

1 **Subsistence fishing as a food safety-net during the**
2 **COVID-19 pandemic: insights from queen conch**
3 **(*Aliger gigas*) exploitation in The Bahamas**

Deleted: a case study of

Formatted

Deleted: from

Formatted

Formatted

Formatted: Font: Not Italic

Formatted: English (US)

5 **suggested title:**
6 **Impact of COVID-19 pandemic on queen conch (*Aliger***
7 ***gigas*) populations in The Bahamas**

10 Nicholas D. Higgs¹

12 ¹ Cape Eleuthera Institute, Eleuthera, Bahamas

14 Corresponding Author:

15 Nicholas D. Higgs¹

16 ¹ Cape Eleuthera Institute, P.O. Box EL-26029, Rock Sound, Eleuthera, Bahamas

17 Email address: nickhiggs@ceibahamas.org

19 **Abstract**

20 The onset of the coronavirus (COVID-19) pandemic in early 2020 led to a dramatic rise in
21 unemployment and fears about food-security throughout the Caribbean region. Subsistence
22 fisheries were one of the few activities permitted during emergency lockdown in The Bahamas,
23 leading many to turn to the sea for food. Detailed monitoring of a small-scale subsistence fishery
24 for queen conch was undertaken during the implementation of coronavirus emergency control
25 measures over a period of twelve weeks. Weekly landings data showed a surge in fishing during
26 the first three weeks where landings were 3.4 times higher than subsequent weeks. Overall, 90%
27 of the catch was below the minimum legal-size threshold and individual yield declined by 22%
28 during the lockdown period. This study highlights the role of small-scale fisheries as a ‘natural
29 insurance’ against socio-economic shocks and a source of resilience for small island
30 communities at times of crisis. It also underscores the risks to food security and long-term
31 sustainability of fishery stocks posed by overexploitation of natural resources.

33 **Introduction**

34 Subsistence fishing has played an integral role in sustaining island communities for
35 thousands of years, especially small islands with limited terrestrial resources (Keegan et al.,
36 2008). In subsistence fisheries the catch goes directly to providing food for the family or wider

Deleted: Subsistence fishing has played an integral role in sustaining island communities for thousands of years, especially small islands with limited terrestrial resources (Keegan et al., 2008). Despite this basic contribution to food security, subsistence fisheries are often overlooked in official fisheries statistics (Pauly, 2018) and economic analyses (Bevilacqua et al., 2019). This is partly because subsistence fisheries effort tends to be widely dispersed and hard to monitor, but also because it is often a secondary occupation that is not captured in official census data and may be temporally inconsistent. The Bahamas provides an interesting case-study for examining the role that subsistence fishing plays in the food security of coastal communities.

53 community of the fishers, rather than being sold to merchants for distribution to wider markets as
54 in artisanal fisheries (although see Schumann & Macinko, 2007 for a more nuanced discussion of
55 this definition). Despite this basic contribution to food security, subsistence fisheries are often
56 overlooked in official fisheries statistics (Pauly, 2018) and economic analyses (Bevilacqua et al.,
57 2019). This is partly because subsistence fisheries effort tends to be widely dispersed and hard to
58 monitor, but also because it is often a secondary occupation that is not captured in official census
59 data and may be temporally inconsistent.

60 The Bahamas provides an interesting case-study for examining the role that subsistence
61 fishing plays in the food security of coastal communities. It ranks second in the Caribbean region
62 for dependency on food imports (Shik et al., 2018), so is highly susceptible to potential
63 disruptions to food supply chains. Despite being listed as a high-income country by the World
64 Bank, pronounced economic inequality means that there is an elevated level of food insecurity,
65 with ~40% of people reporting worry about having enough food to eat and 29% of households
66 reporting that they had run out of food at some point in the preceding year (Rahming, 2019).
67 Subsistence fishing is an important food source for island communities, providing an estimated
68 590 tonnes of seafood to the Bahamian population per year, ~16-33 kg per person per year
69 (Smith & Zeller, 2016).

70 The queen conch, *Aliger gigas* (Linnaeus, 1758) = *Strombus gigas* (Maxwell et al., 2020), is
71 the most culturally significant fishery species in The Bahamas, forming a staple part of the
72 country's diet (Sherman et al., 2018). These large and highly prized marine molluscs are slow
73 moving inhabitants of shallow waters, making them a relatively accessible source of seafood
74 protein. Over 40% of people in Bahamian rural communities consume conch at least once per
75 month and another 37% report eating conch on a weekly basis (Bomhauer-Beins, de Guttry &
76 Ratter, 2019). However, recent trends in overexploitation by artisanal fisheries have raised
77 serious concerns about the long-term sustainability of their populations and dependant fisheries
78 (Stoner, Davis & Kough, 2019).

79 This study examines patterns of queen conch exploitation by subsistence fishers during the
80 global coronavirus pandemic of 2020 in a rural Bahamian setting. Following the enactment of
81 Emergency Orders to control the spread of the coronavirus pandemic, only essential businesses
82 were allowed to operate, leaving many unemployed or furloughed (Fig. 1). A weekday curfew to
83 shelter at home was put in place with only essential trips to obtain food and medical supplies
84 allowed. Subsistence fishing was, however, one of the few operations allowed to continue during
85 the weekday curfew. In contrast, artisanal fishers were not allowed to sell catch publicly,
86 effectively limiting fishing activity to subsistence fishers. Nevertheless, after the implementation
87 of the curfew an unusually high number of fishers were observed fishing in the study area.

88 There is no routine monitoring or data collection for small-scale fisheries in The Bahamas
89 (Kincaid, 2017), hindering effective management efforts (Smith & Zeller, 2016). The aim of this
90 study is thus to document and quantify the changes in fishing activity associated with the
91 COVID-19 pandemic and provide an insight into fishery dynamics in the Caribbean region.

92

Deleted: (Shik et al., 2018)

Deleted: (Rahming, 2019).

Deleted: (Smith & Zeller, 2016)

Deleted: (Maxwell et al., 2020)

Deleted: (Sherman et al., 2018)

Deleted: (Bomhauer-Beins, de Guttry & Ratter, 2019).

Deleted: ;

Deleted: (Stoner, Davis & Kough, 2019)

Deleted: Nevertheless, after the implementation of the curfew an unusually high number of fishers were observed fishing in the study area. There is no routine monitoring or data collection for small-scale fisheries in The Bahamas (Kincaid, 2017), so the aim of this study was to document and quantify the changes fishing activity associated with the COVID-19 pandemic in 2020.

Deleted: A

Deleted: was therefore

Deleted: to

Deleted: e

Deleted: wider country and

113 **Materials & Methods**

114 Conch fishery surveys were carried out along a one-mile section of the northern shore of the
115 Cape Eleuthera peninsula (Eleuthera, Bahamas), stretching from the Cape Eleuthera Institute
116 southeast to the entrance of Kemp's Creek (Fig. 2). This section of narrow beach and rocky shore
117 is a well-documented site for subsistence conch fishing, where fishers without access to boats
118 wade across the shallow bank to collect conch by hand (Clark, Danylchuk & Freeman, 2005). A
119 main road abuts the shoreline with three commonly used entry points (sites 1, 2a/b and 3 in Fig.
120 2), where the catch is processed, and shells discarded in piles. The total area accessible by
121 wading (i.e. standing depth) is ~ 80 hectares.

Deleted: (Clark, Danylchuk & Freeman, 2005).

Deleted: i.e. parking).

122 A visual survey for discarded conch shells was conducted at low tide three times per week
123 and the location of recently deposited conch shell piles (middens) was recorded. At the end of
124 each week the shells deposited by fishers on or near the shore during that week were collected
125 and brought to the Cape Eleuthera Institute for analysis. Discarded shell middens are assumed to
126 be indicative of fisheries effort. Indeed, fishers do not generally discard shells of dead animals
127 on the fishing grounds in the belief that it drives away live animals (Thomas *et al.*, 2016), but
128 instead deposit them in discrete middens. Weekly, haphazard snorkel transects (2 x 50 m) of the
129 fishing grounds revealed occasional discard of isolated shells (<1% of midden numbers) which
130 were from the full shell size spectrum being fished, indicating that this practice was not
131 systematically biasing analyses.

Deleted: an accurate representation of fisheries landings
(Stoner, Davis & Kough, 2019).

Deleted: ,

Deleted: since

132 The first collection of shells took place on the morning of the 14th April 2020, following a
133 complete lockdown over the holiday weekend. All shells that still had the periostracum on the
134 outside of the shell and retained pink colouration internally were deemed to have been deposited
135 recently (Stoner, Davis & Kough, 2019) and if they showed signs of being killed by fishers were
136 collected. This first cohort represented the accumulated catch over an unknown and undefined
137 period of time leading up to the beginning of the study, hereafter referred to as the “pre-
138 lockdown” period. After the coast was cleared of recently deposited shells in the first collection,
139 all subsequently deposited shells were collected at the end of each week before the weekend
140 curfew, when no fishing activity was permitted and were assumed to represent the week’s catch.
141 Weekly shell collections were carried out for 12 weeks following the initial clearing of the coast,
142 hereafter referred to as the “lockdown” period.

Deleted: (Stoner, Davis & Kough, 2019)

143 Standard morphometric measurements were recorded for all shells that were collected,
144 including total shell length (siphonal length) and shell width as defined by Martin-Mora *et al.*,
145 (1995). Shells that had a well-defined flared lip (i.e. legal-sized in The Bahamas), aperture
146 length, aperture width and lip thickness were also measured as set out by (Ruga, Meyer &
147 Huntley, 2019). These measurements were taken using large vernier callipers to the nearest mm,
148 whilst lip thickness was measured using smaller dial callipers to the nearest 0.1 mm as described
149 by (Appeldoorn, 1988). Total shell length was directly measured for 75% of shells collected.
150 Where shells were damaged or broken, only a subset of these metrics were taken (24% of shells
151 collected). Allometric scaling relationships based on complete shell data were then used to
152 estimate shell length for broken shells, providing reliable shell length data for 99% of conch

Deleted: , shell width, aperture length, and if the shell had a flared lip, aperture width and lip thickness was measured.
Shell...

Deleted: t

Deleted: could be

165 collected. Only 1% of collected shells ($n = 20$) were too damaged to prevent an estimate of shell
166 length. These damaged shells were only included in analysis of catch abundance.

167 Shells were classified into size-classes used for this fishery as a proxy of age in the past,
168 allowing for comparison of catch rates with historical data (Tewfik & Béné, 2000; Clark,
169 Danylchuk & Freeman, 2005). Shell length increases with age for the first ~3.5 years of a
170 conch's life in up to ~200-250 mm length in The Bahamas, after which the shell lip flares out
171 and only increases in thickness with age (Stoner *et al.* 2012). Therefore, conch without a flared
172 lip are separated into three categories of juveniles: (1) small juveniles (SJ) are those less than 150
173 mm shell length and correspond to the age one and two size classes, while (2) medium juveniles
174 (MJ) are those shells of 150-200 mm length and correspond to the age-3 size class (Stoner, Davis
175 & Kough, 2019), and (3) large juveniles (LJ) are those greater than 200 mm length but still do
176 not possess a well-developed lip. The presence of a flared lip means that the conch is legal-sized
177 in The Bahamas and these are divided into two categories: the "sub-adult" (SA) size class
178 represents those shells with flared lip that is still relatively thin (<4 mm thick), while those with a
179 lip thickness greater than 4 mm are in the "adult" (AD) category. This terminology is now
180 known to be inaccurate, since size at sexual maturity is highly variable in the queen conch. The
181 minimum lip-thickness at which conch reach sexual maturity in The Bahamas is 9 mm for males
182 and 12 mm for females, and 15 mm lip thickness is actually a more realistic size at sexual
183 maturity (Stoner *et al.* 2012). Nevertheless, the older size categories are retained in the dataset
184 (Supplemental Data S1) for comparison with previous studies.

185 Estimates of cleaned meat obtained from each conch shell were made using empirically
186 derived relationships between shell length and wet meat weight, previously obtained for conch in
187 The Bahamas (Iversen *et al.*, 1987), U.S. Virgin Islands (Wood & Olsen, 1983) and Puerto Rico
188 (Appeldoorn, 1988), which includes changes associated with transition from juvenile to adult
189 growth. The mean value from the three models was used to provide an estimated figure for meat
190 obtained from each conch (Supplemental Data S1). An indicative figure for the number of
191 individual meals provided by the harvested meat was calculated assuming 198 g conch per
192 person, an average of the mean portion sizes for men and women reported by (Lockhart,
193 Magnusson & Clerveaux, 2004).

194 It was not possible to quantitatively nor accurately capture all fishing effort (number of fishers
195 and time spent fishing), however qualitative observations were noted. It was assumed that
196 spatially separate middens (i.e. distinct piles of shells) represent the effort of separate individuals
197 or groups of fishers.

198

199 Results

200 In total, the shells of 1598 queen conch were collected from the three landing sites during the
201 study: 495 (31%) from the pre-lockdown period and 1103 (69%) collected during the 12 weeks
202 during the lockdown period. Conch catches were relatively high during the first three weeks of
203 the lockdown period, increasing from 204 to 289 conch per week (Fig. 3). Fishing activity then
204 dropped sharply from week 4 onward, coinciding with the partial resumption of commercial

Deleted: being obtained

Deleted: Shells were classified into size-classes that roughly correspond to age, as previously used for this fishery, to allow comparison with historical data (Tewfik & Béné, 2000; Clark, Danylchuk & Freeman, 2005)

Deleted: previously

Deleted: that roughly correspond

Deleted: to

Deleted: are

Deleted: t

Deleted: (Iversen *et al.*, 1987)

Deleted: (Wood & Olsen, 1983)

Deleted: (Appeldoorn, 1988)

Deleted: (Lockhart, Magnusson & Clerveaux, 2004)

Deleted: ,

Deleted: fishing grounds

Deleted: ,

Deleted: 2

223 activity (Fig. 1). Landings averaged 43 conch per week from weeks 4 through 12, with no shells
224 deposited during weeks 10 and 11 (Fig. 3). Individual middens had a mean size of 58 shells,
225 ranging between 14 and 195 conch, throughout the lockdown period (Supplemental Data S1).

Deleted: 2

Deleted: (i.e. distinct piles of shells)

226 The average shell-length of conch caught during the lockdown period was 1 cm (6%) shorter
227 (median = 15.8 cm) than those being caught before the lockdown (median = 16.9 cm)
228 (Wilcoxon-Mann-Whitney Test; $W = 351559, p = 2.2e-16$). All of the post-lockdown weekly
229 catches had a shorter median shell length compared to pre-lockdown catches, with the exception
230 of the conch taken in week 2 (Fig. 4). Furthermore, there was a significant week-on-week decline
231 in shell length of conch throughout the study period (Jonckheere-Terpstra Test; $J-T = 395032, p =$
232 0.001).

Deleted: 3

233 When the catches are broken down by size-class, the proportion of small juveniles (shell
234 length <15 cm) being captured during the lockdown period more than doubled, compared to pre-
235 lockdown catches (Fig. 5, lightest-grey bars). Prior to the start of the lockdown period only 18%
236 of the conch being fished had a flared lip (Fig. 5, blue bars), which defines a legally harvestable
237 animal in The Bahamas. The legal-sized proportion of the catch dropped further to only 11%
238 during the lockdown period (Fig. 5). Less than 1% of the total conch landed throughout the study
239 period had a shell lips ≥ 15 mm, the recommended shell size for ensuring that animals are
240 sexually mature (Stoner, Davis & Kough, 2019).

Deleted: shell length

Deleted: 4

Deleted: 4

Deleted: t

Deleted: 4

Deleted: of

Deleted: (Stoner, Davis & Kough, 2019)

241 The decrease in shell length of conch caught during the lockdown period resulted in a 22%
242 reduction in the amount meat obtained from each conch on average, falling from 60 g per conch
243 before the lockdown to 47 g after lockdown. During the first three weeks of the lockdown period
244 the number of conch collected increased by 40%, but the amount of meat obtained from these
245 conch declined by 14% because of the decrease in the average size of conch being taken (Fig. 3).

Deleted: 1

246 Fishers were most commonly working in groups of 2-4, never exceeding 10 on the grounds at
247 any one time during the period of the study. Most fishers were adult males, but there were also
248 multi-generational fishing groups and presumed family groups fishing (i.e., male, female and
249 young fishers working together). Fishers used old cooler boxes that floated to transport collected
250 conch back to shore for processing. Occasionally fishers were observed knocking and discarding
251 conch shells whilst fishing, presumably when their container became full. Snorkel surveys
252 showed no indication that widespread processing was happening offshore, with only isolated
253 shells being found at any one location.

Deleted: of

Deleted: juvenile

255 Discussion

256 The introduction of coronavirus control measures in a small-island community was associated
257 with a surge in subsistence fishing that lasted for weeks. This period of intense 'panic-fishing'
258 exemplifies the general principle that a shock to food security will induce a resilience response to
259 mitigate short to mid-term consequences, such as the 'panic-buying' and hoarding responses
260 widely observed during the pandemic (Béné, 2020). In this instance, subsistence fishing provided
261 an accessible, free source of high-quality traditional food. As soon as economic activity partially
262

Deleted: (Béné, 2020), such as the 'panic-buying' and hoarding responses widely observed during the pandemic.

278 resumed there was a steep drop in fishing activity, suggesting a potential causal link that requires
279 further investigation: perhaps a reduction in perceived risk of lacking food or having less
280 available time dedicated to fishing.

Deleted: foraging

281 The increased level of subsistence fishing during the coronavirus pandemic also exemplifies
282 the role of fisheries in providing a food and income safety-net during periods of extended
283 hardship. During the twelve-week study period a total of 285 portions of conch were harvested
284 from an area of only 80 hectares, enough to provide a meal to every member of the nearby
285 community; 240 persons according to the latest census data. It is unlikely that the catches were
286 distributed evenly, but the catches reported here do not account for the numerous other local sites
287 where conch are fished (Cash, 2012), nor for the other fishery species that contribute to local
288 diets (Danylchuk, 2005). The value of fisheries as a natural insurance against socio-economic
289 shocks is also relevant to other severe disruptions such as hurricanes. After the category-4
290 hurricane Matthew passed through The Bahamas in 2016, surveys on Andros island showed that
291 fisheries played a key role in community resilience to the damage and disruption caused (Valdez
292 et al., 2019).

Deleted: Of course, it

Deleted: (Cash, 2012)

Deleted: were

Deleted: in

Deleted: g

Deleted: (Danylchuk, 2005)

Field Code Changed

Deleted: (

Deleted:)

Deleted: (Meighoo, 2020)

Deleted: (Kossin et al., 2020)

Deleted: 4

Deleted: (Clark, Danylchuk & Freeman, 2005).

Deleted: (Béné, 2020)

Deleted:

Deleted: (Béné, 2020)

Deleted: (Roughgarden & Smith, 1996).

Deleted: (Thomas et al., 2015; Stoner, Davis & Kough, 2019...)

Deleted: being

Deleted: being

293 It is important to consider the degree to which small island communities and the
294 governments that have a responsibility to them will be able to rely on fisheries as a safety net in
295 the future, given the long-term economic impacts of the coronavirus pandemic (Meighoo, 2020)
296 and increasing intensity of tropical cyclones (Kossin et al., 2020) in the region. The results of
297 this study give rise to concern regarding the long-term sustainability of this and other similar
298 fisheries. During the lockdown period there was a sustained decrease in the size of conch being
299 taken and consequently ~90% of the catch fell below the threshold for legal harvest (Fig. 5).
300 Furthermore, both of these metrics (conch size and proportion of legal-sized catch) decreased
301 markedly compared to historical catch data, where there were already concerns about the high
302 degree of fishing juveniles (Clark, Danylchuk & Freeman, 2005). This is an example of how
303 certain resilience response strategies may be detrimental to long-term food security, despite
304 providing short-term relief (Béné, 2020). This risk is heightened if extraordinary fishing
305 behaviour, *i.e.* catching very undersized animals during crisis, becomes normalized practice.
306 Such negative feedback loops can have unforeseen ripple effects (Béné, 2020); in this case, a
307 delayed reduction in recruitment of juveniles to the wider fishery population.

308 The particular role of fisheries as a natural insurance against economic and food insecurity
309 has a quantifiable economic benefit that can pay for itself and should be valued accordingly in
310 fisheries management (Roughgarden & Smith, 1996). Cape Eleuthera was one of the most
311 productive conch nursery grounds in the Bahamas but has shown declining populations over the
312 last three decades (Thomas et al., 2015; Stoner, Davis & Kough, 2019). This is consistent with
313 the results here showing that less than 1% of the catch was large enough to ensure sexual
314 maturity (15 mm shell lip thickness). Almost all of the conch taken were immature sub-adults or
315 juveniles that will not have reproduced. The decreasing size of conch fished throughout the
316 study, even as catch volume declined, suggests serial depletion of large individuals in the fishing

338 grounds. Such intense fishing of juveniles as well as all large adults risks long-term overfishing
339 and stock depletion (Tewfik et al., 2019).

340 It should be noted that the local artisanal fishery operates using small motorboats (as opposed
341 to the 'walk-in' subsistence fishery) and has a much higher proportion of legal-size catch (Cash,
342 2012), owing to their ability to fish a wider area of deeper waters. The taking of small juveniles
343 is directly proportional to the restricted access experienced by many subsistence fishers, limiting
344 them to shallow nursery grounds. This poses acute challenges to mitigating the negative impacts
345 of a socio-economic shock because it is the subsistence fishers who are the most reliant on the
346 fishery in time of crisis, but they are also those who are fishing most unsustainably. The wider
347 fishing grounds including those studied here have been proposed as a marine protected area for
348 fisheries protection for over 15 years (Danylchuk, 2005) and have been included for designation
349 in forthcoming legislation. However, there are no specific management plans in place and local
350 fishers have expressed opposition based on perceived threat to fisheries livelihoods (Thomas et
351 al., 2015). Appropriate management will have to involve the stakeholders themselves in decision
352 making, in keeping with The Bahamas' implementation of the FAO Small-Scale Fisheries
353 Guidelines (Kincaid, 2017).

354 A full understanding of the social-ecological system of this subsistence fishery will require
355 extensive consultation with local fishers and the wider community to determine the cultural
356 drivers and causal mechanisms behind the trends reported (Bomhauer-Beins, de Guttry & Ratter,
357 2019). This important work is planned but was not undertaken as part of this study for a number
358 of methodological, practical and ethical reasons. Firstly, this study aimed to document patterns of
359 fisheries exploitation in relation to the coronavirus pandemic and the role of humans as
360 ecosystem agents. Primary importance was placed on obtaining a representative snapshot of
361 fishery changes that would be applicable across small island communities throughout the region,
362 where no monitoring was taking place, but similar dynamics would be at play (Kincaid, 2017).
363 Interactions of ??? with fishers may have changed the fishers' behavior that would have given an
364 inaccurate view of the broader reality. On a practical level, the national lockdown meant that
365 there was a legal obligation to cease social interactions, ruling out effective communication with
366 fishers. Most importantly, it was not possible to conduct the necessary social research to the
367 methodological and ethical standards required to protect potential participants (St John et al.,
368 2014). From the outset, much of the fishing was illegal in nature and even anonymised surveys
369 could have put fishers at risk (St John et al., 2016). For these reasons, anthropology research
370 were delayed until surveys could be undertaken to rigorous standards ensuring ethical treatment
371 of human participants.

372 Future work to establish non-crisis fishing practices and levels of fishing effort will be
373 particularly beneficial for establishing a full view of the fisheries response to the coronavirus
374 pandemic. Although it is not possible to accurately establish fishing effort, the consistently low
375 level of fishing from weeks 4-12 indicate a likely baseline of effort. The slight increase of fishing
376 on week 12 may have been compensating for the lack of fishing in the preceding weeks, possibly
377 related to adverse weather, or was related to the resumption of tourism and associated demand

Deleted: any

Deleted: ,

Deleted: (Tewfik et al., 2019).

Deleted: that are generally larger

Deleted: (Cash, 2012)

Deleted: managing

Deleted: which

Deleted:

Deleted: (Danylchuk, 2005)

Deleted: .

Deleted: (Kincaid, 2017)

Deleted: (SES)

Deleted: (Bomhauer-Beins, de Guttry & Ratter, 2019)

Deleted: (Kincaid, 2017)

Commented [PCB1]: Not clear who/what fishers are interacting with?

Commented [PCB2]: Not clear who the subject is...whose behavior?

Deleted: ir

Deleted: u

Deleted: (especially given the level of illegal fishing)

Deleted: Finally, and m

Deleted: (St John et al., 2014).

Deleted: it was obvious that

Deleted: that

Deleted: of repercussions

Deleted: (St John et al., 2016)

Deleted: it was decided to delay this

Deleted: such a time as

Deleted: it

Deleted: a

Deleted: ,

Deleted: here

Commented [PCB4]: ? pls be more explicit about the timing

Deleted: i

Deleted: might

Deleted: (

Deleted:)

411 for conch. Further evidence the fishing effort in weeks 1-3 was unusually high can be gained by
412 inference from the shells deposited before the lockdown. Before the lockdown, a thigh level of
413 fishng effort was about 250 conch per week. When the shoreline was initially cleared of all
414 recently deposited shells for this study, a total of 495 shells were collected, which would only
415 represent 2 weeks catch. However, given the weathered state of some of the shells, this estimate
416 is unlikely. Alternatively, the average harvestng of 48 conch per week represents a more
417 realistic 10 weeks of catch. Therefore, the high levels of fishing observed at the start of the
418 lockdown period were truly exceptional and coincident with coronavirus mitigation measures.
419

420 **Conclusions**

421 Small-scale subsistence fishing surged in intensity with the introduction of COVID-19 control
422 measures in a rural small-scale fishery, suggesting a reliance on the marine resources as a safety
423 net during times of crisis (Valdez et al., 2019). The increase in fishing intensity also
424 corresponded to a higher proportion of illegal-sized catch with smaller animals than pre-
425 lockdown catches. The mean size of individuals landed during lockdown progressively decreased
426 over time, showing a serial depletion of larger animals. These results emphasize the role and
427 value of fisheries as a natural insurance for small island communities. They also highlight
428 potential risks posed by overfishing to the long-term ability of fisheries of providing resilience
429 against future socio-economic shocks. Further work in consultation with local fishers should
430 provide a more complete view of the human dimension of this socio-ecological system (Aswani,
431 2019). Human dimension can form the basis of more effective management ensuring long-term
432 sustainability of this culturally valuable resource.
433

434 **Acknowledgements**

435 This work was supported by funding from the Cape Eleuthera Foundation. I am grateful to Faith
436 Higgs for assistance in the field.
437

438 **References**

440 Appeldoorn R 1988. Age determination, growth, mortality and age of first reproduction in adult
441 queen conch, *Strombus gigas* L., off Puerto Rico. *Fisheries Research* 6:363–378.
442 Aswani S 2019. Perspectives in coastal human ecology (CHE) for marine conservation.
443 *Biological Conservation* 236:223–235. DOI: 10.1016/j.biocon.2019.05.047.
444 Bevilacqua AHV, Angelini R, Steenbeek J, Christensen V, Carvalho AR 2019. Following the
445 Fish_ The Role of Subsistence in a Fish-based Value Chain. *Ecological Economics* 159:326–
446 334. DOI: 10.1016/j.ecolecon.2019.02.004.
447 Béné C 2020. Resilience of local food systems and links to food security – A review of some
448 important concepts in the context of COVID-19 and other shocks. 12:805–822. DOI:
449 10.1007/s12571-020-01076-1.

Deleted: meat

Commented [PCB5]: Explain this process, where they cleared for the study, do you mean 'collected'? – why are the conch shell cleared from the coastline and what "initially" means?

Deleted: . If the high level of fishing effort was normal (~250 conch per week), this

Deleted: , which

Deleted: seems improbable

Deleted: if the

Deleted: lower

Deleted: of

Deleted: is used (48 per week), this would

Deleted: it seems most parsimonious that

Deleted: (Valdez et al., 2019)

Deleted: is

Deleted: that

Deleted: s

Deleted: ,

Deleted: but

Deleted: to

Deleted: e

Deleted: will be able

Deleted: to

Deleted: (Aswani, 2019)

Deleted: , which

Deleted: to

Deleted: ensure

474 Bomhauer-Beins L, de Guttry C, Ratter B 2019. When Culture Materializes: Societal Dynamics
475 in Resilience of Social-Ecological Systems in the Case of Conch Management on Abaco,
476 The Bahamas. *Sustainability* 11:1080–17. DOI: 10.3390/su11041080.

477 Cash E 2012. Assessment of queen conch, *Lobatus gigas*, density, middens and permitting
478 requirements, in south Eleuthera, Bahamas. Auburn, Alabama: Auburn University.

479 Clark S, Danylchuk AJ, Freeman B 2005. The Harvest of Juvenile Queen Conch (*Strombus*
480 *gigas*) off Cape Eleuthera, Bahamas: Implications for the Effectiveness. *Proceedings of the*
481 *Gulf and Caribbean Fisheries Institute* 56:705–713.

482 Danylchuk AJ 2005. Fisheries management in south Eleuthera, Bahamas: can a Marine Reserve
483 help save the 'Holy Trinity'? *Proceedings of the Gulf and Caribbean Fisheries Institute*
484 56:169–177.

485 Iversen ES, Rutherford E, Bannerot SP, Jory DE 1987. Biological Data on Berry Islands
486 (Bahamas) Queen Conchs, *Strombus gigas*, with Mariculture and Fisheries Management
487 Implications. *Fishery Bulletin* 85:299–310.

488 Keegan WF, Fitzpatrick SM, Sullivan Sealey K, LeFebvre MJ, Sinelli PT 2008. The Role of
489 Small Islands in Marine Subsistence Strategies: Case Studies from the Caribbean. *Human*
490 *Ecology* 36:635–654. DOI: 10.1007/s10745-008-9188-z.

491 Kincaid K 2017. Challenges and Opportunities in Implementing the Small-Scale Fisheries
492 Guidelines in the Family Islands, Bahamas. In: *The Small-Scale Fisheries Guidelines*.
493 MARE Publication Series. Cham: Springer International Publishing, 597–607. DOI:
494 10.1007/978-3-319-55074-9_28.

495 Kossin JP, Knapp KR, the TOPO, 2020 2020. Global increase in major tropical cyclone
496 exceedance probability over the past four decades. *Proceedings of the National Academy of*
497 *Sciences* 117:11975–11980. DOI: 10.1073/pnas.2021573117.

498 Lockhart K, Magnusson G, Clerveaux W 2004. Consumption of local Conch by residents of the
499 TCI. *Proceedings of the Gulf and Caribbean Fisheries Institute* 57:791–801.

500 [Martin-Mora E, James FC, Ecology AS, 1995. Developmental plasticity in the shell of the queen](#)
501 [conch *Strombus gigas*. Ecology](#) 76:981–994.

502 Maxwell SJ, Dekkers AM, Rymer TL, Congdon BC 2020. Towards Resolving the American and
503 West African Strombidae (Mollusca: Gastropoda: Neostrombidae) Using Integrated
504 Taxonomy. *The Festivus* 52:3–38.

505 Meighoo K 2020. The Caribbean and Covid-19: not a health crisis, but a looming economic one.
506 *The Round Table* 109:340–341. DOI: 10.1080/00358533.2020.1769917.

507 Pauly D 2018. A vision for marine fisheries in a global blue economy. *Marine Policy* 87:371–
508 374. DOI: 10.1016/j.marpol.2017.11.010.

509 Rahming M 2019. *Hands for Hunger Report: Food Insecurity in The Bahamas*. Public Domain
510 Research & Strategy.

511 Roughgarden J, Smith F 1996. Why fisheries collapse and what to do about it. *Proceedings of*
512 *the National Academy of Sciences* 93:5078–5083. DOI: 10.1073/pnas.93.10.5078.

513 [Ruga MR, Meyer DI, Huntley JW 2019. Conch fritters through time: human predation and](#)
514 [population demographics of *Lobatus gigas* on San Salvador Island, The Bahamas. *PALAIOS*](#)
515 [34:383–392. DOI: 10.2110/palo.2018.054.](#)

516 [Schumann S, Macinko S 2007. Subsistence in coastal fisheries policy: What's in a word? *Marine*](#)
517 [Policy](#) 31:706–718. DOI: 10.1016/j.marpol.2006.12.010.

518 Sherman KD, Shultz AD, Dahlgren CP, Thomas C, Brooks E, Brooks A, Brumbaugh DR,
519 Gittens L, Murchie KJ 2018. Contemporary and emerging fisheries in The Bahamas—
520 Conservation and management challenges, achievements and future directions. *Fisheries*
521 *Management and Ecology* 25:319–331. DOI: 10.1111/fme.12299.

522 Shik O, Boyce RA, De Salvo CP, Gachot S 2018. *Analysis of Agricultural and Fisheries Policy*
523 in The Bahamas. Inter-American Development Bank.

524 Smith NS, Zeller D 2016. Unreported catch and tourist demand on local fisheries of small island
525 states: the case of The Bahamas, 1950–2010. *Fishery Bulletin* 114:117–131.

526 St John FAV, Keane AM, Jones JPG, Milner Gulland EJ 2014. Robust study design is as
527 important on the social as it is on the ecological side of applied ecological research. *Journal*
528 *of Applied Ecology* 51:1479–1485. DOI: 10.1111/1365-2664.12352.

529 St John F, Brockington D, Bunnefeld N, Duffy R 2016. Research ethics: assuring anonymity at
530 the individual level may not be sufficient to protect research participants from harm.
531 *Biological Conservation* 196:208–209.

532 Stoner AW, Davis MH, Kough A 2019. Relationships Between Fishing Pressure and Stock
533 Structure in Queen Conch (*Lobatus Gigas*) Populations: Synthesis of Long-Term Surveys
534 and Evidence for Overfishing in the Bahamas. *Reviews in Fisheries Science and Aquaculture*
535 27:51–71. DOI: 10.1080/23308249.2018.1480008.

536 [Stoner AW, Mueller KW, Brown-Peterson NJ, Davis, MH, Booker CJ 2012. Maturation and age](#)
537 [in queen conch \(*Strombus gigas*\): urgent need for changes in harvest criteria. *Fisheries*](#)
538 [Research](#), 131–133:76–84.

539 Tewfik A, Béné C 2000. Densities and age structure of fished versus protected populations of
540 queen conch (*Strombus gigas* L.) in the Turks & Caicos Islands. *Proceedings of the Gulf and*
541 *Caribbean Fisheries Institute* 51:60–79.

542 Tewfik A, Babcock EA, Appeldoorn RS, Gibson J 2019. Declining size of adults and juvenile
543 harvest threatens sustainability of a tropical gastropod, *Lobatus gigas*, fishery. *Aquatic*
544 *Conservation: Marine and Freshwater Ecosystems* 29:1587–1607. DOI: 10.1002/aqc.3147.

545 Thomas CL, Auscavitch S, Brooks A, Stoner AW 2015. Assessing Eessential queen conch
546 (*Strombus gigas*) habitat in Eleuthera, The Bahamas: Population declines suggest the urgent
547 need for changes in management. *Proceedings of the Gulf and Caribbean Fisheries Institute*
548 67:344–347.

549 Thomas CL, Dodd O, 2016. Would you sleep in a graveyard? Assessing queen conch's
550 behavioral response to knocked shells. In: *Bahamas Natural History Conference 2016, Book*
551 *of Abstracts*. Bahamas National Trust, Nassau, The Bahamas p 22.

552 Valdez RX, Peterson N, Chen A, Steward M, Hannameyer K, Seebaluck H, Hulthén K,
553 Langerhans RB 2019. Perceptions of Resilience in Fishery-Dependent Bahamian

554 Communities Following a Category 4 Hurricane. *Fisheries* 44:515–523. DOI:
555 10.1002/fsh.10310.

556 Wood RS, Olsen DA 1983. Application of biological knowledge to the management of the
557 Virgin Islands conch fishery. *Proceedings of the Gulf and Caribbean Fisheries Institute*
558 35:112–121.

Formatted: Normal, Indent: Left: 0", Hanging: 0.28",
Don't adjust space between Latin and Asian text, Don't
adjust space between Asian text and numbers, Tab stops:
0.39", Left + 0.78", Left + 1.17", Left + 1.56", Left +
1.94", Left + 2.33", Left + 2.72", Left + 3.11", Left + 3.5",
Left + 3.89", Left + 4.28", Left + 4.67", Left

Deleted: .j

Formatted: English (UK)