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ABSTRACT
Rhodoliths are free-living and morphologically diverse marine calcareous algae
commonly distributed over the continental shelf seafloor. They increase the seabed
structural complexity and are of potential value as feeding and reproductive grounds
for a myriad of marine fauna. The higher structural seabed complexity within
rhodolith beds may also increase benthic diversity by creating microhabitats, but this
relationship has been rarely explored within rhodolith beds worldwide. Here we
compared benthic macrofaunal (>500 µm) structure on rhodolith beds (nodule
epifauna) and within unconsolidated sediments (sediment infauna) under high and
low-density beds to test whether rhodolith bed density and nodule morphology
influenced macrofaunal assemblages. We observed that macrofaunal density on
nodules (2538 ± 288.7 ind·m−2) was 15-fold higher when compared to sediments
under those beds (166 ± 38.8 ind·m−2). Rhodolith bed density was positively related
to macrofaunal density, composition, and functional diversity on the rhodoliths.
Low-density beds (61 ± 27.1 nodules·m−2) with discoid-shape nodules were
dominated by peracarid crustaceans whereas high-density beds (204 ± 18.7
nodules·m−2) with spheroidal nodules were dominated by Annelid polychaetes.
The sediment macrofauna was also positively influenced by the density of rhodolith
nodules, which increased sediment carbonate and organic quality (protein and lipids)
under high-density beds. Macrofaunal functional diversity was generally higher
on rhodoliths, with low similarity (low nestedness) and high taxa turnover between
macrofaunal assemblages of rhodoliths and sediments. These findings indicate that
rhodolith beds provide an unique habitat for benthic macrofaunal communities,
with exclusive functional and taxonomic richness that are likely not typical in
the unconsolidated sediment below these beds in SE Brazil. This study highlights the
importance of protecting rhodolith beds from multiple sources of anthropogenic
disturbance and exploration on continental shelves.
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INTRODUCTION
Rhodoliths are nodules primarily composed of non-geniculate free-living red algae that are
distributed globally over continental shelves and oceanic islands (Foster, 2001; Amado-
Fiho et al., 2017). They occur in areas with moderate hydrodynamics that prevents burial
caused by particle sedimentation and protects them from physical impact, fragmentation,
and removal by strong currents (Hinojosa-Arango, Maggs & Johnson, 2009; McConnico
et al., 2017). The structures formed by the accumulation of these nodules are known as
rhodolith beds, which typically occur in waters shallower than 150 m with favorable
temperature and irradiance for photosynthetic, respiratory, and calcification processes
(Riosmena-Rodríguez, 2017). These beds create a three dimensional structure over the
seafloor, modifying its physical characteristics and creating new microhabitats for many
marine species (Steller et al., 2003; Berlandi, de O. Figueiredo & Paiva, 2012; Teichert, 2014;
Qui-Minet et al., 2018). Besides hosting a diverse range of benthic organisms, rhodolith
beds also provide a number of ecosystem services. They serve as refuge and nursery
grounds for marine species, some of them commercially important like scallops, crabs,
and fish (Kamenos, Moore & Hall-Spencer, 2004; Steller & Cáceres-Martínez, 2009;
Riosmena-Rodriguez & Medina-López, 2010; Costa et al., 2020). Rhodolith beds are likely
one of the most important benthic habitats on Brazil’s continental shelf in terms of
biodiversity and heterogeneity, harboring rare and endemic species of macroalgae,
polychaetes, and ictiofauna (Gherardi, 2004; Amado-Fiho et al., 2017). Therefore, these
living beds contribute significantly to the increase of regional species richness and diversity
(Steller et al., 2003; Teichert, 2014), suggesting that they are of critical value for biodiversity
conservation (Biomaerl team, 2003; Crain & Bertness, 2006).

Anthropogenic pressures on rhodolith beds (i.e. fishing, climate change, mining
interests, and offshore oil and gas operations) are expected to increase over the coming
decades, threatening the long-term survival of these ecologically-important habitat
(Hall-Spencer & Moore, 2000; McCoy & Kamenos, 2015; Horta et al., 2016; Almada &
Bernardino, 2017; Schubert et al., 2019; Simon-Nutbrown et al., 2020; Sissini et al., 2020).
Understanding the spatial drivers that influence benthic biodiversity in rhodolith beds is
thus critical for conservation planning over areas with multiple industrial interests
(Bernardino & Sumida, 2017). In addition to understanding benthic taxonomic diversity
associated with rhodoliths, determining the species traits and their spatial variability can
help to quantify the benthic functional diversity (Mokany, Ash & Roxburgh, 2008),
providing information on the dynamics and uniqueness of communities or ecosystems
(Violle et al., 2007;Mouchet et al., 2010). In this context, functional indices that represents
species distribution and its functionalities complement diversity and taxonomic indexes to
differentiate the structure and function of ecological communities within the functional
trait space (Petchey & Gaston, 2006). Rhodolith beds are habitats already known to host a
high taxonomic diversity and are a priority for conservation on continental margins
(Hall-Spencer, 1998; Grall & Hall-Spencer, 2003; Nelson, 2009), but their functional
diversity has not been investigated in detail on Brazilian beds.
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The benthic macrofauna has a crucial role in maintaining important ecosystem services
in the ocean, including energy-mass exchange and nutrient cycling between the water
column and sediments (Snelglove & Buttman, 1995). The interaction between benthic
fauna and the seafloor plays a key role in determining the composition and diversity of
benthic assemblages (Snelglove & Buttman, 1995). As a result, habitat complexity is
considered the main driver of benthic community structure and ecological functions.
The increase of seafloor complexity within rhodolith beds are then expected to result on a
higher diversity and abundance of benthic species (Buhl-Mortensen et al., 2012; Kovalenko,
Thomaz & Warfe, 2012; Yanovski, Nelson & Abelson, 2017) when compared to sand
bottoms of lower complexity. These effects have been observed in a number of rhodolith
beds globally, supporting that rhodoliths play an important role to overall biodiversity over
continental margins (Hily, Potin & Floc’h, 1992; Steller et al., 2003; Veras et al., 2020).
The structural heterogeneity of rhodolith beds may also vary spatially and temporally from
both natural and anthropogenic factors (Hall-Spencer & Moore, 2000; Steller et al., 2003;
Fredericq et al., 2014).

In Brazil, the fauna associated with rhodolith beds indicates a high diversity of species
across extensive areas of the continental shelf (Villas-Boas et al., 2009; Horta et al., 2016;
Amado-Fiho et al., 2017; Carvalho et al., 2020). Although the biodiversity associated
with Brazilian rhodolith beds has been previously assessed, this study investigates the
drivers of both rhodolith and sediments macrofaunal diversity, composition and
functional dynamics thus providing a new perspective of the effects of rhodoliths over
sedimentary macroinfaunal assemblages. Here we evaluated how the structural change in
rhodolith nodules are associated to macrobenthic assemblages at high- and low-density
rhodolith beds in SE Brazil. Considering the important role of rhodoliths as ecosystem
engineers, this study examines how macrofauna assemblages change across habitats
and beds with different nodule densities and morphology, addressing two hypotheses:
(I) Macrofaunal assemblages will have a higher diversity associated with rhodolith nodules
when compared to the unconsolidated sediment under them, and (II) the density of
rhodolith beds will be important to spatial patterns of benthic diversity in nodules and in
the underlying sediments.

MATERIALS & METHODS
Study area and sampling design
The study area is located within the limits of the Costa das Algas Marine Protected Area
(MPA) on the Eastern Marine Ecoregion of Brazil (Fig. 1; Table 1; Spalding et al., 2007).
This is a tropical region characterized by rainy summers, with predominantly NE and
E winds, and dry winters (Bernardino et al., 2015). The continental shelf on Eastern Brazil
is influenced by the Tropical Water (TW) of the Brazil Current, with temperatures above
22 �C and salinities above 36 (Mazzuco et al., 2019), and eventual seasonal summer
upwelling of the South Atlantic Central Water (SACW) into the shelf, with temperatures
between 6 �C and below 20 �C and salinities between 34.6 and 36 (Quintana et al., 2015;
Mazzuco et al., 2019). The continental shelf on the Espírito Santo basin includes a
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mixed system of terrestrial and carbonate sediments with rhodolith beds extending down
to the shelf break at depths over 80 m (Figueiredo et al., 2015; Holz et al., 2020).

Sampling was carried out by SCUBA diving in January 2019 and the density of the
rhodolith beds was a determining factor of the sampling design. Based on preliminary
images of the area, sampling stations were classified into two categories (beds):
high-density (H1, H2, and H3) and low-density (L1, L2, and L3; Fig. 1). High density beds
had 100% of the seafloor covered by rhodoliths, and low-density beds had scattered
patches of sediment between rhodolith nodules. The differences in bed structure were
further confirmed by measurements of rhodolith morphology, internal volume, and
ramification (branch density, see below). Abiotic metadata (temperature, salinity, depth,
and water visibility) were obtained at the time of sampling using a CTD and Secchi disk.
In each station, scuba divers sampled manually all rhodoliths on the surface (50–100
rhodoliths in high-density beds; 4–40 rhodoliths in low-density beds) within a 0.25 m2

quadrat from three replicates randomly distributed along a 20 m random transect (Fig. 2).
Occasional megafaunal organisms were observed (macroalgae, ophiuroids) but were
not sampled and were thus excluded from our analysis. Triplicate samples of the
underlying unconsolidated sediment within each quadrat were collected using PVC corers
of 10 cm in diameter (10 cm depth) with sealing lids. The rhodolith nodules were packed in
cloth bags (<0.5 mm mesh) and sealed to prevent loss of macrofauna during recovery
on board, where they were immediately fixed with formaldehyde (10%) and borax to avoid

Figure 1 Location of the study area. Map of the Marine Protected Area (MPA) Costa das Algas (larger
polygon) and the six sampled stations on the SE continental shelf of Brazil. Bathymetric isobaths are
shown in blue. Full-size DOI: 10.7717/peerj.11903/fig-1
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carbonate degradation. Macrofaunal invertebrates in the sediments were also fixed with
formaldehyde (10%) and borax. In addition to the biological data, sediment underlying the
rhodolith beds was also sampled for grain size, organic matter, and biopolymers analysis
using triplicate corers (10 cm diameter), preserved in ice on board, and frozen until
processing. Sampling of benthic organisms was authorized by the permit N 24700-1
(MMA-ICMBio) and voucher specimens are deposited at the Unicamp Zoology Museum
(http://www.splink.org.br).

Laboratory analysis
The classification of rhodolith morphology was determined by measuring the largest,
intermediate, and minor axis of each nodule, which resulted in a mean nodule diameter
and sphericity for each station (Bosence & Pedley, 1982). The morphological rhodolith
dataset was plotted on a TRIPLOT spreadsheet developed by Graham & Midgley (2000),
and drawn on the pebble shape diagram of Sneed & Folk (1958) that discriminates
rhodoliths in spheroidal, discoidal, or ellipsoidal shape. The rhodolith bed density was
estimated from the number of nodules sampled within each quadrat (nodules·m−2).
The mean rhodoliths diameter within each station was measured from all nodules in each
replicate and averaged per station from the three replicated samples.

Figure 2 Sampling sites and methods. (A) High-density rhodolith beds within the study area, (B–C) a
range of rhodoliths sampled in this study, and (D) SCUBA sampling from this study.

Full-size DOI: 10.7717/peerj.11903/fig-2
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The ramification of rhodolith nodules were determined semi-qualitatively from each
site based on their relative branching density (Bosence, 1983). Nodules were classified into
four groups: I = a single branch; II = few branches; III = frequent branching; IV = dense
and solid branching. The average internal volume of the rhodoliths in each site was
determined by water volumetric displacement (Steller et al., 2003). Rhodoliths were
covered with a plastic film and then submerged in a graduated container of a known
volume. Later, rhodoliths were again submerged but without the plastic film. The
difference between the initial volume (rhodoliths with film) and the displacement of the
liquid with rhodoliths without the film was considered the rhodolith’s internal volume.

In the laboratory, rhodolith nodules were broken and epifaunal organisms were sieved
(500 mm) and preserved in 70% ethanol until sorting. All organisms were identified to
family or the lowest possible taxonomic level under a stereomicroscope. Macrofaunal
trophic group analysis followed the main feeding types including deposit feeders,
detritivores, suspension feeders, filter feeders, and omnivores, carnivores or others (OCO)
according to Arruda, Domaneschi & Amaral, 2003, Jumars, Dorgan & Lindsay (2015),
Queirós et al. (2013) and Macdonald et al. (2010).

For sediment grain size, carbonate content, and organic matter analysis, the samples
were thawed and placed in an oven at 60 �C for 48 h. The dry sediment was macerated
and taken to a stirrer, where the grain size was determined by sieving it between −1.5 phi
(Φ) sieves and 4 Φ, with 1 Φ intervals. Subsequently, the values of Φ were added to the
SysGran 3.0 software (Camargo, 2006) to analyze the granulometric properties (i.e. average
grain size and the total percentage of gravel, sand, silt, and carbonate). The carbonate
contents of the sediment were determined by combustion in a muffle (550 �C for 4 h) with
an additional hour at 800 �C. The sediment organic matter content was determined by
combustion in a muffle (550 �C for 4 h). Due to sample loss, sedimentary analysis was not
done in station L3. All sedimentary organic biopolymers (carbohydrates, lipids, and
proteins) analysis were made in triplicates, following the methods in Danovaro (2010).
Total protein analysis (PRT) was carried after its extraction with NaOH (0.5 M, 4 h) and
was determined according to Hartree (1972), modified by Rice (1982), to compensate
for phenol interference. Total carbohydrate (CHO) was analyzed according to Gerchacov &
Hatcher (1972). Total lipids (LPD) were analyzed according to the protocol described in
Marsh & Weinstein (1966), being extracted from 1 g of homogenized sediment lyophilized
by 11 ultrasonication (20 min) in 10 ml of chloroform:methanol (2:0 1 v/v). Blanks for
each analysis were taken with pre-combusted sediments at 450 �C and 480 �C for 4 h.
The concentrations of total protein, carbohydrate, and lipid were displayed as bovine serum
albumin (BSA), glucose, and tripalmitin equivalents, respectively. The concentrations of total
protein, carbohydrate, and lipid were converted into carbon equivalents assuming a
conversion factor of 0.49, 0.40, and 0.75, respectively (Fabiano & Danovaro, 1994). Also,
protein to carbohydrate (PRT:CHO) and carbohydrate to lipid (CHO:LPD) ratios were
applied to assess the state of biochemical degradation processes (Galois et al., 2000). The sum
of biopolymer concentrations was added to the analysis as a measure of biopolymeric carbon
(BPC; Fabiano, Danovaro & Fraschetti, 1995; Hadlich et al., 2018).
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Statistical analysis
Benthic assemblages were compared across rhodolith beds with high and low densities (bed),
and between rhodoliths and sediments (habitats). Within this sampling design we compared
the nodule’s epifauna with the infaunal macrofauna of the underlying soft sediments.
Macrofaunal density and diversity (alpha, gamma, and beta) were compared across bed
(high and low density) and habitat (nodule and sediments) levels. We used the approach of
additive partitioning to estimate alpha (a) and gamma (γ) species richness based on the sum
of richness from each sample (a) within each habitat (Josefson, 2009). In addition, the
macrofaunal trophic diversity was determined based on the classification of species
according to their feeding modes (see Laboratory analysis description) and their density.
This matrix was used to calculate the assemblage functional richness (FRic), functional
dispersion (FDis), functional evenness (FEve), and entropy (FRaoQ; Mason et al., 2005);
which were also tested over the spatial scales above. FRic indicates the amount of niche space
(feeding mode category) filled by species in the community, FEve describes the evenness
of functional distribution in a the trait space, and FDis and RaoQ are indices quantifying
how functionally similar is the community spatially (Botta-Dukát, 2005;Mason et al., 2005).

Spatial differences in rhodolith bed structure (nodule density, internal volume,
morphology and ramification) as well as in sediment parameters (total organic matter,
carbonate, biopolymers, and granulometry) were also compared across bed and habitat
levels. Spatial analyses for bed structure, sediments, and macrofaunal assemblages were
made either through analysis of variance (ANOVA; Underwood, 1997) for univariate
parameters or by a permutational multivariate analysis of variance (PERMANOVA;
Anderson, 2017) for multivariate parameters. These tests were hierarchically designed with
one fixed factor (beds, two levels: high and low); or two fixed factors, adding station (nested
in bed, three levels: stations 1, 2, and 3) or habitat (fixed, two levels: rhodoliths and
sediment). PERMANOVAs were based on a Bray–Curtis resemblance matrix under a
reduced residuals model and data was square-root transformed to give more weight to rare
taxa in the analyses (Clarke & Gorley, 2006). Post-hoc pairwise tests (Tukey for ANOVAs
or PERMANOVA pairwise) were performed to identify significant differences within
factor levels (Underwood, 1997; Anderson, 2008).

Macrofaunal assemblage composition was also tested based on the total dissimilarity (i.
e. beta diversity) between beds and habitats. Dissimilarity levels were calculated from both
species’ turnover (βSIM; total replacement of species) and nestedness (subsets of species
among sites, βSN; Baselga, 2010), based on macrofaunal presence-absence data (Sørensen
index). A cluster dendrogram was also applied using the average abundance of all taxa
from the Bray-Curtis similarity matrix. Additionally to that, a non-metric
Multidimensional Scaling Analysis (nMDS) was applied to visualize the similarities of
macrofauna assemblies between densities and habitats, using the square-root abundance of
all taxa from the Bray-Curtis similarity matrix. A canonical analysis of principal
coordinates (CAP; Anderson & Willis, 2003) was performed to determine the association
between environmental variables and benthic assemblages between beds and habitats.
Graphic design and analysis were performed using R Project (R Core Team, 2014) with
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packages: ‘ggplot2’ (Wickham, 2016), ‘oce’ (Kelley & Richards, 2017), ‘stats’, ‘vegan’
(Oksanen et al., 2018), MASS (Ripley et al., 2019), mgcv (Wood, 2012), MuMIn (Barton &
Barton, 2013), FD (Laliberté, Legendre & Shipley, 2014), and ‘ggdendro’ (Andrie & Ripley,
2020). Macrofaunal raw data is openly available through the Ocean Biogeographic
Information System (OBIS) portal (Stelzer et al., 2021).

RESULTS
Rhodolith bed characteristics
The maximum depth of sampling stations varied between 39 and 55 m and did not differ
significantly between rhodolith beds of high and low density (Table 1). During sampling,
surface and bottom temperature ranged from 26–28 �C and 19–23 �C, respectively,
while salinity ranged from 37.7–38.3 (Table 1; Fig. S1). Stations H1 and H2 had water
column profiles with a marked halocline in the first 10 m, whereas at stations H3, L2, and
L3 the halocline occurred at 15 to 35m depth. Temperature showed a similar bathymetric
profile between stations. Secchi’s depth varied between 20–35 m deep and the incidence
of light in the water column reached greater depths in station L2 (Table 1).

The sediments under the high and low-density beds had a similar grain size
composition with predominance of coarse and medium sand (F = 3.51, p = 0.07; Table 2).
The percentage of sediment total organic matter varied between 2% and 5%, with no
significant differences between high and low-density beds (F = 0.038, p = 0.849). Sediment
carbonate content ranged from 3% and 8%, with higher carbonate content under the
high-density beds (F = 5.74, p = 0.0323). Two sediment organic biopolymers (proteins and
lipids) had higher concentrations in high-density beds (F = 27.3, p = 0.0002; Table 2,
Fig. 3), whereas carbohydrate concentrations were similar. Protein (PRT) and lipid

Figure 3 Sediment biopolymer concentrations. Average (±SE) sediment biopolymer concentrations under rhodolith beds of high and low density.
(A) Carbohydrate (CHO), lipids (LPD), and proteins (PRT), (B) PRT:CHO ratio, and (C) CHO:LPD ratio.

Full-size DOI: 10.7717/peerj.11903/fig-3
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concentrations in sediments of high-density beds ranged from 0.43 to 0.85 mg·g−1 and 0.02
to 0.30 mg·g−1, respectively (Fig. 3). The total biopolymeric carbon and biopolymer
ratios (protein: carbohydrate, carbohydrate:lipid) did not differ at the scale of beds, and
showed a wide range among samples (0.23 to 2.81 protein:carbohydrate, 2.4 to 111.3
carbohydrate:lipid). Biopolymeric carbon concentration did not vary in sediments under
rhodolith beds.

Rhodolith nodule density in high-density beds (204 ± 18.7 m−2) was over 3 times higher
when compared to the low-density beds (61 ± 27.1 m−2; F = 47.9, p < 0.0001; Table 3).
High-density beds were dominated by rounded (36%) and elongated (15%) nodules,
whereas in low-density beds the nodules were predominantly discoidal (22%) and
spherical (14%; F = 3.12, p = 0.05; Table 3, Fig. 4). Overall, nodule mean diameter and the
ramification pattern were similar between high-density and low-density beds, with small
nodules (3.7 to 5.3 cm mean diameter) with dense and solid branching (88% of
ramification type IV; p < 0.01; Tables 1 and 3). An exception of this patter was observed at
H1 where nodule diameter was significantly lower than at the other stations (F = 7.69,
p = 0.0071, F = 5.17, p = 0.05; Tables 1 and 3). The diameter of rhodolith nodules at
low-density beds were more heterogeneous than at the high-density beds (F = 7.69,
p = 0.0071; Table 3). The average rhodolith nodule internal volume in high-density beds
(312.2 cm3·m−2) was similar with the low-density beds (206.3 cm3·m−2), but with local
differences between stations H3 and L3 (F = 5.68, p = 0.0183; Table 3).

Macrofaunal assemblages
We sampled a total of 11,421 macrofaunal organisms associated with the rhodolith beds
(epifauna) and underlying sediments (infauna), and registered significant differences between
high and low-density beds and habitats (rhodoliths and sediment). Rhodolith nodules in
high-density beds had a similar macrofaunal density (2,736 ± 161.7 ind·m−2) when compared
to low-density beds (2,339 ± 554.9 ind·m−2; F = 0.27, p = 0.601; Table S1, Fig. 5); but in both
cases, macrofaunal density was significantly higher on nodules (2,538 ± 288.7 ind·m−2) when
compared to the sediments below nodules (166 ± 38.8 ind·m−2; F = 66.18, p < 0.0001).

Table 2 ANOVA and PERMANOVA results for sedimentary data.

df TOM1 Carbonate1 Grain size2 BPC1

SS MS F p SS MS F p SS MS F R2 p SS MS F p

Beds 1 0.03 0.03 0.038 0.849 5.76 5.76 5.74 0.0323 0.01 0.01 3.51 0.21 0.07 1.38 1.38 4.15 0.0643

Residuals 13 9.97 0.77 13.05 1.00 0.05 0.004 0.79 4.01 0.33

Total 14 0.06 1.00

df PRT1 CHO1 LPD1 PRT:CHO1 CHO:LPD1

SS MS F p SS MS F p SS MS F p SS MS F p SS MS F p

Beds 1 0.44 0.44 27.3 0.0002 0.10 0.10 0.31 0.584 0.03 0.03 4.95 0.0459 1.14 1.14 2.71 0.126 2,781 2,781.4 3.84 0.0735

Residuals 12 0.19 0.01 3.79 0.31 0.09 0.01 5.06 0.42 8,682 723.5

Note:
Results of ANOVA1 and PERMANOVA2 tests comparing spatial differences of sediment variables across rhodolith beds (high and low density). TOM, total organic
matter; BPC, biopolymeric carbon; PRT, proteins; CHO, carbohydrates; LPD, lipids; and their ratios (PRT/CHO and CHO/LPD). Significant results (p < 0.05) are in bold.
df, degrees of freedom; SS, sum of squares; MS, mean square; F and p statistics.

Stelzer et al. (2021), PeerJ, DOI 10.7717/peerj.11903 10/25

http://dx.doi.org/10.7717/peerj.11903/supp-2
http://dx.doi.org/10.7717/peerj.11903
https://peerj.com/


We identified 151 different macrofaunal taxa within nodules and sediments, with pronounced
contrasts between both habitats. There was a higher alpha and gamma diversity in rhodoliths
when compared to the sediment infauna (F = 38.6, p = 0.0002).

Figure 4 Rhodolith nodule morphology. Morphological distribution of rhodolith nodules sampled in
this study on a TRIPLOT diagram (Graham & Midgley, 2000; Sneed & Folk, 1958). Warm colors
represent nodules from high-density beds and cold colors represent nodules from low-density beds.

Full-size DOI: 10.7717/peerj.11903/fig-4

Table 3 ANOVA and PERMANOVA results for rhodolith data.

df Density1 Internal Volume1 Diameter1

SS MS F p SS MS F p SS MS F p

Bed 1 10,272.2 10,272.2 47.9 <0.001 36,630 36,630 2.07 0.175 3.91 3.91 48.57 <0.001

St(Bed) 2 84.1 42.1 0.2 0.8242 79,295 39,648 2.24 0.1480 4.98 2.49 30.93 <0.001

Interaction Bed*St 2 2,087.4 1,043.7 4.8 0.0282 2,000,249 100,124 5.68 0.0183 1.24 0.62 7.69 0.0071

Residuals 12 2,569.3 214.1 211,521 17,627 0.96 0.08

Tukey post-hoc H1 ≠ L3
H2 ≠ L2, L3
H3 ≠ L1, L2, L3

H3 ≠ L3 H1 ≠ H2, H3, L1, L2, L3
L1 ≠ L2 ≠ L3
H3 ≠ L2

df Morphology2 Ramification2

SS MS F p SS MS F p

Bed 1 0.24 0.24 3.12 0.05 0.02 0.02 1.32 0.33

St(Bed) 1 0.13 0.13 1.76 0.10 0.06 0.06 5.11 0.03

Interaction Bed*St 1 0.15 0.15 1.89 0.15 0.07 0.07 5.17 0.05

Residuals 14 1.11 0.08 0.18 0.01

Total 17 1.64 0.32

PERMANOVA pairwise results ns

Note:
Results of ANOVA1 and PERMANOVA2 tests of rhodolith nodule Density, Internal Volume, mean diameter (Diameter), Morphology and Ramification across beds of
high and low density (Bed), and stations (St). Significant results (p < 0.05) are in bold. df, degrees of freedom; SS, sum of squares; MS, mean square; F and p statistics, ns,
not significant post-hoc tests.
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Macrofaunal composition changed markedly at the scale of beds (F= 3.41, p = 0.02) and
between habitats (F = 20.0, p = 0.01; Table S1). Rhodolith nodules were mostly dominated
by Annelida (47%) and Crustacea (44%) with a marked difference between high and
low-density beds. Annelida (Syllidae, Nereididae, and Lysidice sp) dominated high-density
beds (51%), whereas Crustacea (Gammaridae, Melitidae, and Elasmopus sp) dominated
(64%) low-density beds (Fig. S2). In contrast, sediment macrofaunal assemblages were
relatively similar under high and low-density beds being dominated by Crustacea (63%;
Ostracoda, Melitidae, and Leptochelia sp) and Mollusca (22%;Meioceras sp and Cardiidae;
Fig. S2).

Macrofaunal trophic richness exhibited a distinct dominance between habitats (Fig. S2).
The dominant trophic groups on the rhodolith nodules were omnivores, carnivores, and
others feeders (OCO, 74.6%), while sediments were dominated by filter feeders (38.5%)
and OCO (28.5%). Macrofaunal trophic richness (FRic) was higher on the rhodolith
nodules (7 ± 0.2), when compared to the sediment underneath (5 ± 0.4; F = 27, p < 0.0001;
Fig. 6). Sediments presented a more homogeneous trophic evenness (FEve = 0.32 ± 0.03)
when compared to the rhodolith nodules (FEve = 0.09 ± 0.02; F = 75.39, p < 0.0001;
Table S2). Macrofaunal trophic dispersion (FDis) and entropy (FRaoQ) differed
between habitats only at low-density beds, which were both higher in sediments
(Table S2; Fig. 6).

There was a high degree of patchiness with high dissimilarity among macrofaunal
assemblages between rhodolith nodules and sediments (Sørensen Index = 0.92; Fig. S3).
Macrofaunal composition in rhodoliths and underlying sediments was marked by low
nestedness and high taxa turnover (Table 4). The CAP analysis supported the spatial
dissimilarity in macrofaunal assemblages inside nodules, suggesting a strong effect of bed
density on nodule’s macrofaunal density (F = 7.97, p = 0.002; Fig. 7, Table S3). On the

Figure 5 Macrofaunal abundance and richness. Macrofaunal structure in rhodoliths and sediments at high- and low-density stations. (A) Mac-
rofaunal density (ind·m−2), (B) alpha diversity, and (C) gamma diversity. Full-size DOI: 10.7717/peerj.11903/fig-5
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other hand, the sediment macroinfauna under rhodolith beds were significantly related to
sediment carbonate content (F = 1.71, p < 0.01; Table S4, Fig. 7). The CAP ordination
showed that bed density influenced the rhodolith macrofaunal composition with greater

Figure 6 Macrofaunal functional diversity.Mean (±SE) macrofaunal functional diversity indices across
high and low-density rhodolith beds. (A) Functional richness (FRic), (B) functional evenness (FEve),
(C) functional dispersion (FDis), and (D) entropy (Rao Q). Full-size DOI: 10.7717/peerj.11903/fig-6

Table 4 Macrofaunal dissimilarity, nestedness and turnover.

Dissimilarity indices

Sørensen βSIM βSNE C-score Pr(sim)
(species mean)

Rhodolith + Sediment 0.92 0.77 0.14 12.58 0.01

Rhodolith 0.88 0.80 0.08 5.49 0.01

Sediment 0.89 0.80 0.09 0.84 0.99

Note:
Dissimilarity (Sørensen index), nestedness (βSIM) and turnover (βSNE) in the benthic macrofaunal assemblages in
rhodolith nodules and sediments. Significant results are in bold.
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contribution of Syllidae and Sipuncula in high-density beds, whereas low-density beds
were associated with gammarid amphipods (Fig. 7). The underlying sediments at
high-density beds were predominantly dominated by ostracods, but crustaceans Melitidae
and Amphiuridae dominated at low-density beds (axis 1; >29%).

DISCUSSION
Rhodolith beds are unique marine habitats and are expected to increase the seafloor
biodiversity by increasing its structural complexity and organic input. Our study support
that rhodolith beds have a higher macrofaunal abundance and are home to a more
diverse and distinct set of benthic taxa when compared to the underlying sediments,
supporting our first hypothesis that these habitats may increase local and regional
biodiversity. Our results are thus similar to previous assessments of the effects of rhodolith
beds on benthic assemblages (Carvalho, Loiola & Barros, 2017; Gabara et al., 2018),
and reveal similar ecological processes of substrate complexity governing benthic
ecosystems observed in other coastal marine habitats (Archambault & Bourget, 1996;
Mazzuco, Stelzer & Bernardino, 2020). We also observed that spatial heterogeneity in
rhodolith nodules density and in the underlying sediments contribute to maintaining a
greater species diversity and a higher dissimilarity in species composition between
rhodolith and sedimentary habitats. These changes are based on a high species turnover
between rhodoliths and sediments, revealing that the sediment macrofauna under
rhodoliths is not a subset of species inhabiting rhodolith nodules (and vice versa).
Our findings also suggest a potential trophic link between rhodolith nodules and the

Figure 7 Canonical analysis of principal coordinates. Canonical analyses of principal coordinates
(CAP) indicating differences in the macrofaunal assemblages in rhodolith beds and the underlying
sediments at high density (H1, H2, H3; warm colors) and low-density (L1, L2 and L3; cold colors) beds.
Vectors are based on Spearman correlation values > 0.5 (p < 0.5) for environmental variables and scores
for each taxa. The proportion of data explained by axis 1 and 2 are in parenthesis. Size of circles
represents macrofaunal total abundance in each station. Full-size DOI: 10.7717/peerj.11903/fig-7
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macrofaunal assemblages in underlying unconsolidated sediments, through changes in
sediment carbonate and organic contents. In addition, through an increased deposition of
organic matter under high-density beds, rhodoliths may have positive effects on carbon
burial in sediments of continental shelves that are yet poorly quantified.

In our study, we have detected significant differences in nodule’s diameter, internal
volume and ramification between sampled stations (scale of 10–100’m), suggesting a
marked regional variability in bed structure. Rhodoliths showed a predominant elongated
morphology in high-density beds likely due to a greater bed stability (Hinojosa-Arango &
Riosmena-Rodríguez, 2004; Gagnon, Matheson & Stapleton, 2012), whereas low-density
beds had a predominance of compact nodules. Our marked regional variability in
rhodolith nodule structure thus suggests more complexity over rhodolith beds than
anticipated previously. Large-scale patterns in the transition between tropical-temperate
rhodolith beds in Brazil have been described with tropical areas holding high-density beds
with a smaller mean diameter when compared to low latitude regions (Amado-Filho et al.,
2007; Amado-Fiho et al., 2017; Riul et al., 2009). Our study has a clear limited latitudinal
sampling, but evidences that the structure of beds is highly variable at the scale of 10’s of
meters. This high spatial heterogeneity was also observed in beds with lower density of
nodules. The morphological variability in nodules may thus provide more internal space
for the colonization of macrofauna, likely increasing macrofaunal density and diversity
through higher niche availability when compared to underlying sediments. There are also
morphological changes in the form and sphericity of rhodolith nodules along depth ranges
over larger spatial scales (Otero-Ferrer et al., 2020;Holz et al., 2020; Veras et al., 2020). This
study sampled beds over a depth range of 30 to 60 m, so depth ranges may also be
associated to the morphological variability in nodules. In addition, although we did not
identify macroalgal diversity and rhodolith forming species to determine their specific
effects over the benthic macrofauna, these effects may also influence the rhodolith’s
morphology and benthic ecological patterns (Foster, 2001; Hinojosa-Arango & Riosmena-
Rodríguez, 2004; Anderson et al., 2021).

The hypothesis of the effects of rhodolith nodule’s density on benthic macrofaunal
assemblages was partially supported by the higher density and different composition of
taxa in high-density beds. These effects were similar to those observed within rhodolith
beds in the Mediterranean and on the coast of California (Steller et al., 2003; Hinojosa-
Arango & Riosmena-Rodríguez, 2004), suggesting that the abundance of rhodolith nodules
is key to both regional and large-scale patterns of benthic diversity. Polychaeta and
Crustacea dominated beds in SE Brazil in a similar pattern observed in other continental
margins at similar depths (Bordehore, Ramos-Esplá & Riosmena-Rodríguez, 2003;
Hinojosa-Arango & Riosmena-Rodríguez, 2004; Grall et al., 2006; Harvey & Bird, 2008).
High-density beds were dominated by Polychaeta, especially Syllidae; while low-density
beds were dominated by Crustacea, mostly Gammaridae. The greater abundance and
dominance of these groups in rhodoliths may be related to their wide feeding strategies,
favoring the use of diverse microhabitats (Harvey & Bird, 2008; Sciberras et al., 2009).
Macrofaunal composition was significantly related to bed density and between rhodolith
or sedimentary habitats. Although we observed a marked small-scale patchiness in
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rhodolith morphology, ramification, diameter and volume, macrofaunal composition were
unrelated to these effects in our study site. Other studies have detected associations
between benthic assemblages and rhodoliths structure (Steller et al., 2003; Sciberras et al.,
2009; Tompkins & Steller, 2016). Our data suggests that these effects are at scales of
individual stations, possibility reflecting a stronger spatial variability within our study area
that needs to be considered. It is also likely that temporal changes in macrofaunal structure
occur within these dynamic ecosystems as a result of bottom transport and disturbance
(Navarro-Mayoral et al., 2020), which will need to be assessed for our study area.

Our study revealed that underlying sediments in rhodolith beds support a distinct set of
macrofaunal organisms and with lower alpha and gamma diversity when compared to
the nodules. Mollusks and crustaceans were the most dominant groups in the sediment.
Most of them were small species with a predominant burrowing behavior, which favors life
in unconsolidated habitats and were also reported at other rhodolith beds (Snelglove &
Buttman, 1995; De Grave, 1999). Carbonate also played an important role in structuring
sediment macrofaunal assemblages at high-density beds, probably due to the greater
aggregation and local input of carbonate from erosion of nodules. This finding confirms
that rhodoliths have a strong influence on sediment macrofaunal structure by changing
their sedimentary habitat (De Grave, 1999), and to a lesser extent their organic content.
The organic supply from rhodoliths to underlying sediments is supported by a higher
concentration of proteins in high-density stations, even though these changes were not
related to macrofaunal composition. The higher organic matter quality, rich in proteins
and lipids, may come from a higher pelagic detrital input being deposited, and also from an
increased algal input from rhodoliths in high-density nodules (Grall et al., 2006). These
results suggest that the physical structure of rhodoliths may be very important for the
organic input to the benthos on the nodules and in the underlying sediments. These
differences indicate that the macrofaunal composition and diversity within rhodolith beds
are closely linked to food availability (Grall et al., 2006). The type and abundance of food
items may support the observed dominance of omnivore and carnivore feeders in
rhodolith beds, in contrast to the predominance of suspension feeders in sediments under
the nodules. Trophic group richness was similar between rhodolith beds and the
underlying sediments, suggesting a wide niche availability in both habitats (Paganelli,
Marchini & Occhipinti-Ambrogi, 2012; Bolam et al., 2017).

Macrofaunal functional richness, evenness, dispersion, and entropy were markedly
distinct between the rhodoliths and sediments, but with marked small-scale patchiness
within beds. We observed an increased functional richness in rhodolith nodules when
compared to sediments independently of nodule density, suggesting that functional
richness is strongly increased with the presence of rhodoliths on the seafloor, even at low
nodule densities. This view is further supported by the distinct set of taxa and higher
taxon richness in rhodolith beds, which were markedly dissimilar from the underlying
sediment habitats. As a result of higher taxon richness, macrofaunal assemblages
associated with the rhodoliths were more functionally heterogeneous. These patterns

Stelzer et al. (2021), PeerJ, DOI 10.7717/peerj.11903 16/25

http://dx.doi.org/10.7717/peerj.11903
https://peerj.com/


suggest an increased niche availability associated with these biogenic structures, which
support a higher number of taxa with unique ecological functions on the rhodolith nodules
(Mason et al., 2005; Schumm et al., 2019).

The marked differences in macrofaunal density, composition and diversity (taxonomic
and functional) within rhodolith beds support their value as biodiversity hotspots along
continental shelves. The strong effect of bed density in macrofaunal assemblages in
nodules and in sediments, suggest that the physical structure of rhodolith beds is
important by providing habitat and organic input to the benthos. As a result,
anthropogenic impacts that may influence the habitat structure of beds through physical
disturbance, including fishing and dredging, pose a high threat to their biodiversity (Hall-
Spencer & Moore, 2000; Grall & Hall-Spencer, 2003). In SE Brazil, multiple uses and
impacts such as fishing, coastal urbanization (e.g. ports, marinas), pollution and mine
tailings (Gomes et al., 2017; Vilar et al., 2020), are of additional concern to rhodolith beds
in areas that may receive increased sediment deposition and contamination. This study
supports those initiatives that aim to preserve and manage these ecosystems on the
Brazilian continental shelf will lead to the protection of a larger number of species.
According to our results, physical impacts that lead to the removal or burial of rhodolith
nodules will cause a marked loss of species and their functional diversity, with potential
implications to fisheries and to other species that rely on these ecosystems for habitat or
food. As Brazil holds extensive rhodolith areas, setting priority areas for conservation in
areas of higher nodule density could protect assemblages with higher functional diversity
and thus more resilient to local and climate stressors, with additional potential carbon
burial benefits.

CONCLUSIONS
This study evidences that rhodoliths provide a unique habitat for a diverse (taxonomically
and functionally) and distinct benthic assemblage, with 5 to 7 times more species and
10 times more macrofaunal organisms when compared to the underlying sediments.
According to our findings, the presence and higher density of rhodolith nodules are key to
benthic macrofaunal assemblages, likely due to increased niche availability and increased
organic input when compared to sediments underlying those beds. Rhodolith beds
sustained higher concentrations of carbonate, proteins, and lipids, providing a high food
quality habitat to benthic assemblages. Considering that rhodolith beds are vulnerable to
global changes and the exploratory pressure grows upon these habitats, our results support
the importance of these ecosystems to overall marine biodiversity on the Brazilian
continental margin, and we recommend improved restrictions to preserve these habitats.
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