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ABSTRACT
Background. Place of origin is an important factor when determining the quality
and authenticity of Angelica sinensis for medicinal use. It is important to trace the
origin and confirm the regional characteristics of medicinal products for sustainable
industrial development. Effectively tracing and confirming the material’s origin may
be accomplished by detecting stable isotopes and mineral elements.
Methods. We studied 25 A. sinensis samples collected from three main producing
areas (Linxia, Gannan, and Dingxi) in southeastern Gansu Province, China, to better
identify its origin. We used inductively coupled plasma mass spectrometry (ICP-MS)
and stable isotope ratiomass spectrometry (IRMS) to determine eightmineral elements
(K, Mg, Ca, Zn, Cu, Mn, Cr, Al) and three stable isotopes (δ13C, δ15N, δ18O). Principal
component analysis (PCA), partial least square discriminant analysis (PLS-DA) and
linear discriminant analysis (LDA) were used to verify the validity of its geographical
origin.
Results. K, Ca/Al,δ13C,δ15Nandδ18Oare important elements to distinguishA. sinensis
sampled from Linxia, Gannan and Dingxi. We used an unsupervised PCA model to
determine the dimensionality reduction of mineral elements and stable isotopes, which
could distinguish theA. sinensis from Linxia. However, it could not easily distinguishA.
sinensis sampled from Gannan and Dingxi. The supervised PLS-DA and LDA models
could effectively distinguish samples taken from all three regions and perform cross-
validation. The cross-validation accuracy of PLS-DA using mineral elements and stable
isotopes was 84%, which was higher than LDA using mineral elements and stable
isotopes.
Conclusions. The PLS-DA and LDA models provide a theoretical basis for tracing the
origin of A. sinensis in three regions (Linxia, Gannan and Dingxi). This is significant
for protecting consumers’ health, rights and interests.
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INTRODUCTION
Angelica sinensis is a native Chinese plant (Ross, 2001). Its dried root, commonly known
as Danggui in China, is frequently used in Chinese traditional medicines. Its use was first
recorded in theDivine Farmer’s Classic ofMateriaMedica (also known as Shennong Bencao
Jing) more than two thousand years ago (Ai et al., 2013). It is widely distributed in China,
Korea, Japan, Europe and America (Lu et al., 2020; Mei et al., 2015; Zhao et al., 2003). The
Dingxi region in the Gansu Province of China is the primary A. sinensis production area,
accounting for 70% of China’s total production and 80% of its export (Giacomelli et al.,
2017). A. sinensis is often used to treat gynecological diseases (Circosta et al., 2006) and is
also called ‘‘female ginseng’’ (Hook Ingrid, 2014; Tian et al., 2017). A. sinensis is becoming
increasingly popular worldwide as a health supplement for women.

Recently, food and drug safety issues have drawn much attention due to increased
global import and export trade. However, we lack effective scientific tools and techniques
to ensure the enforcement of laws and regulations (Tang et al., 2015). The geographical
origin of A. sinensis has been unexplored so far. Previous research has mainly focused
on the extraction and separation of natural compounds from A. sinensis and screening
their bioactivity (Chao & Lin, 2011; Jin et al., 2012). More than 70 compounds have been
isolated from the dried roots of A. sinensis (Chao & Lin, 2011), of which ferulic acid and
Z-lignoside are the two main identified components (Giacomelli et al., 2017; Lu et al.,
2005). The molecular genetics of A.sinensis are not well studied (Mei et al., 2015; Zhao et
al., 2003). Molecular genetics can explain the genetic distance between A. sinensis varieties,
but it cannot be used as evidence of geographic distance (Adamo et al., 2012). Thus our
ability to trace its geographic origin is limited.

Many countries have issued laws and regulations for food and drug traceability, resulting
in the development of radio frequency identification (RFID), barcode readers (George et
al., 2019) and two-dimensional barcode technology (Chen et al., 2020). Although these
technologies can track food source and flow, it is only limited to a document label
description. It is impossible to guarantee whether the label matches the product in complex
product transportation and processing chains. Furthermore, the provenance of food
traceability must also be verified. The geographical tracing of food and drugs typically
occurs through mineral elements (Coelho et al., 2019; Sayago, González-Domínguez &
Beltrán, 2018; Potortì et al., 2018), stable isotopes (Camin et al., 2017; Pianezze et al., 2019;
Wadood, Guo & Wei, 2019; Zhou et al., 2019), organic compounds (Lukić et al., 2018; Fang
et al., 2019; Liu et al., 2017), and infrared spectral absorption characteristic peaks (Wang et
al., 2019; Hu et al., 2019; Innamorato et al., 2019). Tracing based on mineral elements and
stable isotopes has been used for a variety of plant and animal products with geographical
origin traceability. For example, tea (Deng et al., 2019; Zhang et al., 2018), pear (Albergamo
et al., 2018), rice (Liu et al., 2018), olive oil (Damak et al., 2019), alcohol (Geană et al., 2017;
Pepi et al., 2019; Wu et al., 2019), meat (Hao et al., 2019) and aquatic products (Han et al.,
2020; Luo et al., 2019; Li et al., 2018) have been traced using these methods.

Mineral elements in soil are significantly related to corresponding levels in plants, in
respect of the traceability of agricultural raw materials (Greenough, Mallory-Greenough
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& Fryer, 2005; Brzezicha-Cirocka, Grembecka & Szefer, 2016; Catarino et al., 2008). The
mineral elements in A. sinensis reflect its contact with soil geochemistry. The regional
geological heterogeneity could lead to variations in the mineral-element contents of
A. sinensis. Mineral elements are mostly stable in the raw materials of agricultural products
compared with other components, whichmakes this a promising identifier for determining
food provenance (Zhao, Zhang & Zhang, 2017; Catarino et al., 2018). Stable isotopes of
plants are affected by environmental factors and its temporal and spatial specificity. It
has been reported that δ13C and δ18O are closely related to factors such as precipitation,
temperature, altitude, and slope (Hultine & Marshall, 2000; Granath et al., 2018). Among
them, δ13C values depend on the relative CO2 value in the external environment and
the CO2 concentration of the intercellular environment (mainly stomatal density and
stomatal conductance) (Ferrio, Voltas & Araus, 2003). δ18O values in plants mainly depend
on atmospheric precipitation and transpiration (Ripullone et al., 2008). Precipitation and
radiation show temporal and spatial specificity, which leads to differences in the δ18O
enrichment in plants. δ15N values in plants are mainly affected by nitrogen pools in
soil. δ15N typically exists in the form of nitrogen compounds. The nitrogen compounds
from different soil types lead to variations of δ15N across different geographical regions
through nitrification, denitrification and ammonia volatilization (Handley & Raven, 2010).
Therefore, the spatial distribution of stable isotope ratios in the environment is necessary
to determine the A. sinensis’ isoscapes. This study provides a theoretical basis for evaluating
the geographical origin of A. sinensis based on the calibrated characteristic values of a stable
isotope.

In this study, 25 samples of A. sinensis were collected from three regions (Linxia,
Gannan, and Dingxi) in the southeastern province of Gansu, China. We measured three
stable isotopes and eight mineral elements. Principal component analysis (PCA), partial
least square discriminant analysis (PLS-DA) and linear discriminant analysis (LDA)
for multivariate data discriminant analysis were conducted. We sought to (1) describe
the differences between stable isotopes and mineral elements in three different regions
(Linxia, Gannan and Dingxi); (2) screen the landmark mineral elements and stable isotope
factors of A. sinensis in the different regions; and (3) compare PCA, PLS-DA and LDA’s
discrimination and cross-validation ability on A. sinensis.

MATERIALS & METHODS
Study area and sample collection
Samples were taken from the Linxia (LX), Gannan (GN) and Dingxi (DX) regions of
southeast Gansu Province, China, between 34◦24′–35◦57′N and 103◦11′–104◦28′E. Linxia
has a semi-arid climate, with an average annual temperature of 5.2–7.0 ◦C and an average
annual precipitation of 350–660 mm. Gannan has a plateau climate, with large regional
differences in annual average temperature and extremely uneven geographical distribution
of precipitation; the average annual temperature is between 1–13 ◦C and the average
annual precipitation is 518–634 mm. Dingxi is a middle temperate semi-arid area with a
continental monsoon climate, with an average annual temperature of 5.5 ◦C and an average
annual precipitation of 635 mm.
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Figure 1 Geographical distribution of A. sinensis sampling areas in three regions (Linxia, Gannan and
Dingxi).

Full-size DOI: 10.7717/peerj.11928/fig-1

We collected 25 samples from farmlands during the A. sinensis harvest season from April
to May 2019. We contacted local farmers to obtain their permission to collect experimental
samples. Global Positioning System (GPS) was used to record the longitude and latitude
of each sampling plot, and ArcGIS (Version 10.7) was used to plot the sampling points.
As shown in Fig. 1, samples were collected from planting sites (including five in Linxia,
seven in Gannan, and 13 in Dingxi). We dug the roots of A. sinensis, gently brushed away
the surface soil, and stored the sample in a self-sealing bag. Samples were put into a 4 ◦C
fresh-keeping container for refrigeration. A freshly collected sample was cleaned and rinsed
with deionized water three times then dried in a constant temperature oven at 70 ◦C to
a constant weight. Dried roots were crushed by a high-speed pulverizer and were passed
through a 100-mesh sieve. These samples were placed in self-sealing bags for storage.

Stable isotope measurement
We weighed 5.0 mg of ground A. sinensis into tin capsules. We used an isotope ratio
mass spectrometer (IRMS Delta plus XP; Thermo-Fisher, USA) and an element analyzer
(Flash EA) to analyze δ13C and δ15N. The sample was introduced into the element
analyzer through the autosampler and was transferred to the IRMS through the carrier gas
(helium) to determine δ13C and δ15N. Reference materials, including USGS24, IAEA-600,
IAEA-N-2 and IAEA-NO-3, were used for calibration. During the analysis, a laboratory
standard was interspersed for every 12 samples for calibration. The long-term accuracy of
the instrument was 0.2h. We used a known laboratory wheat flour (B2159) standard with
δ13C (δ13CV−PDB =−13.68 ± 0.2 (h)) and δ15N (δ15NAir =1.58 ± 0.15 (h)) values to
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check the accuracy of the instrumental condition. The samples were analyzed in triplicate.
We calculated the average of the three samples.

In order to perform δ18O analysis, we weighed 1 mg of the dried A. sinensis sample and
packed it into an isotope silver capsule. Samples were loaded into the elemental analyzer
Flash EA through the autosampler, and the analyte was sent to the isotope ratio mass
spectrometer (253plus; Thermo-Fisher, USA) for δ18O determination. The international
reference standards for δ18O are IAEA-601and USGS55. The samples were analyzed in
triplicate. We calculated the average of the three samples.

The following formula was used to calculate the relative deviation of the measured δ13C,
δ15N and δ18O from the ratio of international standard substances:

δ
(
h

)
=

[
Rx−Rstd

Rstd

]
×1000

—δ(h): The heavier isotope values in the sample (13C, 15N, 18O);
Rx: The ratio of stable isotope in the sample (13C/12C, 15N/14N, 18O/16O);
Rstd: International standard material stable isotope ratio ((13C/12C)VPDB, (15N/14N)Air,

(18O/16O)VSMOW)

Mineral elements analysis
All of the materials used for standard solution and sample processing and the Teflon
digestion vessel were immersed in 20%HNO3 solution for 24 h, then rinsed with deionized
water and dried before testing the standard solution and samples. We used inductively
coupled plasma mass spectrometry (ICP-MS) tuning solution to calibrate ICP-MS. The
Rh standard solution was used as an internal standard. We prepared the working standard
solution by diluting the stock standard solution of K, Mg, Ca, Zn, Cu, Mn, Cr and Al
with 2% HNO3. The preparation concentration of K, Mg and Ca was 0–150 mg/L, and
the preparation concentration of Zn, Cu, Mn, Cr and Al was 0–500 µg/L. Each working
standard solution tested was repeated three times to obtain a standard curve. The standard
curve R2 of all the elements measured was greater than 0.9990.

We weighed 0.3± 0.01 g of the A. sinensis powder. These samples were then placed into
a microwave digestion tank and 8 mL of concentrated HNO3 was added. The container was
covered and digested. After digestion was complete, the A. sinensis sample was cooled to
room temperature in a 25 mL volumetric flask to a constant volume, and this was repeated
three times. The digestion process was: (1) 800 W constant microwave power at 100 ◦C for
10 min; (2) 800 W constant microwave power at 150 ◦C for 10 min; (3) 800 W constant
microwave power at 180 ◦C for 30 min.

ICP-MS was used to determine eight mineral elements in A. sinensis samples (Albergamo
et al., 2018) and their quantification limits were 0.003 mg/L (K), 0.008 µg/L (Ca), 0.0008
mg/L (Mg), 2.830 µg/L (Al), 0.062 µg/L (Zn), 0.023 µg/L (Mn), 0.443 µg/L (Cu), and 0.026
µg/L (Cr). The limit of quantification (LOQ)was the analyte concentration equivalent to 10
times the standard deviation (10 σ ) of the blank solution for 10 consecutive measurements.

Statistical analysis
We analyzed the significant differences between variables form the three different regions
after testing the 11 variables’ distribution and the analysis variables’ basic statistics. These
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were statistically analyzed by grouping (P < 0.05), and multiple comparisons between
paired groups were performed by using Tukey’s honestly significant differences (Tukey
HSD) method. We standardized the data and performed dimensionality reduction and
discriminant analysis.

The traceability and provenance of food depends on reliable measurement data and
using the appropriate chemometric data processing methods (Bertacchini et al., 2013).
Single element stoichiometry is greatly limited in terms of traceability, and it is impossible
to comprehensively evaluate a large number of variables with it. Thus, a lot of important
traceability information is lost. Multivariate data analysis techniques such as PCA, PLS-
DA, and LDA can effectively realize the comprehensive analysis of multiple ‘‘fingerprint’’
information. PCA analysis is an internal exploration of data, with only a natural grouping
of a multivariate data set and no predictive function. PLS-DA is a supervised discrimination
method and is different from PCA. It can integrate the basic functions of multiple linear
regression analysis, canonical correlation analysis and principal component analysis and
can solve the multicollinearity problem in linear regression (Brereton & Lloyd, 2014).
PLS-DA assigns groups to the samples before classification. After grouping, the model adds
an implicit virtual binary matrix as the response sample category (specifying a group as
1, and all other values are 0). The multivariate data set is the independent variable matrix
used to train the model, the prediction sample independent variable data set is assigned
through the threshold of the training model, and the sample category is defined. After
establishing the A. sinensis PLS-DA model, the classification performance of the model
and the model itself were evaluated. R2 is the regression coefficient used in the PLS-DA
model, which was used to evaluate the overall fit of the model. The recommended value
of R2 for a good model is between 0.6–1. Q2 refers to the predictive ability of the model
after modeling, and should be between 0.5 and 1 (Ballabio & Consonni, 2013; Albergamo
et al., 2018). The Variable Importance Plot (VIP) was used to measure the variables with
high contribution of the projection on the first two axes (Sayago, González-Domínguez &
Beltrán, 2018). LDA is also a dimensionality reduction technique of supervised learning.
LDA reduces the dimensionality of samples by maximizing the difference between groups
andminimizing the difference within the group. It depends on the average within the group
during dimensionality reduction. LDA andPLS-DAhave the same data verificationmethod.
First, the model was verified by modeling its own data set. Due to the limited survey data,
we used the leave-one-out method (LOOCV) to verify the predictive ability of the built
model. Finally, statistics of real samples and model prediction samples were represented
by a confusion matrix, and the model prediction accuracy rate was calculated. PCA,
PLS-DA and LDA are traditional statistical discriminant methods, which usually perform
well in terms of geographic origin classification when excluding redundant/confounding
predictive factors (Gonzalvez, Armenta & De La Guardia, 2009). They have been widely
used in the discriminant analysis of food and drug origin traceability.

The significant differences between each variable in the Linxia, Gannan and Dingxi
samples andmultiple comparisons of Tukey-HSDwere determined using the psych package
in R software (version 3.6.1). PCA was conducted using the FactoMineR and factoextra
packages in R; PLS-DA model modeling, evaluation, and verification were determined by
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Table 1 Overview of the mineral elements and stable isotopes of A. sinensis from Linxia, Gannan and
Dingxi.

Range Median Mean SE std.dev coef.var

K(mg/kg) 2806.75–8234.19 5958.66 5639.95 311.94 1559.71 0.28
Mg(mg/kg) 423.82–1191.03 748.98 751.88 34.34 171.69 0.23
Zn(mg/kg) 3.41–7.70 5.06 5.32 0.22 1.12 0.21
Cu(mg/kg) 1.02–2.55 1.67 1.74 0.08 0.39 0.22
Ca(mg/kg) 511.78–1333.02 889.09 869.37 34.7 173.52 0.2
Mn(mg/kg) 3.50–7.86 5.18 5.27 0.22 1.12 0.21
Cr(mg/kg) 0.50–2.73 0.9 1.02 0.11 0.57 0.56
Al(mg/kg) 66.38–287.77 106.49 119.13 10.6 52.99 0.44
δ13C(h) −24.83–−22.75 −23.94 −23.79 0.1 0.52 −0.02
δ15N(h) −2.08–5.57 1.91 2.13 0.39 1.95 0.91
δ18O(h) 23.44–27.10 24.77 25.07 0.22 1.08 0.04

Notes.
Range, variable range; median, median values from the three regions; mean, average values from the three regions; SE,
standard error; std.dev, standard deviation; coef. Var, coefficient of variation.
The coefficient of variation (CV) measures the degree of variation within an element (less than 0.2, has a low degree of varia-
tion; between 0.2 and 0.3, a medium variation; greater than 0.35, highly variable).

SIMCA software (version 13.0; Umetrics AB, Umeå, Sweden). Themodeling and evaluation
of the LDA model were conducted using SPSS (version 21.0; Chicago, USA).

RESULTS
Multi-element and stable isotope characteristics of A. sinensis
Statistical analysis of the eight mineral elements and three stable isotope ratios of A.
sinensis sampled from three regions were determined using ICP-MS and IRMS. Results
are presented in Table 1. Among them, the K content (5639.95 ± 311.94 mg/kg) in 25 A.
sinensis samples was the highest, and the variation range and variance were the largest,
followed by Ca (869.37 ± 34.70 mg/kg), Mg (751.88 ± 34.34 mg/kg), Al (119.13 ± 10.60
mg/kg), Zn (5.32± 0.22 mg/kg), Mn (5.27± 0.22 mg/kg), Cu (1.74± 0.08 mg/kg) and Cr
(1.02 ± 0.11 mg/kg). K, Ca, Mg, Zn, Mn and Cu were moderately variable, while Al and
Cr were highly variable. The stable isotopes δ13C, δ15N and δ18O were - 23.79 ± 0.1h,
2.13± 0.39hand 25.07± 0.22h, respectively. The highest coefficient of variation of δ15N
is 0.91, and the coefficient of variation of δ13C and δ18Owere lower than 0.1. The variation
of Al, Cr and δ15N were highly variable. Therefore, the greater the difference between
elements among A. sinensis, the more likely it will be suitable for origin traceability.

The mean ± standard error of Linxia, Gannan and Dingxi in Gansu Province were
calculated to compare the differences between elements from the three regions (Table 2).
Compared with the mineral elements in the three regions, Linxia A. sinensis K was
significantly lower than Gannan and Dingxi (P < 0.05), while Al and Ca/Al were
significantly higher than Gannan and Dingxi (P < 0.05). Mg, Zn, Cu, Ca, Mn, Zn/Mn
and Cu/Cr had no significant difference. Among the stable isotopes, the δ13C and δ15N
from Linxia were significantly (P < 0.05) lower than that of Gannan and Dingxi, and the
δ18O from Gannan was significantly (P < 0.05) higher than that of Linxia and Dingxi.
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Table 2 Statistical analysis of the mineral elements and stable isotopes (mean± SE) of A. sinensis sam-
pled from Linxia, Gannan and Dingxi.

LX GN DX

K(mg/kg) 3562.27± 305.41a 6396.38± 298.33b 6031.74± 401.89b

Mg(mg/kg) 674.73± 80.74a 689.48± 32.96a 815.15± 52.04a

Zn(mg/kg) 5.97± 0.76a 4.84± 0.20a 5.32± 0.29a

Cu(mg/kg) 2.05± 0.16a 1.54± 0.14a 1.72± 0.09a

Ca(mg/kg) 769.65± 86.01a 827.00± 30.92a 930.54± 52.11a

Mn(mg/kg) 6.13± 0.54a 5.36± 0.39a 4.90± 0.28a

Cr(mg/kg) 1.59± 0.32b 0.74± 0.11a 0.95± 0.14ab

Al(mg/kg) 186.52± 36.04b 97.98± 11.73a 104.61± 6.72a

δ13C(h) −24.39± 0.15a −23.6± 0.15b −23.66± 0.13b

δ15N(h) −0.15± 0.66a 3.71± 0.52b 2.17± 0.42b

δ18O(h) 24.65± 0.30a 26.38± 0.16b 24.52± 0.23a

Notes.
Significant differences were analyzed using the ANVOA-Tukey HSD method.
Different letters indicate significant differences in the three regional variables (P < 0.05).
LX, Linxia; GN, Gannan; DX, Dingxi.

Table 3 Principal component analysis of the first three-axis eigenvalues and variance interpretation
rate.

Eigenvalue Variance percent (%) Cumulative variance percent (%)

Dim.1 2.95 38.42 38.42
Dim.2 1.56 20.31 58.73
Dim.3 1.15 14.95 73.68

PCA of A. sinensis
The original data (K, Mg, Zn/Mn, Cu/Cr, Ca/Al, δ13C, δ15N, δ18O) were normalized and
analyzed by factor analysis. The Kaiser-Meyer-Olkin (KMO) test and Bartlett sphere test
results were KMO = 0.506 (KMO > 0.5) and P = 0.045 (P < 0.05). The approximate
chi-square value of Bartlett’s sphere test was 41.83, which satisfies sampling adequacy and
Bartlett’s sphere test significance. Table 3 shows that in PCA analysis, the first principal
component explained 38.42% of the total variance, the second principal component
explained 20.31% of the total variance, and the first three principal components explained
73.68% of the total variance. These results can fully reflect the main data.

The relationship between the principal component and each element was explored
through the factor loading plot and the contribution rate of each element on the first
five principal component axes. We examined the significant correlation (P < 0.05)
between principal component axes and mineral elements and stable isotopes (Fig. 2).
Figures 2A and 2B show that Ca/Al, K, δ13C, and δ15N had a significant positive correlation
(P < 0.05) with the first principal component axis. Zn/Mn and Cu/Cr had a significant
positive correlation (P < 0.05) with the second principal component axis, and δ18O had a
significant negative correlation (P < 0.05) with the second principal component axis. The
contribution of mineral elements and stable isotopes on the first five principal component
axis was explained. Ca/Al, K, δ13C and δ15N had a high contribution to the first principal
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Figure 2 The relationship betweenmineral elements, stable isotopes and principal components in
PCA. (A) Factor loading plot; (B) correlation plot between the principal components and each factor; (C)
mineral elements and stable isotopes contributions on the first principal component axis; (D) mineral ele-
ments and stable isotopes contributions on the second principal component axis.

Full-size DOI: 10.7717/peerj.11928/fig-2

component axis, while Zn/Mn, Cu/Cr and δ18O had a high contribution to the second
principal component axis. In addition to the first two axes, the other axes have a low degree
of interpretation of population variance, and K, Mg, δ13C, δ15N, δ18O, Zn/Mn and Cu/Cr
have strong correlations in other principal component axes. Therefore, the explanations of
contributions to other axes cannot be trusted. The histogram in the lower right corner of
Figs. 2C and 2D quantifies the contribution of mineral elements and stable isotopes in the
first two axes, and provides a threshold for the contribution of higher variables.

The distribution of principal component scores of A. sinensis based on K, Mg, Zn/Mn,
Cu/Cr, Ca/Al, δ13C, δ15N, and δ18O in the three regions on the first two principal
component axes are shown in Fig. 3A. The score diagram shows that the first principal
component axis can distinguish A. sinensis sampled from Linxia and other places. Since
Ca/Al, K, δ13C and δ15N contributed more to the first principal component axis, Ca/Al,
K, δ13C and δ15N are important factors to distinguish A. sinensis from Linxia and other
places. It also suggests that the Ca/Al, K, δ13C, and δ15N in Linxia A. sinensis are lower than
that of Dingxi. Although there is no clear distinction between Dingxi and Gannan, most of
the samples fall into the first and fourth quadrants, respectively, suggesting that A. sinensis
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Figure 3 (A) A. sinensis sample scores from Linxia (LX), Gannan (GN) and Dingxi (DX) on the first
two principal component axes; (B) A. sinensis sample scores fromGannan (GN) and Dingxi (DX) on
the first two principal components.

Full-size DOI: 10.7717/peerj.11928/fig-3

from Dingxi had higher values of Zn/Mn and Cu/Cr, while A. sinensis from Gannan had a
higher δ18O value.

A. sinensis from Dingxi and Gannan are not easily classified (Fig. 3A). This may be due
to the close geographical distance between Dingxi and Gannan. Taking into consideration
that there are differences in the centroid of A. sinensis in Dingxi and Gannan on the second
principal component axis, and that the contribution rates of Zn/Mn, Cu/Cr and δ18O on
the second principal component axis are high, three factors of Zn/Mn, Cu/Cr and δ18O
were used in the PCA of A. sinensis sampled from Dingxi and Gannan. Figure 3B shows
A. sinensis scores from Dingxi and Gannan, and the first two axes explain 90.23% of the
total variance. The first principal component axis was mainly affected by Zn/Mn and δ18O,
and the second principal component axis was mainly affected by Cu/Cr. The samples of A.
sinensis from Dingxi and Gannan can be clearly classified.

PLS-DA of A. sinensis
We analyzed 25 samples of A. sinensis from Linxia, Gannan and Dingxi based on eight
factors (K, Mg, Zn/Mn, Cu/Cr, Ca/Al, δ13C, δ15N, δ18O). Samples were analyzed using
PLS-DA, and the first three component axes were extracted with eigenvalue ≥1. Table 4
shows that the first three component axes explained 70% of the total explanatory variables
(the first axis explained 38%, the second axis explained 17%, and the third axis explained
15%). Fitting the response variables, the first three axes explained 68% of the total response
variables (the first axis explained 29%, the second axis explained 36%, and the third axis
explained 3%). In this model, the cumulative Q2 of the first two axes was 0.52 (suggested
Q2 > 0.5), the negative effect of the third axis on the model’s predictive ability was slightly
reduced, and the cumulative Q2 was 0.47.

We reduced the dimension of the explanatory variables and the scores of these variables
are shown in Fig. 4A. t1 and t2 are the first and second component axes of the explanatory
variables after dimensionality reduction. These explain 55% of the total variable variation.
A. sinensis in the Linxia, Gannan and Dingxi regions are separated and clustered into one
category, respectively. We were able to determine the importance of the mineral elements
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Table 4 The main parameters of the first three-axis fitting of the PLS-DAmodel.

Component R2
X R2

X(cum) Eigenvalue R2
Y R2

Y(cum) Q2 Q2(cum)

1 0.38 0.38 3.06 0.29 0.29 0.19 0.19
2 0.17 0.55 1.33 0.36 0.65 0.41 0.52
3 0.15 0.70 1.21 0.03 0.68 −0.15 0.47

Figure 4 (A) PLS-DAmodel’s scatter score graph in different regions; (B) factor loading graph of the
PLS-DAmodel in different regions (LX, Linxia; GN, Gannan; DX, Dingxi). In the factor load diagram,
w*c [1]/[2] is used to measure the mineral elements and stable isotopes load, where w* is the weight of
the standardized explanatory variable matrix obtained from the component t, and c is the weight from the
component u (the weight of the response variable in the variable dimension reduction matrix). Explana-
tory variables near the response variable are able to distinguish data between plots.

Full-size DOI: 10.7717/peerj.11928/fig-4

and stable isotopes of A. sinensis in PLS-DA. We also determined the correlation between
variables and variables and variables and sampling areas and analyzed the PLS-DA model
loading graph (Fig. 4B). K, Cu/Cr, Ca/Al, δ13C, and δ15N had larger loading values in the
first component, and had a negative correlation. The samples of A. sinensis from Linxia
were distant from the sampling areas, so these five variables were in Linxia and the samples
of A. sinensis from Gannan and Dingxi differed. Mg, Zn/Mn, and δ18O had higher loading
values in the second component, and the second axis was positively correlated with Mg
and Zn/Mn, and negatively correlated with δ18O. Since the A. sinensis samples from Dingxi
and Gannan were far apart on the second axis, these three variables are important variables
for separating Dingxi and Gannan.

We analyzed the variable component axis of the projection in the PLS-DA model, and
filtered out the important variables of the projection of the entire model (Fig. 5A). In the
A. sinensis samples, the VIPs of the five variables (δ18O, Zn/Mn, δ15N, K and Ca/Al) were
all greater than 0.9 (recommended is VIP > 0.5). This indicates that these are important
variables for classification in the PLS-DA model and are of great significance to the model
interpretation and source traceability of A. sinensis.

In order to evaluate the fit and prediction performance of the cross-validation set of the
built A. sinensis PLS-DA model, R2

VY was used to evaluate the fit of the cross-validation
model, and Q2

VY was used to evaluate the predictive ability of the cross-validation model.
In order to prevent the samples from overfitting in the PLS-DA model, 200 permutation
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Figure 5 (A) The variables importance for the projection (VIP) for the A. sinensis PLS-DAmodel in
different regions; (B) R2

VY andQ2
VY values in the PLS-DA cross-validationmodel.

Full-size DOI: 10.7717/peerj.11928/fig-5

tests were performed on the first three component axes of samples from Linxia, Gannan
and Dingxi. These tests evaluated the validity of the cross-validation model and the stability
of the model fitting. Our results show that the R2

VY of Linxia, Gannan and Dingxi were
0.62, 0.76, and 0.65, respectively, and the Q2

VY were 0.41, 0.59, and 0.39, respectively,
which reflects the good fit and predictive ability of the cross-validation training set to
the PLS-DA model (Fig. 5B). We applied 200 permutation tests on the first three axes of
samples taken from Linxia, Gannan and Dingxi, which indicated that the built PLS-DA
cross-validation model showed strong validity.

Finally, internal verification was carried out on A. sinensis samples from Linxia, Gannan
and Dingxi based on the PLS-DA model. Due to the small data set, the original data
verification and leave-one-out cross validation were used to verify the A. sinensis samples
(Table 5). The original data successfully verified the samples of A. sinensis from Linxia,
Gannan and Dingxi, and the accuracy rate of all the samples was 100%.We used leave-one-
out cross validation to verify the samples, and the total corrected rate of all of the A. sinensis
samples was 84%. The verification rate of A. sinensis from Linxia was only 60%, indicating
that two samples of Linxia A. sinensis were wrongly classified as being from Dingxi. The
verification rate of A. sinensis samples from Gannan was 100%, and all classifications were
correct. The correct rate of the A. sinensis discriminant from Dingxi was 84.62%, of which
2 A. sinensis samples were wrongly judged as being from Linxia. This may be related to the
geographical scale of Dingxi, and the large variation of variables among the species.

LDA of A. sinensis
Stable isotopes andmineral elements were analyzed using LDA. Our analysis found that the
threeA. sinensis samples were clustered together.We also found certain differences between
the groups. The recognition ability of the three stable isotopes for the two discriminant
functions (LD1, LD2) explained 100% of the total variance (discrimination function 1
explained 71.8% of the total variance, and discriminant function 2 explained 28.2% of
the total variance; Fig. 6). The function test was performed after the LDA model was
established. The Wilks’ lambda value of the two discriminant functions was 0.073, and the
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Table 5 A. sinensis classification results from the PLS-DAmodel.

Procedure Provenance Expected belonging groups Correct

LX GN DX

Original Linxia 5 0 0 100%
Gannan 0 7 0 100%
Dingxi 0 0 13 100%
Total 100%

Leave-One-Out Cross Validation Linxia 3 0 2 60%
Gannan 0 7 0 100%
Dingxi 2 0 11 84.62%
Total 84%

Notes.
LX, Linxia; GN, Gannan; DX, Dingxi.

Figure 6 LDAmodel for A. sinensis samples from different regions (LX, Linxia; GN, Gannan; DX,
Dingxi).

Full-size DOI: 10.7717/peerj.11928/fig-6

difference between the groups was significant (P < 0.001). The discriminant functions of
Linxia, Gannan and Dingxi were as follows:
Y(LX) =0.014K −0.069Mg−174.241 δ13C −19.921
δ15N+55.035 δ18O+16.287Zn/Mn+11.272Cu/Cr+5.545Ca/Al−2836.829
Y(GN) =0.014K−0.067Mg−167.540 δ13C−
15.833 δ15N+59.811 δ18O+11.835Zn/Mn+16.983Cu/Cr+4.480Ca/Al−2802.584
Y(DXMX) =0.014K−0.059Mg-169.654 δ13C-
18.146 δ15N+54.145 δ18O+18.390Zn/Mn+13.029Cu/Cr+5.614Ca/Al−2720.159
We used the original data set and the leave-one-out test set to verify the built LDA

model. The accuracy of the LDA model in the original data sets of Linxia, Gannan and
Dingxi was 92% (Table 6). Among them, one sample of Linxia was wrongly identified as
being from Dingxi, and two sample from Dingxi were wrongly identified as being from
Gannan. The correct discrimination rate was 80% using leave-one-out cross validation.
The misjudgment was the same as the original data set self-validation.
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Table 6 A. sinensis classification results from the LDAmodel.

Procedure Provenance Expected belonging groups Correct

LX GN DX

Original Linxia 4 0 1 80%
Gannan 0 7 0 100%
Dingxi 1 0 12 92.31%
Total 92%

Leave-One-Out Cross Validation Linxia 3 0 2 60%
Gannan 0 7 0 100%
Dingxi 2 1 10 76.92%
Total 80%

Notes.
LX, Linxia; GN, Gannan; DX, Dingxi.

DISCUSSION
A. sinensis was discovered in Gansu and is recognized as high-quality medicinal material.
In 2017, A. sinensis was listed as a protected product in Minxian County, Gansu. Where
specimens originate plays an important role in the formation of authentic medicinal
materials. Blindly introducing authentic medicinal materials may cause a decline in
quality and result in fake or inferior medicinal materials used in the production and
sale of medicinal products. This would in turn reduce the safety and efficacy of Chinese
medicinal materials. Food and drug quality and safety issues are closely related to health and
consumers rights and involve multiple interests in the entire process. Recently, frequently
occuring food and drug safety incidents has aroused public attention, which affects mutual
trust in trade and threatens the safety of clinical medication. It is important to address
the best ways to control and assess the safety of food and drugs. Food and drug safety
be monitored at every point in the food supply chain from planting and harvesting to
receiving. Meanwhile, the long-term development of geographical products requires strict
management, and the application of scientific and technical means for monitoring and
inspection. These methods will ensure the protection of producer and consumers interests
and a sustainable development of the industry. A. sinensis from Gansu Province requires an
effective tracing method. The traceability of the authentic medicinal material will ensure
control over their safety, efficacy and provenance.

Mineral elements and stable isotopes, as geographical indicators in plants, are closely
related to factors such as climate, mineralogy, element mobility, bioavailability and
physiological adaptability of the species. The mineral elements and stable isotopes in
plants vary in different environments as determined by the plant’s adaptation to the
environment and the interaction between the environment and plants. The fingerprints of
mineral elements and stable isotopes in plants are the imprint of the environment. Wang
et al. (2020) traced the origin of 25 mineral elements in maize from three provinces and
determined that the accuracy of eight elements using the SLDA model was 92.2%. Pereira
et al. (2018) traced the origin of Arapaima spp. fish from four different regions using
strontium and carbon isotopes. Their results show that the accuracy rate of identification
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of wild and aquaculture fish was 58% and that of four different regions was 76%. We
collected mineral elements and stable isotopes to trace the geographical origin of A. sinensis
and determine differences between the geological and climatic environments in the three A.
sinensis-producing areas. Based on the significant differences and the results of our model,
K, Ca/Al, δ13C, δ18O and δ15N were determined to be important factors to distinguish A.
sinensis in these regions.

We compared the discriminant analysis of A. sinensis using PLS-DA and LDA. The
original data set was used to verify the model, and we found that the accuracy of the
PLS-DA model was higher than that of the LDA model. The model was verified by the
leave-one-out, and the accuracy rate of the PLS-DA model was higher than that of LDA
model. The self-verification of the original data set to the model was a verification of
the built model itself. The original data sets involved in the modeling process and the
information from the verified original data set were included in the verification as the
model was built. Leave-one-out cross validation is suitable for small sample analysis. A
single prediction sample was removed during model modeling, the model was trained on
all remaining samples, and then all samples were predicted. The total variance explained
by the first two axes of the LDA model was higher than that of the PLS-DA model. Model
verification using the leave-one-out method showed that PLS-DA was more correct than
LDA. The PCA model is suitable for exploring the natural classification of variables in A.
sinensis from Linxia, Gannan and Dingxi. The PLS-DA model evaluated the importance
of variables and classified the samples. The PLS-DA model was also better than the LDA
model in terms of classification and discrimination. Our study integrated mineral elements
and stable isotopes to trace the origin of A. sinensis from three regions of Gansu Province.
We used the PCAmodel to explore the data naturally, and the PLS-DAmodel and the LDA
model to leave-one-out cross-validation. The comprehensive accuracy rates were 84% and
80%, respectively.

CONCLUSION
Differences between mineral elements and stable isotopes of A. sinensis sampled from
Linxia, Gannan and Dingxi, and Gansu Provinces were found and compared. Significant
differences were found in K, Cr, Ca/Al, δ13C, δ15N, and δ18O (P < 0.05).

Significant differences were found among the three groups. PCA and PLS-DA models
showed that K, Zn/Mn, Ca/Al, δ13C, δ15N and δ18O were important variables for
distinguishing the three regions.However, onlyK,Ca/Al,δ13C,δ18O, andδ15Ndemonstrate
significant differences among the three regions (P < 0.05). K, Ca/Al, δ13C, δ18O, and δ15N
play an important role in the discriminant analysis of A. sinensis among the three regions.

The results of mineral elements and stable isotopes from the PLS-DA and LDA show
that the discriminant accuracy rate of the PLS-DA model was 84% and the accuracy rate
of the LDA model was 80%.
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