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Background: Loss of organic matter and mineral nutrients to soil erosion in rain-fed agriculture is a
serious problem globally, especially in China’s Loess Plateau. As a result, increasing rainwater usage
efficiency by tied-ridge-furrow rainwater harvesting with biochar is expected to improve agricultural
productivity. Nonetheless, with limited knowledge on tied-ridge-furrow rainwater harvesting with biochar,
small-scale farmers face the challenge of adoption, thus, the rationale for this study.

Materials and methods: A field experiment was conducted to determine the influence of open-ridging
(OR) and tied-ridging (TR) with bio-degradable film on ridges and biochar in furrows on runoff, sediment
losses, soil moisture, fodder yield, and water use efficiency (WUE) on sloped land, using flat planting (FP)
without ridges and furrows as control, during alfalfa-growing year (2020).

Results: Runoff in flat planting (30%), open ridging (45%), and tied ridging (52%) were decreased with
biochar to the extent where sediment was decreased in flat planting (33%), open ridging (43%), and tied
ridging (44%) as well. The mean runoff efficiency was lower in flat planting (31%), open ridging (45%),
and tied ridging (50%) in biochar plots compared to no-biochar plots. In biochar and no-biochar plots, soil
temperature on ridges of TR was higher than that on OR, which was higher than FP during alfalfa growing
season. Soil temperature in furrows during alfalfa growing season in biochar and no-biochar plots were in
the order FP > OR > TR. Mean soil water storage for FP, OR, and TR, in biochar plots was higher than in
no-biochar plots. This indicates biochar has a beneficial impact on open riding. Total annual net fodder
yield (NFY) was significantly (p = 0.00) higher in treatments in the order TR > OR > FP. Tied ridging had
a significant effect on actual fodder yield (AFY) in biochar plots, while open ridging significantly affected
AFY in no-biochar plots. Annual total mean NFY and AFY increased by 8% and 11% in biochar plots
compared to no-biochar plots. In biochar and no-biochar plots, water use efficiency was in the order TR >
OR > FP. Conclusively, water use efficiency was significantly higher (p = 0.01) in biochar plots compared
to no-biochar plots.

Conclusion: When crop production is threatened by soil erosion and drought, mulched tied-ridge with
biochar is beneficial to crop growth in rain-fed agriculture, according to this research. Smallholder
farmers should be trained on applying this technique for water-saving to mitigate runoff, soil erosion,
sediment losses, and improve food security in semiarid areas.
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17 Abstract 

18 Background: Loss of organic matter and mineral nutrients to soil erosion in rain-fed agriculture 
19 is a serious problem globally, especially in China’s Loess Plateau. As a result, increasing 
20 rainwater usage efficiency by tied-ridge-furrow rainwater harvesting with biochar is expected to 
21 improve agricultural productivity. Nonetheless, with limited knowledge on tied-ridge-furrow 
22 rainwater harvesting with biochar, small-scale farmers face the challenge of adoption, thus, the 
23 rationale for this study.  
24 Materials and methods: A field experiment was conducted to determine the influence of open-
25 ridging (OR) and tied-ridging (TR) with bio-degradable film on ridges and biochar in furrows on 
26 runoff, sediment losses, soil moisture, fodder yield, and water use efficiency (WUE) on sloped 
27 land, using flat planting (FP) without ridges and furrows as control, during alfalfa-growing year 
28 (2020). 
29 Results: Runoff in flat planting (30%), open ridging (45%), and tied ridging (52%) were 
30 decreased with biochar to the extent where sediment was decreased in flat planting (33%), open 
31 ridging (43%), and tied ridging (44%) as well. The mean runoff efficiency was lower in flat 
32 planting (31%), open ridging (45%), and tied ridging (50%) in biochar plots compared to no-
33 biochar plots. In biochar and no-biochar plots, soil temperature on ridges of TR was higher than 
34 that on OR, which was higher than FP during alfalfa growing season. Soil temperature in furrows 
35 during alfalfa growing season in biochar and no-biochar plots were in the order FP > OR > TR. 
36 Mean soil water storage for FP, OR, and TR, in biochar plots was higher than in no-biochar 
37 plots. This indicates biochar has a beneficial impact on open riding. Total annual net fodder yield 
38 (NFY) was significantly (p = 0.00) higher in treatments in the order TR > OR > FP. Tied ridging 
39 had a significant effect on actual fodder yield (AFY) in biochar plots, while open ridging 
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40 significantly affected AFY in no-biochar plots. Annual total mean NFY and AFY increased by 
41 8% and 11% in biochar plots compared to no-biochar plots. In biochar and no-biochar plots, 
42 water use efficiency was in the order TR > OR > FP. Conclusively, water use efficiency was 
43 significantly higher (p = 0.01) in biochar plots compared to no-biochar plots. 
44 Conclusion: When crop production is threatened by soil erosion and drought, mulched tied-ridge 
45 with biochar is beneficial to crop growth in rain-fed agriculture, according to this research. 
46 Smallholder farmers should be trained on applying this technique for water-saving to mitigate 
47 runoff, soil erosion, sediment losses, and improve food security in semiarid areas.  
48

49 Keywords: Ridge-furrow rainwater harvesting, Tied ridging, Runoff, Sediment, Biochar, Alfalfa 
50 fodder yield

51 Introduction

52 The Loess Plateau of China is accustomed to unpredicted rainfall, with spatial variations 
53 accompanied by recurring droughts (Ding et al., 2018; Wang et al., 2015; Jin et al., 2007). In 
54 addition to these climatic conditions of the Loess Plateau, topography contributes immensely to 
55 severe soil erosion in events of heavy rainfall (Chen et al., 2019; Wang et al., 2016; Meng et al., 
56 2008). Consistent soil erosion reduces soil nutrient and moisture availability for crops (Jin et al., 
57 2007; Fu et al., 2004; Trimble & Crosson, 2000). Thus, loss of soil nutrients destabilizes the 
58 structure and population of microbes in the soil (Xiao et al., 2017; Du et al., 2020). 
59 Consequently, alfalfa (Medicago sativa L.) was revealed as ideal for protecting soil hence, was 
60 commonly grown on the Loess Plateau (Jun et al., 2010). Soon after, alfalfa was discovered to be 
61 seriously depleting soil water in these areas, due to its deep roots' water absorption from deep 
62 soil layers (Jun et al., 2010). Fan et al. (2016) reported alfalfa can exhaust available soil water in 
63 a field in less than 6 years and prevent deep soil water recharge. Wang et al. (2012) corroborated 
64 this by revealing dry soil layers in deep soil after alfalfa cultivation which has significantly 
65 obstructed sustainable agriculture development. However, these fragile regions remain the main 
66 source of livelihood for millions of deprived and vulnerable people (Bado et al., 2021). On this 
67 account, agriculture in semiarid areas must be improved by increasing rainwater use efficiency 
68 with mulching in rainwater harvesting scheme (Meng et al., 2020).
69 In recent years, many field studies have revealed ridge and furrow rainwater harvesting 
70 (RFRH) as an effective and simple technique for increasing soil water content (SWC) and 
71 improving rainwater use efficiency in rain-fed agriculture (Li et al., 2016; Xiaolong et al., 2008). 
72 RFRH can gather effective or ineffective rainfall, prevent surface runoff during intensive rainfall, 
73 and reduce evaporation (Zheng et al., 2019; Jia et al., 2018; Liang et al., 2018; Han et al., 2013). 
74 RFRH is extensively practiced in areas with <5 mm rainfall, where irrigation is not available 
75 (Liu et al., 2020) for improving rainfall infiltration and soil moisture (Ren et al., 2016), 
76 facilitating seedling growth at a faster pace (Gan et al., 2013; Zhang et al., 2011; Ramakrishna et 
77 al., 2006), and improving crop yield and maintaining food stability (Chen et al., 2015; Bu et al., 
78 2013). RFRH has been demonstrated in many studies to increase soil temperature as compared to 
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79 flat planting (Zhang et al., 2017; Mo et al., 2017). In extreme rainfall events, however, water 
80 runs over the ridges (Wiyo et al., 2000). Hence, building basins with cross-ties known as tied-
81 ridging, to store surface runoff in furrows is a solution to excess water flowing over ridges 
82 (overtopping) in RFRH on sloped lands (Vejchar et al., 2019). The collected water can be used 
83 by crops for a long time better than it can be used in the state of runoff (Ndlangamandla et al., 
84 2016). The cross-ties also reduce the speed of the water flow along furrows (Mutiso, 2018) and 
85 often increase the length of crop growing seasons (Mason et al., 2015). 
86 Previous studies have shown that tied-ridge, which is a proven method of maintaining 
87 soil moisture at 0–5 and 6–10 cm soil depth in drier periods in rain-fed agriculture, increases 
88 yield by 50% (Mandumbu et al., 2020; Sibhatu et al., 2017). Beshir & Abdulkerim (2017) 
89 revealed an increase in soil fertility with in-furrow planting in a closed-end tied-ridge system. 
90 Consequently, Mupangwa et al. (2006) reported an average maize yield of 3400 kg ha-1 from 
91 tied ridges compared with 1500 kg ha-1 from conventionally ploughed fields. A study conducted 
92 by Brhane et al. (2006) revealed that variations in tied-ridging beneficial effects on crop yield are 
93 due to differences in distribution and amount of rainfall, slope, soil type, landscape position, time 
94 of ridging, and crop type. They further stated that soil water and sorghum grain yield was 
95 increased with tied-ridging by more than 25 and 40%, respectively, as compared to conventional 
96 tillage (shilshalo) practice in northern Ethiopia. Tied-ridging has been effective in increasing soil 
97 water storage and decreasing runoff in Tanzania (Guzha, 2004), and the USA (Howell et al., 
98 2000). However, inappropriate use of tied-ridging can lead to problems such as waterlogging, 
99 and total loss of crops in harsh storms (Brhane et al., 2006). Studies in arid and semiarid areas of 

100 sub-Saharan Africa suggested that single water conservation interventions could improve crop 
101 yields by up to 50% (Araya & Stroosnijder, 2010; Bennie & Hensley, 2001; Walker et al., 2005) 
102 while combination of tied-ridges and nutrient inputs have accounted for two-fold to six-fold crop 
103 yields compared with conventional tillage practices without fertilizer use (Jensen et al., 2003; 
104 Zougmoré et al., 2003). Therefore, given the deficient soil fertility nature of arid and semiarid 
105 areas of northwestern China, single rainwater harvesting intervention may not bring about a 
106 considerable influence on crop productivity (Biazin & Stroosnijder, 2012). Thus, tied ridging 
107 with mulching which has been widely practiced in many countries (Donjadee & Tingsanchali, 
108 2016; Chakraborty et al., 2008; Mupangwa et al., 2006) with a consistent increase in crop 
109 production should be explored. Mulching, a significant agronomic practice, is gaining 
110 considerable attention globally due to its phenomenal effect and low cost (Li et al., 2020). 
111 Mulching has different generally established environmental functions (Prosdocimi et al., 2016). 
112 Some of which are notably increasing soil surface coarseness hence decreasing runoff, sediment, 
113 and nutrient content in runoff (Vega et al., 2015; Lee et al., 2018). In addition, mulching retains 
114 soil moisture, hence increases rainfall infiltration and decreases evapotranspiration (Li et al., 
115 2020). Decomposed mulching materials increase soil organic matter and available soil nutrients 
116 for crop development (Jiménez et al., 2016; Bajgai et al., 2014; Jordán et al., 2010). There have 
117 been significant reports on effectiveness of mulching in reducing soil water and nutrient loss in 
118 different climatic environments in America (Ruy et al., 2006), Europe (Fernández et al., 2012; 
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119 Abrantes et al., 2018), Asia (Wang et al., 2016), and Africa (Mwango et al., 2016). One such 
120 prominent mulching technology is biochar amendment (Woolf et al., 2010; Woolf et al., 2018).
121 Biochar, a steady carbon-rich material manufactured from pyrolyzing biomass in oxygen-
122 deprived environments, can improve soil carbon sequestration and soil quality (Lehmann & 
123 Rondon, 2006). A potential feedstock is shelled maize cobs crop residues, often burnt or left on 
124 the field in rural regions of developing countries to decompose (Silayo et al., 2016). By 
125 improving cation exchange capacity and soil structure, biochar increases soil fertility (Martinsen 
126 et al., 2014) and decreases nutrient leaching (Laird et al., 2010). Biochar became known as a key 
127 element of the popular fertile anthropogenic Terra Preta soil of Central Amazonia (Glaser & 
128 Birk, 2012). Studies have confirmed biochar as extremely viable for curbing soil and nutrients 
129 losses on sloping lands in semiarid regions (Li et al., 2019; Zhang et al., 2017; Han et al., 2016; 
130 Xiao et al., 2016; Liu et al., 2012). For example, Kammann et al. (2012) discovered a significant 
131 increase in biomass in biochar-modified soils relative to controls in perennial ryegrass (Lolium 

132 perenne L.). Consequently, Rondon et al. (2007) revealed addition of biochar to a low-fertility 
133 soil led to 22% increased nitrogen fixation in beans (Phaseolus vulgaris) in addition to 
134 significantly improved biomass and bean yield. In terms of runoff and erosion, biochar can help 
135 increase infiltration rate and saturated hydraulic conductivity (Ksat) in clayey soils thereby 
136 curbing erosion, flooding, and contamination of streams (Li et al., 2019; Li et al., 2018; Obia et 
137 al., 2018; Lim et al., 2016). Saturated hydraulic conductivity is the ease of water flow through 
138 the soil when it is saturated and it is vital for flooding, drainage, and soil water studies (Lu, 2015; 
139 Kirkham, 2014). Biochar has also been recounted to improve soil physical and hydrological 
140 properties, ranging from bulk density and soil porosity to soil aggregate stability (Fischer et al., 
141 2019; Burrell et al., 2016; Głąb et al., 2016). Biochar amendment, in combination with a slow 
142 decomposition (Peng et al., 2011; Wang et al., 2016), foster carbon sequestration and long-term 
143 soil improvements (Kuzyakov et al., 2014; Lehmann et al., 2008), and thus can aid in mitigating 
144 climate change (Crane-Droesch et al., 2013; Woolf et al., 2010). Jeffery et al. (2017) discovered 
145 in a meta-analysis that extremely predominantly weathered soils, prevalent in the humid tropics, 
146 benefit from biochar amendments with mean crop yield increases of 25%. Meanwhile, in some 
147 other studies, biochar has been demonstrated not to influence soil moisture. Hardie et al. (2014) 
148 recounted that 30 months after biochar amendments to a sandy loam soil, no significant outcome 
149 was revealed on soil moisture at various tensions (measurement of the quantity of energy 
150 necessary to transport water in the soil). Conversely, Gonzaga et al. (2018) found that soils 
151 treated with 30 t ha-1 coconut husk biochar increased 90% of Zea mays biomass, while orange 
152 bagasse biochar applied at the same concentration had no impact. The disparity in outcomes 
153 from different studies, however, could be ascribed to differences in soil types, plant species 
154 treated, biochar application rates, and experimental circumstances (Edeh et al., 2020; Nooker, 
155 2014). 
156 In a recent study, Anyanwu et al. (2018) found aged biochar in soil has a detrimental 
157 impact on earthworms and/or fungi growth. Furthermore, this resulted in a decrease in rice 
158 (Oryza sativa) and Tomato (Solanum lycopersicum) underground root biomass. In addition, 
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159 biochar has been shown to reduce soil thermal diffusivity due to biochar's low thermal diffusivity 
160 (Zhao et al., 2016). Biochar's beneficial effects are shown to be soil specific, contrary to common 
161 belief. As a result, biochar amendment could not be beneficial to all forms of soil (Zhu et al., 
162 2015). Nevertheless, when biochars were used, several studies identified weed problems. 
163 Biochar application at relatively high rates of 15 t ha-1 resulted in a 200% increase in weed 
164 growth during lentil culture, according to Safaei Khorram et al. (2018); suggesting repeated 
165 biochar applications might not be good for weed control. According to Vaccari et al. (2015), 
166 applying 14 t ha-1 of biochar to tomato plants improved vegetative growth but not fruit yield. 
167 Instead of providing plant nutrients, biochar can react with soil nutrients and function as a 
168 competitor (Joseph et al., 2018). Biochar can adsorb nitrogen as well as essential nutrients like 
169 Fe, which can be detrimental to plant development (Kim et al., 2015), since this may delay plant 
170 flowering (Hol et al., 2017). Biochar amendments in saline sodic soil could aid phosphate 
171 precipitation and sorption reactions which could ultimately lead to a reduction in amount of 
172 phosphorus available to plants (Xu et al., 2016). Concurrently, biochar amendment in soil, for 
173 example, had no effect on pesticide absorption of dichlorodiphenyltrichloroethane (DDT) 
174 (Denyes et al., 2016). In terms of soil biology, biochar can disrupt organic matter decomposition, 
175 reducing abundance of fungi species such as Ascomycota and Basidiomycota by 11 and 66%, 
176 respectively (Zheng et al., 2016). Despite several studies showing biochar amendment has 
177 positive and negative effects, there is still a lot of confusion regarding effects in conjunction with 
178 other management techniques (Solaiman & Anawar, 2015). 
179 Although biochar amendment (Solaiman & Anawar, 2015), and tied-ridging (Twomlow 
180 & Bruneau, 2000) has widely been explored, conflicting reports on the effects in conjunction 
181 with other management techniques are prevalent. In addition, most studies report on only yield 
182 advantages, ignoring trade-offs between runoff, sediment losses, soil temperature, and moisture 
183 (Ademe et al., 2018). Therefore, there is the need for investigations into the combined effects of 
184 tied-ridge as a field soil moisture conservation technique with biochar on sloped land is needed 
185 to allow this know-how to be better situated to compete with other droughts, and soil erosion 
186 mitigation approaches (Woolf et al., 2016; Woolf et al., 2018). To date, however, worldwide 
187 experiments are relatively rare to enumerate capabilities of tied-ridge with biochar on sloped 
188 lands, in terms of their capacity to guarantee food security and dealing with extreme conditions, 
189 such as drought. This study reports the influence of tied-ridge with biochar amendment on soil 
190 temperature, moisture, runoff, sediment losses, and alfalfa fodder yield. The specific objectives 
191 of this study were (1) to determine whether biochar amendment in tied ridging reduces soil 
192 temperature, runoff, and sediment losses on sloping lands, and (2) to determine optimum mulch 
193 recommendation with tied ridging that will produce high alfalfa yield and water use efficiency in 
194 semiarid Loess Plateau of China.
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195 Materials and methods

196 Schematic overview of the experimental program 

197 The schematic overview of the experimental program, from identification of the 
198 experimental station, to sampling and measurements of alfalfa cultivation in tied-ridge with 
199 biochar amendments, is displayed in Figure 1. For emphasis, the purpose of this research was to 
200 examine the influence of tied-ridge with biochar amendment on runoff, sediment losses, and 
201 alfalfa yield in northwestern China. The study implemented a completely randomized design 
202 with three replications. Tied-ridging, open-ridging, and flat planting were the three tillage 
203 systems used, at a 7° slope. The biodegradable film (Ecoflex FS) used to mulch the ridges were 
204 0.008 mm in thickness. Biochar applied in furrows was manufactured from maize straw at 400 
205 °C through pyrolysis and thermal decomposition at Sanli New Energy Company in Henan, 
206 China, and applied at 30000 kg ha-1 in the fields (Luo et al., 2017).

207 The experimental station 

208 Field research was piloted at Anjiagou Catchment during alfalfa cultivation period from 
209 April-October (2020). The terrain of this area (latitude 35°34′ N, longitude 104°39′ E, and 
210 altitude 2075 m a.s.l.) is mountainous with steep slopes (converted to grasslands after ‘Grain-for-
211 Green Policy’ enacted in the 1990s). The experimental station is situated 2–3 km east of Dingxi 
212 city, Gansu Province, Northwest China (Figure 2). The area is semi-arid with mean annual air 
213 temperature (7.2°C) and monthly mean temperatures ranging from 1.1°C in January to 19.1°C in 
214 July. . The soil type on the experimental station is calcic cambisol, according to American soil 
215 classifications (Chen et al., 2013). The soil chemical properties are outlined in Table 1. The 
216 farming practice in this area is monoculture with once a year crop harvesting due to low 
217 temperatures. The main crops grown in this area are proso millet (Panicum miliaceum), spring 
218 wheat (Triticum aestivum), potato (Solanum tuberosum), maize (Zea mays), and flax (Linum 

219 usitatissimum). The major fodder grass species are sainfoin (Onobrychis viciifolia) and alfalfa 
220 (Medicago sativa).

221 Experimental design

222 In a completely randomized design, there were six plots (2 open / tied ridge with bio-
223 degradable film cover × 2 biochar / no biochar + 2 flat planting (FP) as control) with three 
224 replications. Tied-ridging, open-ridging, and flat planting were the three tillage systems used, at 
225 a 7° slope. A ridge width, height, and furrow width of 45, 20, and 60 cm respectively, were used 
226 for open ridging and tied ridging. The ties in the tied ridging ranged from 10 to 15 cm in height 
227 and 20 cm in width (Figure 3). There was a 2.5 m distance between two non-staggered tied-
228 ridges. The biodegradable film (Ecoflex FS) used to mulch the ridges were 0.008 mm in 
229 thickness. The bio-degradable film was mass-produced by BASF Co Ltd, Germany. Biochar was 
230 manufactured from maize straw at 400 °C through pyrolysis and thermal decomposition at Sanli 
231 New Energy Company in Henan, China, and applied at 30000 kg ha-1 in the fields (Luo et al., 
232 2017). Biochar had a specific surface area of 44 m2 g−1, a bulk density of 0.45 g cm−3, a pH (v/v 
233 1:2.5 biochar: distilled water) of 7.5, a cation exchange capacity of 24.1 cmol kg-1, a water 
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234 holding capacity (24 h) of 288%, and Total C, and Total N content of 89 and 0.3%, respectively. 
235 In the exception of flat planting (control), experimental plots were 5.0 m wide and 10.05 m long, 
236 with 9 ridges and 10 furrows (Figure 3). Each plot was surrounded by a 15 cm high panel to 
237 accumulate runoff and sediment and to prevent runoff and sediment from adjacent plots. A gutter 
238 was built at the bottom of each plot to channel runoff and sediment into a pool with a volume of 
239 2.25 m3 (1. 5 m wide × 1. 5 m long × 1.5 m deep). There was a 1.5 m space between two plots. 
240 Cement and bricks were used to build runoff and sediment collection pools to prevent 
241 infiltration.

242 Field management

243 The fields were prepared when the soil was finally thawed on March 20, 2020, after 
244 clearing debris and litter. A 20 to 30 cm deep of high fertile soil was manually shoveled and 
245 piled up in accurate sizes and sloped with a tape measure and slope meter on April 2, 2020. 
246 Runoff, sediment collection pools, and boundaries were built on April 12, 2020. The furrows 
247 were used as planting zones after being ploughed, harrowed, and leveled. The bio-degradable 
248 film was laid on the ridges with edges buried 3 to 5 cm deep along ridge bases into the soil on 
249 April 12, 2020. Biochar was ground and screened through a 5-mm sieve before applied to the 
250 field. On April 15, 2020, before seeding alfalfa, biochar was broadcasted by hand and promptly 
251 ploughed into a 0–20 cm soil depth. Localized alfalfa (No 3 Gannong) cultivar was cultivated on 
252 April 15, 2020, at 22.5 kg ha−1. Four rows were sown in a 60 cm wide furrow, 2–3 cm deep with 
253 20 cm spaces between 2 rows (Figure 3). For tied ridging and open ridging, each experimental 
254 plot was 30 m2, with 10 furrows (0.6 m width × 5 m length) and 40 alfalfa planted rows. Flat 
255 planting plots were 50.25 m2 (5.0 width × 10.05 m length) with 66 alfalfa rows. Around 2 
256 months after sowing, tied-ridges were manually built (June 14, 2020). Weeds were manually 
257 controlled with care to avoid breaking the ridges and no fertilizer or irrigation was carried out on 
258 experimental fields. 

259 Sampling and measurements

260 Rainfall, runoff, and sediment losses

261 Data were collected as previously described in Wang et al., (2018). Rainfall was 
262 measured on the experiment field with an automatic weather station (WSSTD1, England). 
263 Sediment debris in gutter was swept and collected with a broom and shovel into runoff and 
264 sediment pool after every main rainfall event. Runoff in the pool was calculated by multiplying 
265 inner basal area of the pool to runoff depth. Pool runoff was stirred with a shovel for 5 to 10 min 
266 for uniform suspension of soil particles in the water. Sampling was done immediately with three 
267 1000 mL measuring flasks, and samples were dried to clear and weighted to estimate sediment 
268 transport. Runoff and sediment pools were emptied and swept after sampling to provide space 
269 for the next runoff and sediment data sampling.
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270 Soil moisture

271 During alfalfa cultivation period, soil moisture was measured gravimetrically to a depth 
272 of 200 cm, with an increment of 20 cm at furrow bottom in each plot, at 10 days intervals, 
273 without considering soil moisture, before sowing or green-up and after cutting. Three random 
274 soil samples from top, middle and bottom (up-slope, middle-slope, and down-slope) of each plot 
275 were collected. The soil water content was determined in addition to other standard 
276 measurements on experimental plots, 24 hrs after every rainfall (>5 mm).

277 Fodder yield

278 At the early flowering phase (between the first and 25% of flower) and senescence, 
279 alfalfa was manually harvested (cut) three times in all plots in 2020. After cutting, harvested 
280 alfalfa was immediately weighed, and 1 kg of the samples was dried in an oven at 105°C for an 
281 hour and then at 75°C for 72 hours to measure alfalfa fodder yield. Alfalfa fodder yield was 
282 measured in 2 methods: (1) net fodder yield (NFY) in furrows (excludes tied-ridged areas); (2) 
283 actual fodder yield (AFY) in land areas of ridges and furrows (includes tied-ridge areas).

284 Calculations of runoff and sediment parameters

285 Runoff, sediment yield, and runoff efficiency were calculated using these formulae.
286

287 Vrunoff = Apool × Dpool (1)
288

289 Wsediment = Vrunoff × (Wsample sediment / Vsample) (2)
290

291 Drunoff = Vrunoff / Aplot (3)
292

293 Wsediment per area = Wsediment / Aplot (4)
294

295 RE = Vrunoff / (P × Aplot) (5)
296

297 where Vrunoff (m3) is pool runoff, Apool (2.25 m2) is pool inner basal area, Dpool (m) is pool 
298 runoff depth, Wsediment (g) is pool sediment weight, Vsample (L) is collected sample, Wsample sediment 
299 (g) is sample sediment weight, Drunoff (Lm−2) is runoff depth, Aplot (m2) is plot projection area, 
300 Wsediment per area (gm−2) is sediment per area weight, RE (%) is runoff efficiency, and P (mm) is 
301 precipitation. The total actual evapotranspiration (ET, mm) for alfalfa cultivation period and 
302 water use efficiency (WUE, kg ha−1mm−1) of alfalfa were calculated using these formulae (Li 
303 and Gong, 2002):
304

305 ET = P + (W1 − W2) (6)
306

307 WUE = NFY / ET (7)
308
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309 WUE = AFY / ET (8)
310

311 where P is precipitation (mm) during alfalfa cultivation period, NFY (kg ha−1) is net 
312 fodder yield, and AFY (kg ha−1) is actual fodder yield. The filtration and recharge from 
313 groundwater are negligible in this area (Zhao et al., 2012). Soil moisture (W1 and W2) was also 
314 estimated with equation:
315

316 W = θi × ρdi × H × 10 (9)
10

â𝑖 = 1

 

317

318 Where θ is soil water content (%), H is soil profile thickness (cm); ρd is soil bulk density 
319 (g cm−3). 

320 Statistical analysis

321 An SPSS statistical software package (version 26.0, SPSS Inc., IL, Chicago, USA) was 
322 used to analyze all the data. Differences between treatments were analyzed using a one-way 
323 analysis of variance (ANOVA) followed by Tukey Pairwise comparison at 5% significance and a 
324 linear regression analysis. The research location was mapped by GIS software (ESRI® 
325 ArcMap™ 9.3), and figures plotted by SigmaPlot 14.0 (Systat Software Inc., San Jose, 
326 California, USA).

327 Results

328 Rainfall

329 Annual rainfall was 512.5 mm, with 451.2 mm falling during the alfalfa cultivation 
330 season (April 1 to October 9, Figure 4). From January to December, monthly rainfall was 7.5, 
331 4.7, 13.4, 15, 75, 80.5, 91.2, 138.2, 44.8, 28.2, 10.2, and 3.8 mm, respectively. In the 
332 experimental year, rainfall from April to October accounted for 88 percent of total annual 
333 precipitation. 

334 Runoff, runoff efficiency, and sediment losses 

335 Runoff in flat planting (30%), open ridging (45%), and tied ridging (52%) were 
336 decreased with biochar as sediment yield was decreased in flat planting (33%), open ridging 
337 (43%), and tied ridging (44%) (Figure 5). Compared to flat planting, mean runoff was reduced in 
338 open ridging (38%) and tied ridging (55%) with biochar, and decreased in open ridging (20%) 
339 and tied ridging (33%) with no-biochar. Again, when compared to flat planting, sediment yield 
340 was considerably lower in open ridging (70%) and tied ridging (85%) with biochar, comparable 
341 to a drop in sediment production in open ridging (65%) and tied ridging (82%) with no-biochar. 
342 Runoff efficiency was decreased in open ridging (35%) and tied ridging (52%) with biochar 
343 amendment whereas runoff efficiency was decreased in open ridging (19%) and tied ridging 
344 (35%) with no-biochar compared to flat planting. Mean runoff efficiency was decreased in flat 
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345 planting (31%), open ridging (45%), and tied ridging (50%) with biochar amendments compared 
346 to no-biochar. Thus, decrease in runoff and sediment in open and tied ridging rainwater 
347 harvesting methods may be attributed to decrease in runoff efficiency, as demonstrated by this 
348 experiment. 

349 Soil temperature

350 Mean soil temperatures on ridges and in furrows increased from April to July and then 
351 decreased until October during alfalfa growing season with biochar or no-biochar (Figure 6). 
352 Mean soil temperatures on ridges and furrows in biochar plots were higher than in no-biochar 
353 plots. Concurrently, mean soil temperatures in biochar and no-biochar plots ranged from 14 °C 
354 to 26 °C. In furrows of biochar and no-biochar plots, mean soil temperatures varied from 12 °C 
355 to 23 °C and 12 °C to 24 °C, respectively. During alfalfa cultivation period with biochar or no-
356 biochar, soil temperature on ridges of tied ridging (TR) was significantly higher than that on 
357 open ridging (OR), which was significantly higher than that on flat planting (FP). Again, during 
358 alfalfa cultivation cycle with biochar, soil temperatures on ridges were significantly (p = 0.00; F 
359 = 0.05; R square = 0.006; Adjusted R Square = - 0.105) increased in TR (24%) and OR (18%) 
360 relative to FP, and corresponding soil temperatures on ridges were increased in TR (20%) and 
361 OR (14%) in no-biochar plots. Meanwhile, during alfalfa cultivation period, soil temperature in 
362 furrows in biochar and no-biochar plots were in the order FP > OR > TR. Soil temperature was 
363 lower in TR (7%) and OR (4%) in biochar amended plots compared to FP, whereas in no-biochar 
364 plots, soil temperature was lower in TR (6%) and OR (4%). However, temperature differences in 
365 furrows with biochar amendment and in no-biochar plots were discovered to be non-significant 
366 (p = 0.43; F = 0.86; R square = 0.088; Adjusted R Square = - 0.014) for TR, OR, and FP. 
367 According to findings from this study, decrease in soil temperature in tied ridging with biochar 
368 can be attributed to reduction in runoff and sediment.

369 Soil water storage

370 Monthly soil water storage increased in tied ridging compared to open ridging, which was 
371 also higher than flat planting in biochar plots from April to June (Figure 7). However, mean soil 
372 water storage increased in open ridging compared to tied ridging, which was higher than flat 
373 planting from July to October. The mean soil water storage was significantly higher in OR (p = 
374 0.00) and TR (p = 0.01), as compared to FP in biochar amended plots (F = 14.76; R square = 
375 0.48; Adjusted R Square = 0.39). In no-biochar plots (F = 10.97; R square = 0.65; Adjusted R 
376 Square = 0.59), mean soil water storage was significantly higher in OR (p = 0.01) and TR (p = 
377 0.00), as compared to FP. During alfalfa cultivation period, mean soil water storage in middle-
378 slope was higher than in down-slope, which was higher than in up-slope. The mean soil water 
379 storage for flat planting, open ridging, and tied ridging with biochar amendments was 243, 302, 
380 and 292 mm, respectively, while mean soil water storage for FP, OR, and TR with no-biochar 
381 was 232, 295, and 232 mm. In comparison to no-biochar, biochar amendments resulted in 
382 significantly (p = 0.0) higher mean soil water storage for FP, OR, and TR. This finding implies 
383 that biochar amendments have a positive effect on soil water storage in open ridging compared to 
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384 tied ridging. This could be attributed to lower runoff, sediment losses, and soil temperatures in 
385 the treatment fields. 

386 Fodder yield and water use efficiency

387 With no-biochar, NFY of first cut in TR was higher compared to OR, while OR was also 
388 higher compared to FP (Table 2). However, for second and third cuts, NFY in OR was higher 
389 than TR, which was also higher than FP in no-biochar plots. Cumulative annual NFY of the 
390 treatments were in the order TR > OR > FP in no-biochar plots. In biochar plots, NFY was 
391 significantly (p = 0.00; F = 98.767; R square = 0.971; Adjusted R Square = 0.961) higher among 
392 treatments in similar order as in no-biochar plots for first and second cuts. For third cut, NFY 
393 was in the order OR > TR > FP in biochar plots. Cumulative annual NFY increased in the order 
394 TR > OR > FP. The mean NFY was significantly higher (p = 0.04) in biochar amended plots 
395 than in no-biochar plots for all cuts. Consequently, TR had a significant effect on NFY in both 
396 biochar and no-biochar plots which could be due to increases in soil water storage in tied ridging. 
397 Actual fodder yield was higher in TR which was higher than in OR which was higher 
398 than in FP for first cut with biochar amendments (Table 2). AFY was in the order OR > TR > FP 
399 in biochar plots for second and third cuts. Cumulative annual AFY with biochar amendments 
400 was significantly (p = 0.02) higher in TR than in OR, which was in turn significantly (p < 
401 0.0001) higher than in FP. Furthermore, in no-biochar plots, AFY for first and third cuts was  in 
402 the order OR > TR > FP. Subsequently, AFY was higher in all treatments with OR recording 
403 highest AFY whiles FP recorded lowest for second cut in no-biochar plots. Twelve-monthly 
404 AFY in no-biochar plots for all treatments was in the order OR > TR > FP. The mean actual 
405 fodder yield was significantly (p = 0.00; F = 937.6; R square = 0.99; Adjusted R Square = 0.996) 
406 higher in biochar amended plots than in no-biochar plots for all cuts. As a result, tied ridging had 
407 a significant effect on actual fodder yield in biochar plots, while open ridging had a significant 
408 effect on actual fodder yield in no-biochar plots. As demonstrated by this research, this can be 
409 attributed to a reduction in runoff and sediment losses, which lead to an increase in soil water 
410 storage in treatment fields.
411 Water use efficiency (WUE) was highly significant (p < 0.0001; F = 1.460; R square = 
412 0.378; Adjusted R Square = 0.119) in tied ridging, compared to OR and FP in biochar and no-
413 biochar plots (Table 2). Additionally, mean WUE was highly significant (p = 0.01; F = 5.08; R 
414 square = 0.62; Adjusted R Square = 0.505) in biochar plots than in no-biochar plots. Open 
415 ridging with biochar amendments increased net fodder yield (7.5%) compared to open ridging in 
416 no-biochar plots, while tied ridging with biochar amendments increased net fodder yield (8.5%) 
417 when compared to tied ridging in no-biochar plots. Open ridging with biochar amendments 
418 significantly (p < 0.0001; F = 1187.047; R square = 0.998; Adjusted R Square = 0.997) increased 
419 actual fodder yield (9.3%) compared to open ridging in no-biochar plots, while tied ridging with 
420 biochar amendments significantly (p = 0.0001; F = 1187.047; R square = 0.998; Adjusted R 
421 Square = 0.997) increased actual fodder yield (15.7%) compared to tied ridging in no-biochar 
422 plots. Biochar plots had a higher average annual mean net fodder yield (8%) and actual fodder 
423 yield (11%) than in no-biochar plots. The increase in WUE with biochar amendments in tied 
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424 ridging may be connected to the increase in yield and decrease in runoff and sediment, as 
425 demonstrated by this experiment.

426 Discussion

427 Poor and erratic rainfall in semi-arid areas is a challenge to rain-fed agriculture, where 
428 farmers may experience crop damage (Graef & Haigis, 2001). From this experiment, we found a 
429 decrease in runoff in flat planting (FP), open ridging (OR), and tied ridging (TR) by 30%, 45%, 
430 and 52%, respectively, and corresponding sediment yield decrease of 33%, 43%, and 44%, 
431 respectively, with biochar amendments (Please, refer to Figure 5). When compared to no-biochar 
432 plots, mean runoff efficiency in flat planting, open ridging, and tied ridging was decreased by 
433 31%, 45%, and 50%, respectively, with biochar amendments (Please, refer to Figure 5). These 
434 results are in line with those of Araya & Stroosnijder (2010) who found runoff in tied ridges in a 
435 wheat field was significantly lower than runoff in a flat field. Nuti et al. (2009) elucidated that 
436 decreased runoff in tied ridges results in water storage in soil profiles which leads to improved 
437 crop development with higher crop yields. Furthermore, Patil & Sheelavantar (2004) reported 
438 decreased runoff with compartmental bunding and ridges and furrows relative to flat planting. 
439 Concurrently, tied-ridges decreased runoff by 51 and 58%, in Machanga, Kenya, during short 
440 and long rainy seasons, respectively (Okeyo et al., 2014). In a similar research in Upper Volta, 
441 tied ridges resulted in 0.9% runoff relative to 6.3% with open ridges and 12.2% in flat planting 
442 (Gerbu, 2015). Xia et al. (2014) came to a similar conclusion, finding a substantial reduction in 
443 runoff, phosphorus, and nitrogen losses. According to Woldegiorgis (2017), effectiveness of tied 
444 ridging to decrease soil erosion was predominantly connected to decrease in runoff in tied ridge 
445 fields.
446 From this research, in biochar and no-biochar fields, we found soil temperatures on 
447 ridges of TR were significantly higher than on OR, which was significantly higher than on FP 
448 during alfalfa cultivation period. Conversely, soil temperature in furrows during alfalfa 
449 cultivation period in biochar and no-biochar fields were significantly higher in treatments in the 
450 order FP > OR > TR (Please, refer to Figure 6). This finding is in agreement with Genesio et al. 
451 (2012), who discovered dark-colored biochar increased soil temperatures compared to no-
452 biochar. This may be attested to decrease in runoff and sediment with biochar amendment in this 
453 experiment. 
454 Implementation of soil moisture preservation practices such as tied ridges with mulching 
455 has presented improved soil moisture retention in different environments (Ndlangamandla et al., 
456 2016). In comparison to no-biochar, mean soil water storage was found to be significantly higher 
457 in FP, OR, and TR with biochar (Please, refer to Figure 7). This demonstrates the positive 
458 influence of biochar amendments in tied ridging on soil water storage. This result is in line with 
459 Ndlangamandla et al. (2016), who found that soil moisture in the tied ridges with mulch was 
460 retained longer than in un-mulched ridges. These outcomes are also in agreement with 
461 Mupangwa et al. (2006) and Nyamadzawo et al. (2013), who revealed tied ridges, are effective at 
462 trapping and concentrating moisture in the root zone of plants. Adimassu et al. (2014) and Al-
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463 Seekh & Mohammad (2009) also reported lower runoff and higher soil moisture content. In 
464 similar research by McHugh et al. (2007), open ridges performed second best with higher 
465 seasonal soil moisture than subsoiling, no-till, and traditional tillage. Again, Araya & 
466 Stroosnijder (2010) reported tied ridging with mulching can increase soil water in the root zone 
467 of plants by 13 % and crop grain yield (barley) by 44 % during below-average rainfall years. 
468 Conversely, tied ridging with soil bund and tied ridging with mulch increased soil water storage 
469 by 5.37 % and 6.20 %, respectively, compared to flat planting (Adeboye et al., 2017).
470 In this study, annual cumulative net fodder yield (NFY) was significantly higher in TR, 
471 which was significantly higher compared to OR, which too was significantly higher compared to 
472 FP (Please, refer to Table 2). This is in line with Zelelew et al., (2018), whose findings indicated 
473 that plots treated with tied ridge had the highest grain yield (2302 kg ha-1) and biomass (7647 kg 
474 ha-1). Grain yield for tied ridges with mulch was substantially different (p < 0.05) from bare tied 
475 ridges and flat planting, according to Ndlangamandla et al. (2016). The significant difference 
476 among these treatments is agreed to be as a result of moisture retention which was attained as an 
477 effect of mulching (Ndlangamandla et al., 2016). In another study, pearl millet yield was 
478 significantly increased in tied ridging than in flat planting (Silungwe et al., 2019). Tied ridging 
479 has been successful in other semi-arid areas for cereals like sorghum (Sorghum bicolor) (Mesfin 
480 et al., 2009; Bayu et al., 2012).  The yield of crops (sorghum, maize, wheat, and mung bean) 
481 grown with tied ridging significantly increased (50 to 100%) as compared to flat planting in 
482 semi-arid areas (Zelelew et al., 2018). Correspondingly, relative to flat planting, furrow planting 
483 in open-end tied ridges resulted in a 28.86% increase in stover yield (Belachew & Abera, 2014). 
484 The grain yield harvested in tied ridging (3.6 t ha-1) was higher (12.5%) compared to flat planting 
485 (3.2 t ha-1) (Yoseph, 2014). Furthermore, maize biomass yield (11019 kg ha-1) in closed-end tied 
486 ridging was highest with a 54.9% increase compared to flat planting (Belachew & Abera, 2014). 
487 In addition, Sumeriya et al. (2014) revealed an increase in sorghum grain yield ranging from 67 
488 to 73% and soil water (40%) in tied ridging compared to flat planting. As a consequence, 
489 depending on rainfall and slope gradient, tied ridging has been shown to increase yields (Motsi et 
490 al., 2004; McHugh et al., 2007).
491 With biochar amendments, tied ridging had a significant effect on actual fodder yield 
492 (AFY), while OR had a significant effect on AFY with no biochar. Biochar improved the annual 
493 cumulative mean of NFY (8%) and AFY (11%) as compared to no-biochar in this study (Please, 
494 refer to Table 2). These outcomes are in line with Mak-Mensah et al. (2021), who reported 
495 combined application of biodegradable film with biochar in the Loess Plateau of China increased 
496 yield by 22.86% compared with FP. This was corroborated by Liu et al. (2014) who achieved a 
497 higher yield of sweet potato (53.77%; p < 0.05), with biochar amendment than with no biochar 
498 treatment (control). In addition, Liang et al. (2014) obtained a 10% increase in grain yield in 
499 winter wheat and summer maize with biochar application compared to controls (no biochar). 
500 Furthermore, Xiao et al., (2016) found that 20 and 30 t ha-1 biochar amendment improved wheat 
501 yields by 9 and 13% in 2012 and 11 and 14% in 2013, respectively, compared to no biochar 
502 treatments. In comparing biodegradable film mulched ridge-furrow with 20 t ha-1 biochar 
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503 application to biodegradable film mulched ridge-furrow without biochar treatments, wheat grain 
504 yield increased by 6 and 9% in 2012 and 2013 (Xiao et al., 2016). In addition, a meta-analysis by 
505 Jeffery et al. (2011) found that biochar-treated soils enhanced crop productivity by 10% on 
506 average when compared to plots without mulching. Under co-application of biodegradable film 
507 mulched ridge-furrow with biochar treatment, the residual impact of biochar on soil fertility 
508 accounted for the majority of improvement in crop production (Rehman & Razzaq, 2017). 
509 Improving water use efficiency in semi-arid regions can be attained either by increasing 
510 the volume of water accessible to plants for transpiration and/or by increasing efficacy with 
511 which transpired water yields more plant biomass (Wallace, 2000). Water use efficiency was in 
512 the order TR > OR > FP with no-biochar or biochar amendments (Please, refer to Table 2). The 
513 mean WUE was significantly higher in biochar plots than in non-biochar plots in this present 
514 research. These outcomes are consistent with Ndlangamandla et al. (2016) who reported 
515 increased soil moisture and crop yield with mulching in tied-ridging in Swaziland's semiarid 
516 areas. This may be an ideal agronomic practice for smallholder farmers to increase yield in crop 
517 production. The practice could also be used as a soil and water conservation strategy in rain-fed 
518 agriculture, especially in climate-changing areas to reduce drought impact while decreasing 
519 runoff and erosion (Mak-Mensah et al., 2021).

520 Conclusions 

521 The tied ridge with biochar amendments in alfalfa cultivation has been shown to reduce 
522 runoff and significantly improve rainfall infiltration into the soil. Field investigation revealed 
523 biochar amendments reduced runoff in flat planting, open ridging, and tied ridging, resulting in a 
524 decrease in sediment yield. Mean runoff efficiency was decreased in flat planting, open ridging, 
525 and tied ridging, with biochar amendments compared to no-biochar. During the alfalfa 
526 cultivation period with biochar or no-biochar, soil temperature on tied ridging ridges was 
527 significantly higher than that on open ridging, which was significantly higher than flat planting. 
528 In comparison to no-biochar, mean soil water storage for flat planting, open ridging, and tied 
529 ridging with biochar was significantly higher. This signifies the viability of biochar amendment 
530 in improving soil water storage in open ridging. Biochar increased annual cumulative net fodder 
531 yield and actual fodder yield means compared to no-biochar. Conversely, mean water use 
532 efficiency with biochar amendment was significantly higher than in no-biochar. Thus, when crop 
533 production is threatened by soil erosion and drought, tied ridging with biochar is beneficial to 
534 crop growth in rain-fed agriculture. 
535 The study's main constraints were labor costs for creating ties, filming, and applying 
536 biochar, all of which are time-consuming tasks that need manual work. Other constraints 
537 discovered during this investigation include limited access to farm inputs, and the high cost of 
538 biochar and biodegradable film, low soil fertility and lack of fertilizer application. Thus, there is 
539 a great need to examine nutrient loss reductions of alfalfa cultivation under a wide range of 
540 growing conditions and locations. Further research is needed on better plant water uptake 
541 cultivars or species, strategies for minimizing unproductive water losses, and consistent rodents 
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542 and weeds control. In addition, the economic viability of alfalfa cultivation in tied-ridges with 
543 biochar amendments needs to be evaluated in response to drastic increases in input costs. 
544 Although, smallholder farmers in semi-arid areas could be trained in the use of this water-saving 
545 technique to reduce runoff, soil erosion, sediment losses, and improve food security, to overcome 
546 cultural and sociological reluctance in both rural and urban communities to deploy and accept 
547 this system, new ways for disseminating knowledge about tied-ridges with biochar amendments 
548 are needed.
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Table 1(on next page)

Soil physical and chemical properties in the experimental field
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1 Table 1. Soil physical and chemical properties in the experimental field

Depth 

(cm)

Bulk density 

(g cm-3)

Field 

capacity (%)

Total N 

(g kg-1)

Total P 

(g kg-1)

Total K 

(g kg-1)

Organic matter 

(mg kg-1)

Available N 

(mg kg-1)

Olsen P

 (mg kg-1)

Available 

K (mg kg-1)

pH

0-40 1.09 20.0 0.62 0.76 20.70 9.56 65.75 7.78 135 7.83

20-40 1.36 21.0 0.54 0.64 20.51 7.77 22.10 3.00 90 7.82

2

3

4
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Table 2(on next page)

Alfalfa forage yield and water use efficiency (WUE) in tied-ridge-furrow rainwater
harvesting with biochar amendment
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1 Table 2. Alfalfa forage yield and water use efficiency (WUE) in tied-ridge-furrow rainwater harvesting with biochar amendment.

2

Fodder yield (kg ha-1)

First cut Second cut Third cut Annual total

Biochar 

amendment

patterns

Tillage 

practices

NFY AFY NFY AFY NFY AFY NFY AFY

WUE

(kg ha-1m-1)

2020

FP 1728c 1728c 1027c 1027c 487c 487c 3242c 3242c 15.23c

OR 5726b 2679b 2527b 1298a 1198a 597a 9451b 4574b 28.49bBiochar

TR 5928a 2826a 2648a 1283a 1036b 572b 9612a 4681a 30.87a

FP 1628c 1628c 972c 972c 418c 418c 3018c 3018c 13.45c

OR 5289b 2372a 2486a 1185a 1013a 627a 8788b 4184a 22.49bNo-Biochar

TR 5387a 2267b 2481a 1190a 987b 589b 8855a 4046b 24.73a

Biochar 4461 2411 2067 1203 907 552 7435 4166 24.86

Mean No-

Biochar

4101 2089 1980 1116 806 545 6887 3749 
22.89

3 a NFY (Net fodder yield) was forage yield based on furrow areas (exclude ridge and tied-ridge areas). 

4 b AFY (actual fodder yield) was forage yield based on land areas of ridges (include ridge and tied-ridge) and furrows. 

5 c FP, OR and TR were flat planting, open ridging and tied-ridging, respectively. 

6 d Means within a column followed by the same letters are not significantly different at the 5% level (Tukey’s-b test ANOVA).
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Figure 1
Schematic overview of the experimental program
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Figure 2
Experimental location of the study. ArcGIS 10.6 software (ESRI, Redlands, California)
was used to produce the map.
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Figure 3
Schematic diagram for alfalfa production in rainwater harvesting system with biochar
amendment on sloping land
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Figure 4
Mean monthly precipitations at the experiment station in 2020
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Figure 5
Runoff, runoff efficiency and sediment in different treatments. The means (columns)
labeled with the same letters within each category are not significantly different at the
5% level (Tukey’s-b test ANOVA)
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Figure 6
Soil temperatures in furrows and on ridge tops in 0-25 cm soil depth in various
treatments
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Figure 7
Soil water storage in furrows in 0-200 cm soil depth in various treatments. The means
(columns) labeled with the same letters within each group are not significantly different
at the 5% level (Tukey’s-b test ANOVA)
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