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ABSTRACT
Background. Loss of organic matter and mineral nutrients to soil erosion in rain-
fed agriculture is a serious problem globally, especially in China’s Loess Plateau. As a
result, increasing rainwater usage efficiency by tied-ridge-furrow rainwater harvesting
with biochar is expected to improve agricultural productivity. Nonetheless, with limited
knowledge on tied-ridge-furrow rainwater harvesting with biochar, small-scale farmers
face the challenge of adoption, thus, the rationale for this study.
Materials andmethods. A field experiment was conducted to determine the influence
of open-ridging (OR) and tied-ridging (TR) with bio-degradable film on ridges and
biochar in furrows on runoff, sediment losses, soil moisture, fodder yield, and water use
efficiency (WUE) on sloped land, using flat planting (FP) without ridges and furrows
as control, during alfalfa-growing year (2020).
Results. Runoff in flat planting (30%), open ridging (45%), and tied ridging (52%)
were decreased with biochar to the extent where sediment was decreased in flat planting
(33%), open ridging (43%), and tied ridging (44%) as well. The mean runoff efficiency
was lower in flat planting (31%), open ridging (45%), and tied ridging (50%) in biochar
plots compared to no-biochar plots. In biochar and no-biochar plots, soil temperature
on ridges of TR was higher than that on OR, which was higher than FP during alfalfa
growing season. Soil temperature in furrows during alfalfa growing season in biochar
and no-biochar plots were in the order FP > OR > TR. Mean soil water storage for
FP, OR, and TR, in biochar plots was higher than in no-biochar plots. This indicates
biochar has a beneficial impact on open riding. Total annual net fodder yield (NFY)
was significantly (p = 0.00) higher in treatments in the order TR > OR > FP. Tied
ridging had a significant effect on actual fodder yield (AFY) in biochar plots, while
open ridging significantly affected AFY in no-biochar plots. Annual total mean NFY
and AFY increased by 8% and 11% in biochar plots compared to no-biochar plots. In
biochar and no-biochar plots, water use efficiency was in the order TR > OR > FP.
Conclusively, water use efficiency was significantly higher (p = 0.01) in biochar plots
compared to no-biochar plots.
Conclusion.When crop production is threatened by soil erosion and drought,mulched
tied-ridge with biochar is beneficial to crop growth in rain-fed agriculture, according
to this research. Smallholder farmers should be trained on applying this technique for
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water-saving tomitigate runoff, soil erosion, sediment losses, and improve food security
in semiarid areas.

Subjects Agricultural Science, Plant Science, Soil Science
Keywords Ridge-furrow rainwater harvesting, Tied ridging, Runoff, Sediment, Biochar, Alfalfa
fodder yield

INTRODUCTION
The Loess Plateau of China is accustomed to unpredicted rainfall, with spatial variations
accompanied by recurring droughts (Ding et al., 2018; Wang, Jia & Liang, 2015; Jin et al.,
2007). In addition to these climatic conditions of the Loess Plateau, topography contributes
immensely to severe soil erosion in events of heavy rainfall (Chen et al., 2019;Wang, Xiong
& Kuzyakov, 2016; Meng et al., 2008). Consistent soil erosion reduces soil nutrient and
moisture availability for crops (Jin et al., 2007; Fu et al., 2004; Trimble & Crosson, 2000).
Thus, loss of soil nutrients destabilizes the structure and population of microbes in the soil
(Xiao et al., 2017;Du et al., 2020). Consequently, alfalfa (Medicago sativa L.) was revealed as
ideal for protecting soil hence, was commonly grown on the Loess Plateau (Jun et al., 2010).
Soon after, alfalfa was discovered to be seriously depleting soil water in these areas, due
to its deep roots’ water absorption from deep soil layers (Jun et al., 2010). Fan et al. (2016)
reported alfalfa can exhaust available soil water in a field in less than 6 years and prevent
deep soil water recharge.Wang et al. (2012) corroborated this by revealing dry soil layers in
deep soil after alfalfa cultivation which has significantly obstructed sustainable agriculture
development. However, these fragile regions remain the main source of livelihood for
millions of deprived and vulnerable people (Bado, Whitbread & Sanoussi Manzo, 2021).
On this account, agriculture in semiarid areas must be improved by increasing rainwater
use efficiency with mulching in rainwater harvesting scheme (Meng et al., 2020).

In recent years, many field studies have revealed ridge and furrow rainwater harvesting
(RFRH) as an effective and simple technique for increasing soil water content (SWC)
and improving rainwater use efficiency in rain-fed agriculture (Li et al., 2016; Xiaolong et
al., 2008). RFRH can gather effective or ineffective rainfall, prevent surface runoff during
intensive rainfall, and reduce evaporation (Zheng et al., 2019; Jia et al., 2018; Liang et al.,
2018; Han et al., 2013). RFRH is extensively practiced in areas with <5 mm rainfall, where
irrigation is not available (Liu et al., 2020) for improving rainfall infiltration and soil
moisture (Ren et al., 2016), facilitating seedling growth at a faster pace (Gan et al., 2013;
Zhang et al., 2011; Ramakrishna et al., 2006), and improving crop yield and maintaining
food stability (Chen et al., 2015; Bu et al., 2013). RFRH has been demonstrated in many
studies to increase soil temperature as compared to flat planting (Zhang et al., 2017;
Mo et al., 2017). In extreme rainfall events, however, water runs over the ridges (Wiyo,
Kasomekera & Feyen, 2000).Hence, building basinswith cross-ties known as tied-ridging, to
store surface runoff in furrows is a solution to excesswater flowing over ridges (overtopping)
in RFRH on sloped lands (Vejchar et al., 2019). The collected water can be used by crops
for a long time better than it can be used in the state of runoff (Ndlangamandla, Ndlela
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&Manyatsi, 2016). The cross-ties also reduce the speed of the water flow along furrows
(Mutiso, 2018) and often increase the length of crop growing seasons (Mason et al., 2015).

Previous studies have shown that tied-ridge,which is a provenmethodofmaintaining soil
moisture at 0–5 and 6–10 cm soil depth in drier periods in rain-fed agriculture, increases
yield by 50% (Mandumbu et al., 2020; Sibhatu et al., 2017). Beshir & Abdulkerim (2017)
revealed an increase in soil fertility with in-furrow planting in a closed-end tied-ridge
system. Consequently, Mupangwa, Love & Twomlow (2006) reported an average maize
yield of 3,400 kg ha-1 from tied ridges compared with 1,500 kg ha-1 from conventionally
ploughed fields. A study conducted by Brhane et al. (2006) revealed that variations in
tied-ridging beneficial effects on crop yield are due to differences in distribution and
amount of rainfall, slope, soil type, landscape position, time of ridging, and crop type.
They further stated that soil water and sorghum grain yield was increased with tied-ridging
by more than 25 and 40%, respectively, as compared to conventional tillage (shilshalo)
practice in northern Ethiopia. Tied-ridging has been effective in increasing soil water
storage and decreasing runoff in Tanzania (Guzha, 2004), and the USA (Howell, Schneider
& Dusek, 2000). However, inappropriate use of tied-ridging can lead to problems such
as waterlogging, and total loss of crops in harsh storms (Brhane et al., 2006). Studies in
arid and semiarid areas of sub-Saharan Africa suggested that single water conservation
interventions could improve crop yields by up to 50% (Araya & Stroosnijder, 2010; Bennie
& Hensley, 2001; Walker, Tsubo & Hensley, 2005) while combination of tied-ridges and
nutrient inputs have accounted for two-fold to six-fold crop yields compared with
conventional tillage practices without fertilizer use (Jensen et al., 2003; Zougmoré, Zida
& Kambou, 2003). Therefore, given the deficient soil fertility nature of arid and semiarid
areas of northwestern China, single rainwater harvesting intervention may not bring about
a considerable influence on crop productivity (Biazin & Stroosnijder, 2012). Thus, tied
ridging with mulching which has been widely practiced in many countries (Donjadee
& Tingsanchali, 2016; Chakraborty et al., 2008; Mupangwa, Love & Twomlow, 2006) with
a consistent increase in crop production should be explored. Mulching, a significant
agronomic practice, is gaining considerable attention globally due to its phenomenal
effect and low cost (Li, Li & Pan, 2020). Mulching has different generally established
environmental functions (Prosdocimi, Tarolli & Cerdà, 2016). Some of which are notably
increasing soil surface coarseness hence decreasing runoff, sediment, andnutrient content in
runoff (Vega, Fernández & Fonturbel, 2015; Lee et al., 2018). In addition, mulching retains
soil moisture, hence increases rainfall infiltration and decreases evapotranspiration (Li, Li
& Pan, 2020). Decomposed mulching materials increase soil organic matter and available
soil nutrients for crop development (Jiménez et al., 2016; Bajgai et al., 2014; Jordán, Zavala
& Gil, 2010). There have been significant reports on effectiveness of mulching in reducing
soil water and nutrient loss in different climatic environments in America (Ruy, Findeling &
Chadoeuf, 2006), Europe (Fernández et al., 2012; Abrantes et al., 2018), Asia (Wang, Xiong
& Kuzyakov, 2016), and Africa (Mwango et al., 2016). One such prominent mulching
technology is biochar amendment (Woolf et al., 2010; Woolf et al., 2018).

Biochar, a steady carbon-rich material manufactured from pyrolyzing biomass in
oxygen-deprived environments, can improve soil carbon sequestration and soil quality
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(Lehmann & Rondon, 2006). A potential feedstock is shelledmaize cobs crop residues, often
burnt or left on the field in rural regions of developing countries to decompose (Silayo et
al., 2016). By improving cation exchange capacity and soil structure, biochar increases soil
fertility (Martinsen et al., 2014) and decreases nutrient leaching (Laird et al., 2010). Biochar
became known as a key element of the popular fertile anthropogenic Terra Preta soil of
Central Amazonia (Glaser & Birk, 2012). Studies have confirmed biochar as extremely
viable for curbing soil and nutrients losses on sloping lands in semiarid regions (Li et
al., 2019; Zhang et al., 2017; Han, Ren & Zhang, 2016; Xiao et al., 2016; Liu, Han & Zhang,
2012). For example, Kammann et al. (2012) discovered a significant increase in biomass
in biochar-modified soils relative to controls in perennial ryegrass (Lolium perenne L.).
Consequently, Rondon et al. (2007) revealed addition of biochar to a low-fertility soil led
to 22% increased nitrogen fixation in beans (Phaseolus vulgaris) in addition to significantly
improved biomass and bean yield. In terms of runoff and erosion, biochar can help
increase infiltration rate and saturated hydraulic conductivity (Ksat) in clayey soils thereby
curbing erosion, flooding, and contamination of streams (Li et al., 2019; Li et al., 2018;
Obia et al., 2018; Lim et al., 2016). Saturated hydraulic conductivity is the ease of water
flow through the soil when it is saturated and it is vital for flooding, drainage, and soil
water studies (Lu, 2015; Kirkham, 2014). Biochar has also been recounted to improve
soil physical and hydrological properties, ranging from bulk density and soil porosity to
soil aggregate stability (Fischer et al., 2019; Burrell et al., 2016; Glab et al., 2016). Biochar
amendment, in combination with a slow decomposition (Peng et al., 2011; Wang, Xiong &
Kuzyakov, 2016), foster carbon sequestration and long-term soil improvements (Kuzyakov,
Bogomolova & Glaser, 2014; Lehmann et al., 2008), and thus can aid in mitigating climate
change (Crane-Droesch et al., 2013; Woolf et al., 2010). Jeffery et al. (2017) discovered in a
meta-analysis that extremely predominantlyweathered soils, prevalent in the humid tropics,
benefit from biochar amendments with mean crop yield increases of 25%. Meanwhile, in
some other studies, biochar has been demonstrated not to influence soil moisture. Hardie
et al. (2014) recounted that 30 months after biochar amendments to a sandy loam soil,
no significant outcome was revealed on soil moisture at various tensions (measurement
of the quantity of energy necessary to transport water in the soil). Conversely, Gonzaga et
al. (2018) found that soils treated with 30 t ha−1 coconut husk biochar increased 90% of
Zea mays biomass, while orange bagasse biochar applied at the same concentration had no
impact. The disparity in outcomes from different studies, however, could be ascribed to
differences in soil types, plant species treated, biochar application rates, and experimental
circumstances (Edeh, Mašek & Buss, 2020; Nooker, 2014).

In a recent study, Anyanwu et al. (2018) found aged biochar in soil has a detrimental
impact on earthworms and/or fungi growth. Furthermore, this resulted in a decrease
in rice (Oryza sativa) and Tomato (Solanum lycopersicum) underground root biomass.
In addition, biochar has been shown to reduce soil thermal diffusivity due to biochar’s
low thermal diffusivity (Zhao et al., 2016). Biochar’s beneficial effects are shown to be soil
specific, contrary to common belief. As a result, biochar amendment could not be beneficial
to all forms of soil (Zhu, Peng & Huang, 2015). Nevertheless, when biochars were used,
several studies identified weed problems. Biochar application at relatively high rates of 15 t
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ha−1 resulted in a 200% increase in weed growth during lentil culture, according to Safaei
Khorram et al. (2018); suggesting repeated biochar applications might not be good for weed
control. According to Vaccari et al. (2015), applying 14 t ha−1 of biochar to tomato plants
improved vegetative growth but not fruit yield. Instead of providing plant nutrients, biochar
can react with soil nutrients and function as a competitor (Joseph et al., 2018). Biochar can
adsorb nitrogen as well as essential nutrients like Fe, which can be detrimental to plant
development (Kim et al., 2015), since this may delay plant flowering (Hol et al., 2017).
Biochar amendments in saline sodic soil could aid phosphate precipitation and sorption
reactions which could ultimately lead to a reduction in amount of phosphorus available
to plants (Xu et al., 2016). Concurrently, biochar amendment in soil, for example, had no
effect on pesticide absorption of dichlorodiphenyltrichloroethane (DDT) (Denyes, Rutter
& Zeeb, 2016). In terms of soil biology, biochar can disrupt organic matter decomposition,
reducing abundance of fungi species such as Ascomycota andBasidiomycota by 11 and 66%,
respectively (Zheng et al., 2016). Despite several studies showing biochar amendment has
positive and negative effects, there is still a lot of confusion regarding effects in conjunction
with other management techniques (Solaiman & Anawar, 2015).

Although biochar amendment (Solaiman & Anawar, 2015), and tied-ridging (Twomlow
& Bruneau, 2000) has widely been explored, conflicting reports on the effects in conjunction
with other management techniques are prevalent. In addition, most studies report on only
yield advantages, ignoring trade-offs between runoff, sediment losses, soil temperature,
and moisture (Ademe, Bekele & Gebremichael, 2018). Therefore, there is the need for
investigations into the combined effects of tied-ridge as a field soil moisture conservation
technique with biochar on sloped land is needed to allow this know-how to be better
situated to compete with other droughts, and soil erosion mitigation approaches (Woolf,
Lehmann & Lee, 2016; Woolf et al., 2018). To date, however, worldwide experiments are
relatively rare to enumerate capabilities of tied-ridge with biochar on sloped lands, in terms
of their capacity to guarantee food security and dealing with extreme conditions, such
as drought. This study reports the influence of tied-ridge with biochar amendment on
soil temperature, moisture, runoff, sediment losses, and alfalfa fodder yield. The specific
objectives of this study were (1) to determine whether biochar amendment in tied ridging
reduces soil temperature, runoff, and sediment losses on sloping lands, and (2) to determine
optimummulch recommendation with tied ridging that will produce high alfalfa yield and
water use efficiency in semiarid Loess Plateau of China.

MATERIALS AND METHODS
Schematic overview of the experimental program
The schematic overview of the experimental program, from identification of the
experimental station, to sampling andmeasurements of alfalfa cultivation in tied-ridge with
biochar amendments, is displayed in Fig. 1. For emphasis, the purpose of this research was
to examine the influence of tied-ridge with biochar amendment on runoff, sediment losses,
and alfalfa yield in northwestern China. The study implemented a completely randomized
design with three replications. Tied-ridging, open-ridging, and flat planting were the three
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Figure 1 Schematic overview of the experimental program.
Full-size DOI: 10.7717/peerj.11889/fig-1

tillage systems used, at a 7◦ slope. The biodegradable film (Ecoflex FS) used to mulch the
ridges were 0.008 mm in thickness. Biochar applied in furrows was manufactured from
maize straw at 400 ◦C through pyrolysis and thermal decomposition at Sanli New Energy
Company in Henan, China, and applied at 30,000 kg ha−1 in the fields (Luo et al., 2017).

The experimental station
Field research was piloted at Anjiagou Catchment during alfalfa cultivation period from
April–October (2020). The terrain of this area (latitude 35◦34′N, longitude 104◦39′E,
and altitude 2,075 m a.s.l.) is mountainous with steep slopes (converted to grasslands after
‘Grain-for-Green Policy’ enacted in the 1990s). The experimental station is situated 2–3 km
east of Dingxi city, Gansu Province, Northwest China (Fig. 2). The area is semi-arid with
mean annual air temperature (7.2 ◦C) andmonthlymean temperatures ranging from 1.1 ◦C
in January to 19.1 ◦C in July. The soil type on the experimental station is calcic cambisol,
according to American soil classifications (Chen, Yang & Wei, 2013). The soil chemical
properties are outlined in Table 1. The farming practice in this area is monoculture with
once a year crop harvesting due to low temperatures. The main crops grown in this area
are proso millet (Panicum miliaceum), spring wheat (Triticum aestivum), potato (Solanum
tuberosum), maize (Zea mays), and flax (Linum usitatissimum). The major fodder grass
species are sainfoin (Onobrychis viciifolia) and alfalfa (Medicago sativa).

Experimental design
In a completely randomized design, there were six plots (2 open / tied ridge with bio-
degradable film cover×2 biochar / no biochar + 2 flat planting (FP) as control) with three
replications. Tied-ridging, open-ridging, and flat planting were the three tillage systems
used, at a 7◦ slope. A ridge width, height, and furrowwidth of 45, 20, and 60 cm respectively,
were used for open ridging and tied ridging. The ties in the tied ridging ranged from 10
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Figure 2 Experimental location of the study. ArcGIS 10.6 software (ESRI, Redlands, CA, USA) was used
to produce the map.

Full-size DOI: 10.7717/peerj.11889/fig-2

Table 1 Soil physical and chemical properties in the experimental field.

Depth
(cm)

Bulk density
(g cm−3)

Field
capacity
(%)

Total N
(g kg−1)

Total P
(g kg−1)

Total K
(g kg−1)

Organic
matter
(mg kg−1)

Available N
(mg kg−1)

Olsen P
(mg kg−1)

Available K
(mg kg−1)

pH

0–40 1.09 20.0 0.62 0.76 20.70 9.56 65.75 7.78 135 7.83
20–40 1.36 21.0 0.54 0.64 20.51 7.77 22.10 3.00 90 7.82

to 15 cm in height and 20 cm in width (Fig. 3). There was a 2.5 m distance between two
non-staggered tied-ridges. The biodegradable film (Ecoflex FS) used to mulch the ridges
were 0.008 mm in thickness. The bio-degradable film was mass-produced by BASF Co Ltd,
Germany. Biochar was manufactured from maize straw at 400 ◦C through pyrolysis and
thermal decomposition at the Sanli New Energy Company in Henan, China, and applied
at 30,000 kg ha−1 in the fields (Luo et al., 2017). Biochar had a specific surface area of 44
m2 g−1, a bulk density of 0.45 g cm−3, a pH (v/v 1:2.5 biochar: distilled water) of 7.5, a
cation exchange capacity of 24.1 cmol kg−1, a water holding capacity (24 h) of 288%, and
Total C, and Total N content of 89 and 0.3%, respectively. In the exception of flat planting
(control), experimental plots were 5.0 m wide and 10.05 m long, with nine ridges and 10
furrows (Fig. 3). Each plot was surrounded by a 15 cm high panel to accumulate runoff
and sediment and to prevent runoff and sediment from adjacent plots. A gutter was built
at the bottom of each plot to channel runoff and sediment into a pool with a volume of
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Figure 3 Schematic diagram for alfalfa production in rainwater harvesting system with biochar
amendment on sloping land.

Full-size DOI: 10.7717/peerj.11889/fig-3

2.25 m3 (1. 5 m wide × 1. 5 m long × 1.5 m deep). There was a 1.5 m space between
two plots. Cement and bricks were used to build runoff and sediment collection pools to
prevent infiltration.

Field management
The fields were prepared when the soil was finally thawed onMarch 20, 2020, after clearing
debris and litter. A 20 to 30 cm deep of high fertile soil was manually shoveled and piled up
in accurate sizes and sloped with a tape measure and slope meter on April 2, 2020. Runoff,
sediment collection pools, and boundaries were built on April 12, 2020. The furrows were
used as planting zones after being ploughed, harrowed, and leveled. The bio-degradable
film was laid on the ridges with edges buried 3 to 5 cm deep along ridge bases into the soil
on April 12, 2020. Biochar was ground and screened through a 5-mm sieve before applied
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to the field. On April 15, 2020, before seeding alfalfa, biochar was broadcasted by hand and
promptly ploughed into a 0–20 cm soil depth. Localized alfalfa (No 3 Gannong) cultivar
was cultivated on April 15, 2020, at 22.5 kg ha−1. Four rows were sown in a 60 cm wide
furrow, 2–3 cm deep with 20 cm spaces between 2 rows (Fig. 3). For tied ridging and open
ridging, each experimental plot was 30 m2, with 10 furrows (0.6 m width × 5 m length)
and 40 alfalfa planted rows. Flat planting plots were 50.25 m2 (5.0 width× 10.05 m length)
with 66 alfalfa rows. Around 2 months after sowing, tied-ridges were manually built (June
14, 2020). Weeds were manually controlled with care to avoid breaking the ridges and no
fertilizer or irrigation was carried out on experimental fields.

Sampling and measurements
Rainfall, runoff, and sediment losses
Data were collected as previously described in Wang et al. (2018). Rainfall was measured
on the experiment field with an automatic weather station (WSSTD1, England). Sediment
debris in gutter was swept and collected with a broom and shovel into runoff and sediment
pool after every main rainfall event. Runoff in the pool was calculated by multiplying inner
basal area of the pool to runoff depth. Pool runoff was stirred with a shovel for 5 to 10 min
for uniform suspension of soil particles in the water. Sampling was done immediately with
three 1,000 mL measuring flasks, and samples were dried to clear and weighted to estimate
sediment transport. Runoff and sediment pools were emptied and swept after sampling to
provide space for the next runoff and sediment data sampling.

Soil moisture
During alfalfa cultivation period, soil moisture was measured gravimetrically to a depth of
200 cm, with an increment of 20 cm at furrow bottom in each plot, at 10 days intervals,
without considering soil moisture, before sowing or green-up and after cutting. Three
random soil samples from top, middle and bottom (up-slope, middle-slope, and down-
slope) of each plot were collected. The soil water content was determined in addition to
other standard measurements on experimental plots, 24 hrs after every rainfall (>5 mm).

Fodder yield
At the early flowering phase (between the first and 25% of flower) and senescence, alfalfa
was manually harvested (cut) three times in all plots in 2020. After cutting, harvested alfalfa
was immediately weighed, and 1 kg of the samples was dried in an oven at 105 ◦C for an
hour and then at 75 ◦C for 72 h to measure alfalfa fodder yield. Alfalfa fodder yield was
measured in 2 methods: (1) net fodder yield (NFY) in furrows (excludes tied-ridged areas);
(2) actual fodder yield (AFY) in land areas of ridges and furrows (includes tied-ridge areas).
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Calculations of runoff and sediment parameters
Runoff, sediment yield, and runoff efficiency were calculated using these formulae.

Vrunoff =Apool×Dpool (1)

Wsediment =Vrunoff × (Wsamplesediment/Vsample) (2)

Drunoff =Vrunoff /Aplot (3)

Wsedimentperarea=Wsediment/Aplot (4)

RE =Vrunoff /(P×Aplot ) (5)

where Vrunoff (m3) is pool runoff, Apool (2.25 m2) is pool inner basal area, Dpool (m) is pool
runoff depth, Wsediment (g) is pool sediment weight, Vsample (L) is collected sample, Wsample

sediment (g) is sample sediment weight, Drunoff (Lm−2) is runoff depth, Aplot (m2) is plot
projection area, Wsediment per area (gm−2) is sediment per area weight, RE (%) is runoff
efficiency, and P (mm) is precipitation. The total actual evapotranspiration (ET, mm) for
alfalfa cultivation period and water use efficiency (WUE, kg ha−1 mm−1) of alfalfa were
calculated using these formulae (Li & Gong, 2002):

ET = P+ (W1−W2) (6)

WUE =NFY /ET (7)

WUE =AFY /ET (8)

where P is precipitation (mm) during alfalfa cultivation period, NFY (kg ha−1) is net
fodder yield, and AFY (kg ha−1) is actual fodder yield. The filtration and recharge from
groundwater are negligible in this area (Zhao et al., 2012). Soil moisture (W1 and W2) was
also estimated with equation:

W = θi×ρd i×H×10 (9)

Where θ is soil water content (%), H is soil profile thickness (cm); ρd is soil bulk density
(g cm−3).

Statistical analysis
An SPSS statistical software package (version 26.0, SPSS Inc., IL, Chicago, USA) was used to
analyze all the data. Differences between treatments were analyzed using a one-way analysis
of variance (ANOVA) followed by Tukey Pairwise comparison at 5% significance and a
linear regression analysis. The research location was mapped by GIS software (ESRI R©

ArcMapTM 9.3), and figures plotted by SigmaPlot 14.0 (Systat Software Inc., San Jose,
California, USA).

RESULTS
Rainfall
Annual rainfall was 512.5 mm, with 451.2 mm falling during the alfalfa cultivation season
(April 1 to October 9, Fig. 4). From January to December, monthly rainfall was 7.5, 4.7,
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Figure 4 Meanmonthly precipitations at the experiment station in 2020.
Full-size DOI: 10.7717/peerj.11889/fig-4

13.4, 15, 75, 80.5, 91.2, 138.2, 44.8, 28.2, 10.2, and 3.8 mm, respectively. In the experimental
year, rainfall from April to October accounted for 88 percent of total annual precipitation.

Runoff, runoff efficiency, and sediment losses
Runoff in flat planting (30%), open ridging (45%), and tied ridging (52%) were decreased
with biochar as sediment yield was decreased in flat planting (33%), open ridging (43%),
and tied ridging (44%) (Fig. 5). Compared to flat planting, mean runoff was reduced in
open ridging (38%) and tied ridging (55%) with biochar, and decreased in open ridging
(20%) and tied ridging (33%) with no-biochar. Again, when compared to flat planting,
sediment yield was considerably lower in open ridging (70%) and tied ridging (85%) with
biochar, comparable to a drop in sediment production in open ridging (65%) and tied
ridging (82%) with no-biochar. Runoff efficiency was decreased in open ridging (35%)
and tied ridging (52%) with biochar amendment whereas runoff efficiency was decreased
in open ridging (19%) and tied ridging (35%) with no-biochar compared to flat planting.
Mean runoff efficiency was decreased in flat planting (31%), open ridging (45%), and
tied ridging (50%) with biochar amendments compared to no-biochar. Thus, decrease
in runoff and sediment in open and tied ridging rainwater harvesting methods may be
attributed to decrease in runoff efficiency, as demonstrated by this experiment.

Soil temperature
Mean soil temperatures on ridges and in furrows increased from April to July and then
decreased until October during alfalfa growing season with biochar or no-biochar (Fig. 6).
Mean soil temperatures on ridges and furrows in biochar plots were higher than in
no-biochar plots. Concurrently, mean soil temperatures in biochar and no-biochar plots
ranged from 14 ◦C to 26 ◦C. In furrows of biochar and no-biochar plots, mean soil
temperatures varied from 12 ◦C to 23 ◦C and 12 ◦C to 24 ◦C, respectively. During alfalfa

Mak-Mensah et al. (2021), PeerJ, DOI 10.7717/peerj.11889 11/31

https://peerj.com
https://doi.org/10.7717/peerj.11889/fig-4
http://dx.doi.org/10.7717/peerj.11889


Date

7-May 30-May 8-Jun 26-Jun 18-Jul 12-Aug17-Aug 30-Sep

R
un

of
f (

L
 m

-2
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Flat Planting Open Ridging Tied Ridging 

Biochar

Date

7-May 30-May 8-Jun 26-Jun 18-Jul 12-Aug17-Aug 30-Sep

R
un

of
f e

ff
ic

ie
nc

y 
(%

)

0

2

4

6

8

10

12

Biochar

Date

7-May 30-May 8-Jun 26-Jun 18-Jul 12-Aug 17-Aug 30-Sep

R
un

of
f (

L
 m

-2
)

0

1

2

3

4

5

6

No-Biochar

Date

7-May 30-May 8-Jun 26-Jun 18-Jul 12-Aug17-Aug 30-Sep

R
un

of
f e

ff
ic

ie
nc

y 
(%

)

0

2

4

6

8

10

12

14

16

Date

7-May 30-May 8-Jun 26-Jun 18-Jul

S
ed

im
en

t (
g 

m
-2

)

0

2

4

6

8

10

12

14

16

18

Biochar

Date

7-May 30-May 8-Jun 26-Jun 18-Jul
S

ed
im

en
t (

g 
m

-2
)

0

10

20

30

40

No-Biochar

No-Biochar

2020

Figure 5 Runoff, runoff efficiency and sediment in different treatments. The means (columns) labeled
with the same letters within each category are not significantly different at the 5% level (Tukey’s-b test
ANOVA).

Full-size DOI: 10.7717/peerj.11889/fig-5
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Figure 6 Soil temperatures in furrows and on ridge tops in 0–25 cm soil depth in various treatments.
Full-size DOI: 10.7717/peerj.11889/fig-6

cultivation period with biochar or no-biochar, soil temperature on ridges of tied ridging
(TR) was significantly higher than that on open ridging (OR), which was significantly
higher than that on flat planting (FP). Again, during alfalfa cultivation cycle with biochar,
soil temperatures on ridges were significantly (p= 0.00; F = 0.05; R square = 0.006;
Adjusted R Square = −0.105) increased in TR (24%) and OR (18%) relative to FP, and
corresponding soil temperatures on ridges were increased in TR (20%) and OR (14%)
in no-biochar plots. Meanwhile, during alfalfa cultivation period, soil temperature in
furrows in biochar and no-biochar plots were in the order FP > OR > TR. Soil temperature
was lower in TR (7%) and OR (4%) in biochar amended plots compared to FP, whereas
in no-biochar plots, soil temperature was lower in TR (6%) and OR (4%). However,
temperature differences in furrows with biochar amendment and in no-biochar plots were
discovered to be non-significant (p= 0.43; F = 0.86; R square = 0.088; Adjusted R Square
= −0.014) for TR, OR, and FP. According to findings from this study, decrease in soil
temperature in tied ridging with biochar can be attributed to reduction in runoff and
sediment.

Soil water storage
Monthly soil water storage increased in tied ridging compared to open ridging, which was
also higher than flat planting in biochar plots from April to June (Fig. 7). However, mean
soil water storage increased in open ridging compared to tied ridging, which was higher
than flat planting from July to October. The mean soil water storage was significantly
higher in OR (p= 0.00) and TR (p= 0.01), as compared to FP in biochar amended plots
(F = 14.76; R square = 0.48; Adjusted R Square = 0.39). In no-biochar plots (F = 10.97;
R square = 0.65; Adjusted R Square = 0.59), mean soil water storage was significantly
higher in OR (p= 0.01) and TR (p= 0.00), as compared to FP. During alfalfa cultivation
period, mean soil water storage in middle-slope was higher than in down-slope, which
was higher than in up-slope. The mean soil water storage for flat planting, open ridging,
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Figure 7 Soil water storage in furrows in 0–200 cm soil depth in various treatments. The means
(columns) labeled with the same letters within each group are not significantly different at the 5% level
(Tukey’s-b test ANOVA).

Full-size DOI: 10.7717/peerj.11889/fig-7

and tied ridging with biochar amendments was 243, 302, and 292 mm, respectively, while
mean soil water storage for FP, OR, and TR with no-biochar was 232, 295, and 232 mm. In
comparison to no-biochar, biochar amendments resulted in significantly (p= 0.0) higher
mean soil water storage for FP, OR, and TR. This finding implies that biochar amendments
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have a positive effect on soil water storage in open ridging compared to tied ridging. This
could be attributed to lower runoff, sediment losses, and soil temperatures in the treatment
fields.

Fodder yield and water use efficiency
With no-biochar, NFY of first cut in TR was higher compared to OR, while OR was also
higher compared to FP (Table 2). However, for second and third cuts, NFY in OR was
higher than TR, which was also higher than FP in no-biochar plots. Cumulative annual
NFY of the treatments were in the order TR > OR > FP in no-biochar plots. In biochar
plots, NFY was significantly (p= 0.00; F = 98.767; R square= 0.971; Adjusted R Square=
0.961) higher among treatments in similar order as in no-biochar plots for first and second
cuts. For third cut, NFY was in the order OR > TR > FP in biochar plots. Cumulative
annual NFY increased in the order TR > OR > FP. The mean NFY was significantly higher
(p= 0.04) in biochar amended plots than in no-biochar plots for all cuts. Consequently,
TR had a significant effect on NFY in both biochar and no-biochar plots which could be
due to increases in soil water storage in tied ridging.

Actual fodder yield was higher in TR which was higher than in OR which was higher
than in FP for first cut with biochar amendments (Table 2). AFY was in the order OR >
TR > FP in biochar plots for second and third cuts. Cumulative annual AFY with biochar
amendments was significantly (p= 0.02) higher in TR than in OR, which was in turn
significantly (p< 0.0001) higher than in FP. Furthermore, in no-biochar plots, AFY for
first and third cuts was in the order OR > TR > FP. Subsequently, AFY was higher in all
treatments with OR recording highest AFY whiles FP recorded lowest for second cut in
no-biochar plots. Twelve-monthly AFY in no-biochar plots for all treatments was in the
order OR > TR > FP. The mean actual fodder yield was significantly (p= 0.00; F = 937.6;
R square = 0.99; Adjusted R Square = 0.996) higher in biochar amended plots than in
no-biochar plots for all cuts. As a result, tied ridging had a significant effect on actual
fodder yield in biochar plots, while open ridging had a significant effect on actual fodder
yield in no-biochar plots. As demonstrated by this research, this can be attributed to a
reduction in runoff and sediment losses, which lead to an increase in soil water storage in
treatment fields.

Water use efficiency (WUE) was highly significant (p< 0.0001; F = 1.460; R square =
0.378; Adjusted R Square = 0.119) in tied ridging, compared to OR and FP in biochar
and no-biochar plots (Table 2). Additionally, mean WUE was highly significant (p= 0.01;
F = 5.08; R square= 0.62; Adjusted R Square= 0.505) in biochar plots than in no-biochar
plots. Open ridging with biochar amendments increased net fodder yield (7.5%) compared
to open ridging in no-biochar plots, while tied ridging with biochar amendments increased
net fodder yield (8.5%) when compared to tied ridging in no-biochar plots. Open ridging
with biochar amendments significantly (p< 0.0001; F = 1187.047; R square = 0.998;
Adjusted R Square = 0.997) increased actual fodder yield (9.3%) compared to open
ridging in no-biochar plots, while tied ridging with biochar amendments significantly
(p= 0.0001; F = 1187.047; R square= 0.998; Adjusted R Square= 0.997) increased actual
fodder yield (15.7%) compared to tied ridging in no-biochar plots. Biochar plots had a
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Table 2 Alfalfa forage yield and water use efficiency (WUE) in tied-ridge-furrow rainwater harvesting with biochar amendment.

Biochar
amendment
patterns

Tillage
practices

Fodder
yield

(kg ha−1)

WUE
(kg ha−1m−1)

First cut Second cut Third cut Annual total

NFY AFY NFY AFY NFY AFY NFY AFY

2020

FP 1728c 1728c 1027c 1027c 487c 487c 3242c 3242c 15.23c

OR 5726b 2679b 2527b 1298a 1198a 597a 9451b 4574b 28.49bBiochar

TR 5928a 2826a 2648a 1283a 1036b 572b 9612a 4681a 30.87a

FP 1628c 1628c 972c 972c 418c 418c 3018c 3018c 13.45c

OR 5289b 2372a 2486a 1185a 1013a 627a 8788b 4184a 22.49bNo-
Biochar

TR 5387a 2267b 2481a 1190a 987b 589b 8855a 4046b 24.73a

Biochar 4461 2411 2067 1203 907 552 7435 4166 24.86
Mean

No-Biochar 4101 2089 1980 1116 806 545 6887 3749 22.89

Notes.
aNFY (Net fodder yield) was forage yield based on furrow areas (exclude ridge and tied-ridge areas).
bAFY (actual fodder yield) was forage yield based on land areas of ridges (include ridge and tied-ridge) and furrows.
cFP, OR and TR were flat planting, open ridging and tied-ridging, respectively.
dMeans within a column followed by the same letters are not significantly different at the 5% level (Tukey’s-b test ANOVA).
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higher average annual mean net fodder yield (8%) and actual fodder yield (11%) than in
no-biochar plots. The increase in WUE with biochar amendments in tied ridging may be
connected to the increase in yield and decrease in runoff and sediment, as demonstrated
by this experiment.

DISCUSSION
Poor and erratic rainfall in semi-arid areas is a challenge to rain-fed agriculture, where
farmers may experience crop damage (Graef & Haigis, 2001). From this experiment, we
found a decrease in runoff in flat planting (FP), open ridging (OR), and tied ridging (TR) by
30%, 45%, and 52%, respectively, and corresponding sediment yield decrease of 33%, 43%,
and 44%, respectively, with biochar amendments (Please, refer to Fig. 5). When compared
to no-biochar plots, mean runoff efficiency in flat planting, open ridging, and tied ridging
was decreased by 31%, 45%, and 50%, respectively, with biochar amendments (Please, refer
to Fig. 5). These results are in line with those of Araya & Stroosnijder (2010) who found
runoff in tied ridges in a wheat field was significantly lower than runoff in a flat field. Nuti
et al. (2009) elucidated that decreased runoff in tied ridges results in water storage in soil
profiles which leads to improved crop development with higher crop yields. Furthermore,
Patil & Sheelavantar (2004) reported decreased runoff with compartmental bunding and
ridges and furrows relative to flat planting. Concurrently, tied-ridges decreased runoff
by 51 and 58%, in Machanga, Kenya, during short and long rainy seasons, respectively
(Okeyo et al., 2014). In a similar research in Upper Volta, tied ridges resulted in 0.9% runoff
relative to 6.3% with open ridges and 12.2% in flat planting (Gerbu, 2015). Xia et al. (2014)
came to a similar conclusion, finding a substantial reduction in runoff, phosphorus, and
nitrogen losses. According to Woldegiorgis (2017), effectiveness of tied ridging to decrease
soil erosion was predominantly connected to decrease in runoff in tied ridge fields.

From this research, in biochar and no-biochar fields, we found soil temperatures on
ridges of TR were significantly higher than on OR, which was significantly higher than on
FP during alfalfa cultivation period. Conversely, soil temperature in furrows during alfalfa
cultivation period in biochar and no-biochar fields were significantly higher in treatments
in the order FP > OR > TR (Please, refer to Fig. 6). This finding is in agreement with
Genesio et al. (2012), who discovered dark-colored biochar increased soil temperatures
compared to no-biochar. This may be attested to decrease in runoff and sediment with
biochar amendment in this experiment.

Implementation of soil moisture preservation practices such as tied ridges withmulching
has presented improved soilmoisture retention in different environments (Ndlangamandla,
Ndlela & Manyatsi, 2016). In comparison to no-biochar, mean soil water storage was found
to be significantly higher in FP, OR, and TR with biochar (Please, refer to Fig. 7). This
demonstrates the positive influence of biochar amendments in tied ridging on soil water
storage. This result is in line with Ndlangamandla, Ndlela & Manyatsi (2016), who found
that soil moisture in the tied ridges with mulch was retained longer than in un-mulched
ridges. These outcomes are also in agreement with Mupangwa, Love & Twomlow (2006)
and Nyamadzawo et al. (2013), who revealed tied ridges, are effective at trapping and
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concentrating moisture in the root zone of plants. Adimassu et al. (2014) and Al-Seekh &
Mohammad (2009) also reported lower runoff and higher soil moisture content. In similar
research byMcHugh et al. (2007), open ridges performed second best with higher seasonal
soil moisture than subsoiling, no-till, and traditional tillage. Again, Araya & Stroosnijder
(2010) reported tied ridging with mulching can increase soil water in the root zone of
plants by 13% and crop grain yield (barley) by 44% during below-average rainfall years.
Conversely, tied ridging with soil bund and tied ridging with mulch increased soil water
storage by 5.37% and 6.20%, respectively, compared to flat planting (Adeboye et al., 2017).

In this study, annual cumulative net fodder yield (NFY) was significantly higher in
TR, which was significantly higher compared to OR, which too was significantly higher
compared to FP (Please, refer to Table 2). This is in line with Zelelew, Ayimute & Melesse
(2018), whose findings indicated that plots treated with tied ridge had the highest grain
yield (2,302 kg ha−1) and biomass (7,647 kg ha−1). Grain yield for tied ridges with mulch
was substantially different (p< 0.05) from bare tied ridges and flat planting, according
to Ndlangamandla, Ndlela & Manyatsi (2016). The significant difference among these
treatments is agreed to be as a result of moisture retention which was attained as an
effect of mulching (Ndlangamandla, Ndlela & Manyatsi, 2016). In another study, pearl
millet yield was significantly increased in tied ridging than in flat planting (Silungwe et al.,
2019). Tied ridging has been successful in other semi-arid areas for cereals like sorghum
(Sorghum bicolor) (Mesfin et al., 2009; Bayu, Rethman & Hammes, 2012). The yield of crops
(sorghum, maize, wheat, and mung bean) grown with tied ridging significantly increased
(50 to 100%) as compared to flat planting in semi-arid areas (Zelelew, Ayimute & Melesse,
2018). Correspondingly, relative to flat planting, furrow planting in open-end tied ridges
resulted in a 28.86% increase in stover yield (Belachew & Abera, 2014). The grain yield
harvested in tied ridging (3.6 t ha−1) was higher (12.5%) compared to flat planting (3.2 t
ha−1) (Yoseph, 2014). Furthermore,maize biomass yield (11,019 kg ha−1) in closed-end tied
ridging was highest with a 54.9% increase compared to flat planting (Belachew & Abera,
2014). In addition, Sumeriya, Singh & Kaushik (2014) revealed an increase in sorghum
grain yield ranging from 67 to 73% and soil water (40%) in tied ridging compared to flat
planting. As a consequence, depending on rainfall and slope gradient, tied ridging has been
shown to increase yields (Motsi, Chuma & Mukamuri, 2004;McHugh et al., 2007).

With biochar amendments, tied ridging had a significant effect on actual fodder yield
(AFY), while OR had a significant effect on AFY with no biochar. Biochar improved the
annual cumulative mean of NFY (8%) and AFY (11%) as compared to no-biochar in
this study (Please, refer to Table 2). These outcomes are in line with Mak-Mensah et al.
(2021), who reported combined application of biodegradable film with biochar in the Loess
Plateau of China increased yield by 22.86% compared with FP. This was corroborated by
Liu et al. (2014) who achieved a higher yield of sweet potato (53.77%; p< 0.05), with
biochar amendment than with no biochar treatment (control). In addition, Liang et al.
(2014) obtained a 10% increase in grain yield in winter wheat and summer maize with
biochar application compared to controls (no biochar). Furthermore, Xiao et al. (2016)
found that 20 and 30 t ha−1 biochar amendment improved wheat yields by 9 and 13%
in 2012 and 11 and 14% in 2013, respectively, compared to no biochar treatments. In

Mak-Mensah et al. (2021), PeerJ, DOI 10.7717/peerj.11889 18/31

https://peerj.com
http://dx.doi.org/10.7717/peerj.11889


comparing biodegradable film mulched ridge-furrow with 20 t ha−1 biochar application to
biodegradable film mulched ridge-furrow without biochar treatments, wheat grain yield
increased by 6 and 9% in 2012 and 2013 (Xiao et al., 2016b). In addition, a meta-analysis by
Jeffery et al. (2011) found that biochar-treated soils enhanced crop productivity by 10% on
average when compared to plots without mulching. Under co-application of biodegradable
film mulched ridge-furrow with biochar treatment, the residual impact of biochar on
soil fertility accounted for the majority of improvement in crop production (Rehman &
Razzaq, 2017).

Improving water use efficiency in semi-arid regions can be attained either by increasing
the volume of water accessible to plants for transpiration and/or by increasing efficacy with
which transpired water yields more plant biomass (Wallace, 2000). Water use efficiency
was in the order TR > OR > FP with no-biochar or biochar amendments (Please, refer to
Table 2). The mean WUE was significantly higher in biochar plots than in non-biochar
plots in this present research. These outcomes are consistent with Ndlangamandla, Ndlela
& Manyatsi (2016) who reported increased soil moisture and crop yield with mulching in
tied-ridging in Swaziland’s semiarid areas. This may be an ideal agronomic practice for
smallholder farmers to increase yield in crop production. The practice could also be used as
a soil and water conservation strategy in rain-fed agriculture, especially in climate-changing
areas to reduce drought impact while decreasing runoff and erosion (Mak-Mensah et al.,
2021).

CONCLUSIONS
The tied ridge with biochar amendments in alfalfa cultivation has been shown to reduce
runoff and significantly improve rainfall infiltration into the soil. Field investigation
revealed biochar amendments reduced runoff in flat planting, open ridging, and tied
ridging, resulting in a decrease in sediment yield. Mean runoff efficiency was decreased
in flat planting, open ridging, and tied ridging, with biochar amendments compared
to no-biochar. During the alfalfa cultivation period with biochar or no-biochar, soil
temperature on tied ridging ridges was significantly higher than that on open ridging,
which was significantly higher than flat planting. In comparison to no-biochar, mean soil
water storage for flat planting, open ridging, and tied ridging with biochar was significantly
higher. This signifies the viability of biochar amendment in improving soil water storage
in open ridging. Biochar increased annual cumulative net fodder yield and actual fodder
yield means compared to no-biochar. Conversely, mean water use efficiency with biochar
amendment was significantly higher than in no-biochar. Thus, when crop production
is threatened by soil erosion and drought, tied ridging with biochar is beneficial to crop
growth in rain-fed agriculture.

The study’s main constraints were labor costs for creating ties, filming, and applying
biochar, all of which are time-consuming tasks that need manual work. Other constraints
discovered during this investigation include limited access to farm inputs, and the high
cost of biochar and biodegradable film, low soil fertility and lack of fertilizer application.
Thus, there is a great need to examine nutrient loss reductions of alfalfa cultivation under
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a wide range of growing conditions and locations. Further research is needed on better
plant water uptake cultivars or species, strategies for minimizing unproductive water losses,
and consistent rodents and weeds control. In addition, the economic viability of alfalfa
cultivation in tied-ridges with biochar amendments needs to be evaluated in response to
drastic increases in input costs. Although, smallholder farmers in semi-arid areas could be
trained in the use of this water-saving technique to reduce runoff, soil erosion, sediment
losses, and improve food security, to overcome cultural and sociological reluctance in both
rural and urban communities to deploy and accept this system, new ways for disseminating
knowledge about tied-ridges with biochar amendments are needed.
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