.1016/j.ppees.2014.07.002.

Okuyama Y, Fujii N, Wakabayashi M, Kawakita A, Ito M, Watanabe M, Murakami N, Makoto K.
2005. Nonuniform concerted evolution and chloroplast capture: heterogeneity of observed
introgression patterns in three molecular data partition phylogenies of Asian Mitella
(Saxifragaceae). Molecular Biology and Evolution 22:285–296 DOI 10.1093/molbev/msi016.

Oxelman B, Lidén M, Rabeler RK, Popp M. 2000. A revised generic classification of the tribe
Sileneae (Caryophyllaceae). Nordic Journal of Botany 20:743–748
DOI 10.1111/j.1756-1051.2000.tb00760.x.

Pawłowski B. 1970. Remarques sur l’endémisme dans la flore des Alpes et des Carpates. Vegetatio
21:181–243 DOI 10.1007/BF02269663.

Petit RJ, Aguinagalde I, De Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S,
Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martı́ n JP,
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