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Current studies are shifting from the use of single linear references to representation of multiple
genomes organised in pangenome graphs or variation graphs. Meanwhile, in metagenomic samples,
resolving strain-level abundances is a major step in microbiome studies, as associations between strain
variants and phenotype are of great interest for diagnostic and therapeutic purposes.

We developed StrainFLAIR with the aim of showing the feasibility of using variation graphs for indexing
highly similar genomic sequences up to the strain level, and for characterizing a set of unknown
sequenced genomes by querying this graph.

On simulated data composed of mixtures of strains from the same bacterial species Escherichia coli,
results show that StrainFLAIR was able to distinguish and estimate the abundances of close strains, as
well as to highlight the presence of a new strain close to a referenced one and to estimate its abundance.
On a real dataset composed of a mix of several bacterial species and several strains for the same
species, results show that in a more complex configuration StrainFLAIR correctly estimates the
abundance of each strain. Hence, results demonstrated how graph representation of multiple close
genomes can be used as a reference to characterize a sample at the strain level.
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ABSTRACT11

Current studies are shifting from the use of single linear references to representation of multiple genomes

organised in pangenome graphs or variation graphs. Meanwhile, in metagenomic samples, resolving

strain-level abundances is a major step in microbiome studies, as associations between strain variants

and phenotype are of great interest for diagnostic and therapeutic purposes.
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We developed StrainFLAIR with the aim of showing the feasibility of using variation graphs for indexing

highly similar genomic sequences up to the strain level, and for characterizing a set of unknown sequenced

genomes by querying this graph.
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On simulated data composed of mixtures of strains from the same bacterial species Escherichia coli,

results show that StrainFLAIR was able to distinguish and estimate the abundances of close strains, as

well as to highlight the presence of a new strain close to a referenced one and to estimate its abundance.

On a real dataset composed of a mix of several bacterial species and several strains for the same species,

results show that in a more complex configuration StrainFLAIR correctly estimates the abundance of

each strain. Hence, results demonstrated how graph representation of multiple close genomes can be

used as a reference to characterize a sample at the strain level.
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Availability: http://github.com/kevsilva/StrainFLAIR26

INTRODUCTION27

The use of reference genomes has shaped the way genomics studies are currently conducted. Reference28

genomes are particularly useful for reference guided genomic assembly, variant calling or mapping29

sequencing reads. For the latter, they provide a unique coordinate system to locate variants, allowing30

to work on the same reference and easily share information. However, the usage of reference genomes31

represented as flat sequences reaches some limits (Ballouz et al., 2019). One sequence chosen as the32

reference among other homologous sequences does not capture the whole genomic variability. Hence,33

reads from non-reference alleles may be mis-mapped or not mapped at all. Secondly, with the increasing34

availability of new genomes, several sequences can be used as multiple references. However, close35

genomes (typically genomes of strains of the same species) show a high sequence similarity. The36

mapping of sequencing reads results in mis-mapped reads or ambiguous alignments generating noise in37

the downstream analysis (Na et al., 2016).38

This has led recent methods to provide a representation of multiple genomes as genome graphs, also39

called variation graphs, in which each path is a different known variation. Such graph representations40

are well defined, and tools to build and manipulate graphs are under active development (Garrison41

et al., 2017; Kim et al., 2019; Rakocevic et al., 2019; Li et al., 2020a). This graph structure provides42

obvious advantages such as the reduction of the data redundancy, while highlighting variations (Garrison43

et al., 2018). However, it also introduces novel difficulties. Updating a graph with novel sequences,44

adapting existing efficient algorithms for read mapping, and, mainly, developing new ways to analyse45
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sequence-to-graph mapping results for downstream analyses are among those new challenges. The work46

presented here primarily focuses on this latest point. It proposes to show the feasibility of using variation47

graphs for profiling metagenomic samples at the strain-level, that is to say identifying and estimating48

abundances of strains contained in a metagenomic sample.49

In the context of metagenomics, representing genomes in graphs is of particular interest for indexing50

microorganism genomes. Microorganisms are predominant in almost every ecosystems from ocean51

water (Sunagawa et al., 2015) to human body (Clemente et al., 2012), and play major functioning roles in52

them (New and Brito, 2020). While studies in microbial ecology are facing a bottleneck due to the difficulty53

of isolating and cultivating most of those microbes in laboratory, preventing the analysis of the complex54

structure and dynamics of the microbial communities (Stewart, 2012), high-throughput sequencing in55

metagenomics offers the opportunity to study a whole ecosystem. In particular, shotgun sequencing allows56

a resolution up to the species level (Jovel et al., 2016), and enables samples analysis in terms of population57

stratification, microbial diversity or bio-markers identification (Quince et al., 2017b). Understanding58

of microbial communities structure and dynamics is usually revealed by resolving the species present59

in samples and their relative abundances, which can then be associated with phenotypes, notably in60

the field of human health (Ehrlich, 2011; Vieira-Silva et al., 2020; Solé et al., 2021). Characterizing61

samples at the strain level has a growing interest, as it may highlight new associations with phenotypes.62

A better understanding of the functional impact of strains in host-microbe interactions is crucial to new63

therapeutic strategies and personalized medicine. Escherichia coli, which has a highly variable genome,64

is a well-known example since some strains are harmless commensals in the human gut microbiota while65

others are harmful pathogens (Rasko et al., 2008; Loman et al., 2013). Current approaches using gene66

catalog handle multiple similar genomes by selecting a representative sequence from cluster of genes,67

thus getting rid of the redundancy but also of the variations, yet crucial to distinguish the strains of a68

species (Qin et al., 2010).69

Although they are not based on a graph representation of the reference genomes, several tools have70

already been developed this last few years to study the strain composition of metagenomic samples.71

DESMAN (Quince et al., 2017a) and mixtureS (Li et al., 2020b) use known core genes from the72

species of interest and a single reference genome, respectively. Using those data as references, and from73

sequencing reads, these methods infer non-identified haplotypes, defining them as de novo approaches.74

Additionally, DESMAN operates on a multiple set of sequencing reads. PanPhlan (Scholz et al., 2016)75

which uses a set of reference genomes and StrainPhlan (Truong et al., 2017) which uses markers76

from reference genomes are complementary tools providing a gene family presence/absence matrix and77

strain identification only for the dominant strain, respectively. StrainEst (Albanese and Donati, 2017)78

and DiTASiC (Fischer et al., 2017) use a set of reference genomes, providing abundance estimation of79

strains present in the sample. Finally, while designed for metagenomics classification, Kraken2 (Wood80

et al., 2019) and KrakenUniq (Breitwieser et al., 2018), which can use a custom database of reference81

genomes, offer meaningful outputs to characterize metagenomic samples. Those tools are further discussed82

in this article alongside the result they provide.83

In this work, we present StrainFLAIR, a novel method and its implementation that uses variation84

graph representation of gene sequences for strain identification and quantification. We proposed novel85

algorithmic and statistical solutions for managing ambiguous alignments and computing an adequate86

abundance metric at the graph node level. Results on simulated data and on real sequencing data have87

shown that we could correctly identify and quantify strains present in a sample. Notably, in the controlled88

experimental design that we investigated, we could also detect the existence of a strain close to, but absent89

from those in the reference.90

StrainFLAIR is available at http://github.com/kevsilva/StrainFLAIR.91

METHODS92

We propose here a description of our tool StrainFLAIR (STRAIN-level proFiLing using vArIation93

gRaph). This method exploits various state-of-the-art tools and proposes novel algorithmic solutions94

for indexing bacterial genomes at the strain-level. It also permits to query metagenomes for assessing95

and quantifying their content, in regards to the indexed genomes. An overview of the index and query96

pipelines are presented on Fig. 1.97

Rational for the choice of third-party tools and their detailed usages are given in Supplementary98

Materials, Section S1.1.99
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Figure 1. StrainFLAIR overview. a. Indexing. Input is a set of known reference genomes of

various bacterial species and strains. StrainFLAIR uses a graph for indexing genes of those reference

genomes. b. Read mapping on the previously mentioned graph. c. Mapped reads analysis.

StrainFLAIR assigns and estimates species and strain abundances of a bacterial metagenomic sample

represented as short reads.

In a few words, StrainFLAIR works as follows: First, it indexes genes of input reference genomes.100

Similar genes from several genomes are grouped into a gene family. Each gene family is represented as101

a part (a connected component) of a variation graph. The path described in this variation graph by the102

sequence of any gene of any indexed genome is called a “colored-path”. Note that, conversely, any path103

of the variation graph does not necessarily correspond to an indexed gene. At query time, the mapping of104

a queried read on the graph results on a subset of the graph in which each mapped nodes is associated105

with a mapping score. This set of nodes is called a “multipath-alignment”. From a multipath-alignment106

we extract a set of so called “single-path-alignments” that are paths with a mapping score higher than a107

threshold. Then, in a step called “colored-path attribution”, each of the previously determined single-108

path-alignments is, when possible, attributed to the most probable colored-path of the variation graph,109

hence determining to which input genome the mapped read belongs to. Once all read are mapped, the110

careful analysis of mapped colored-paths enables to draw a profile to the queried metagenomic sample.111

We now provide more details on each of the StrainFLAIR steps.112

Indexing strains113

Gene prediction114

As non-coding DNA represents 15% in average of bacterial genomes and is not well characterized in115

terms of structure, StrainFLAIR focuses on protein-coding genes in order to characterize strains by116

their gene content and nucleotidic variations of them. Moreover, non-coding DNA regions can be highly117

variable (Thorpe et al., 2017) and taking into account complete genomes would then lead to highly118

complex graphs, and combinatorial explosions when mapping reads. Additionally, complete genomes119

are not always available. Focusing on the genes allows to use also drafts and metagenome-assembled120

genomes or a pre-existing set of known genes (Qin et al., 2010; Li et al., 2014). Hence, StrainFLAIR121

indexes genes instead of complete genomes in graphs.122

Genes are predicted using Prodigal, a tool for prokaryotic protein-coding genes prediction (Hyatt123

et al., 2010).124

Knowing that some reads map at the junction between the gene and intergenic regions, by conserving125

only gene sequences, mapping results are biased towards deletions and drastically lower the mapping126

score. In order to alleviate this situation, we extend the predicted gene sequences at both ends. Hence,127

StrainFLAIR conserves predicted genes plus their surrounding sequences. By default, and if the128
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sequence is long enough, we conserve 75 bp on the left and on the right of each gene.129

Gene clustering130

Genes are clustered into gene families using CD-HIT (Li and Godzik, 2006). For the clustering step, the131

genes without extensions are used in order to strictly cluster according to the exact gene sequences and132

no parts of intergenic regions. CD-HIT-EST is used to realize the clustering with an identity threshold133

of 0.95 and a coverage of 0.90 on the shorter sequence. The local sequence identity is calculated as the134

number of identical bases in alignment divided by the length of the alignment. Sequences are assigned to135

the best fitting cluster verifying these requirements.136

Graph construction137

Each gene family is represented as a variation graph (Fig. 2). Variation graphs are bidirected DNA138

sequence graphs that represents multiple sequences, including their genetic variation. Each node of the139

graph contains sub-sequences of the input sequences, and successive nodes draw paths on the graph.140

Paths corresponding to reference sequences are specifically called “colored-paths”. Each colored-path141

corresponds to the original sequences of a gene in the cluster.142

Figure 2. Illustration of a variation graph structure and colored-paths. Each node of the graph

contains a sub-sequence of the input sequences and is integer-indexed. A path corresponding to an input

sequence is called a colored-path, and is encoded by its succession of node ids, e.g. 1,3,5,6 for the

colored-path 1 in this example.

In the case of a cluster composed of only one sequence, vg toolkit (Garrison et al., 2017)143

is used to convert the sequence into a flat graph. Alternatively, when a cluster is composed of two144

sequences or more, minimap2 (Li, 2018) is used to generate pairwise sequence alignments. Then145

seqwish (Garrison, 2021) is used to convert these pairwise sequence alignments into a variation graph.146

All the so-computed graphs (one per input cluster) are then concatenated to produce a single variation147

graph where each cluster of genes is a connected component.148

The index is created once for a set of reference genomes. Afterward, any set of sequenced reads can149

be queried at the strain-level based on this index.150

Querying variation graphs151

The so-created variation graphs is queried by reads. Each read is mapped on the graph. Then each mapped152

read is associated, when possible, to a gene of one of the indexed genome. This is the “read attribution”153

step, itself composed of the “single-path-alignments attribution” and the “colored-path attribution” steps,154

detailed below.155

Mapping reads156

For mapping reads on the previously described reference graph, we used the sequence-to-graph mapper157

vg mpmap from vg toolkit. It produces a so-called “multipath-alignment”. A multipath-alignment158

is a graph of partial alignments and can be seen as a sub-graph (a subset of edges and vertices) of the159

whole variation graph (see Fig. 3 for an example). The mapping result describes, for each read, the nodes160

of the variation graph traversed by the alignment and the potential mismatches or indels between the read161

and the sequence of each traversed node.162

Reads attribution163

When mapping a read on a graph with colored-paths, two key issues arise, as illustrated on Fig. 3. As164

mapping generates a sub-graph per mapped read, the most probable mapped path(s) have to be defined.165

Meanwhile, the most probable mapped path(s) corresponding to a colored-path also have to be defined.166
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Figure 3. Illustration of the multipath-alignment concept and the read attribution process. The

region of the read in blue aligns un-ambiguously to a node of the graph while the dark and light red parts

can either align to the top or the bottom nodes of their respective mapping localization (due to mismatches

that can align on both nodes for example), drawing an alignment as a sub-graph of the reference variation

graph, and thus opening the possibility of four single-path-alignments. (A) Single-path-alignments

attribution. First, from the multipath-alignment (all four read sub-paths), the breadth search finds the

possible corresponding single-path-alignment(s) while respecting the mapping score threshold imposed

by the user. Here, for the example, all four possible paths are considered valid. (B) Colored-path

attribution. Second, each single-path-alignment is compared to the colored-paths from the reference

variation graph. Two single-path-alignments matched the colored-paths (4-6-8 and 5-6-7). As it mapped

equally more than one colored-path, this read is not processed during the first step of the algorithm which

focuses on reads mapping uniquely on a single colored-path, but falls in the multiple mapped reads case

which is processed during the second step and will be considered shared by both matched colored-paths.

Hence we developed an algorithm to analyse and convert, when possible, a mapping result into one or167

several single-path-alignment(s) (successive nodes joined by only one edge) per mapped read. In addition168

we propose an algorithm to attribute each such single-path-alignment to most probable colored-path(s).169

Single-path-alignments attribution. A breadth first search on the multipath-alignment is proposed. It170

starts at each node of the alignment with a user-defined threshold on the mapping score. A single-path-171

alignment with a mapping score below this threshold is ignored, and the single-path-alignment with the172

best mapping score is retained. Additionally, for each alignment, nodes are associated with a so-called173

“horizontal coverage” value. The horizontal coverage of a node by a read corresponds to the proportion of174

bases of the node covered by the read. Hence, a node has an horizontal coverage of 1 if all its nucleotides175

are covered by the read with or without mismatches or indels.176

Because of possible ties in mapping score, the search can result in multiple single-path-alignments, as177

illustrated Fig. 3(A). This situation corresponds to a read which sequence is found in several different178

genes or to a read mapping onto the similar region of different versions of a gene.179

To take into account ambiguous mapping affectations, as shown below, the parsing of the mapping180

output is decomposed into two steps. The first step processes the reads that mapped only a unique181

colored-path (called “unique mapped reads” here), corresponding to a single gene. The second step182
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processes the reads with multiple alignments (called “multiple mapped reads” here).183

Colored-path attribution. Once a read is assigned to one or several single-path-alignment(s), it still184

has to be attributed, if possible, to a colored-path. The following process attributes each mapped read185

to a colored-path and various metrics for downstream analyses are computed. In particular, an absolute186

abundance for each node of the variation graph, called the “node abundance”, is computed, first focusing187

on unique mapped reads (first step). For a given single-path-alignment, the successive nodes composing188

this path are compared to the existing colored-paths of the variation graph. If the alignment matches part189

of a colored-path, the number of mapped reads on this path is incremented by one (i.e. reads raw count).190

The node abundance for each node of the alignment is incremented with its horizontal node coverage191

defined by this alignment. Alignments with no matching colored-paths are skipped.192

Then, we focus on multiple mapped reads (second step), as illustrated Fig. 3(B). During this step,193

a single-path-alignment matches multiple colored-paths. Hence, the abundance is distributed to each194

matching colored-path relatively to the ratio between them. This ratio is determined from the reads raw195

count of each path from the first step. For example, if 70 unique mapped reads were found for path1 and196

30 for path2 during the first step, a read matching ambiguously both path1 and path2 during the second197

step counts as 0.7 for path1 and 0.3 for path2. This ratio is applied to increment both the raw count of198

reads and the coverage of the nodes.199

Gene-level and strain-level abundances200

StrainFLAIR output is decomposed into an intermediate result describing the queried sample and201

gene-level abundances, and the final result describing the strain-level abundances.202

Gene-level. After parsing the mapping result, the first output provides information for each colored-path,203

i.e. each version of a gene. Thereby, this first result proposes gene-level information including abundances.204

Exhaustive description of these intermediate results is provided in Section S1.2 in Supplementary Materials.205

We describe here three major metrics outputted by StrainFLAIR:206

The mean abundance of the nodes composing the path. Instead of solely counting reads, we make207

full use of the graph structure and we propose abundances computation for each node as previously208

explained, and as already done for haplotype resolution (Baaijens et al., 2019). Hence, for each colored-209

path, the gene abundance is estimated by the mean of the nodes abundance.210

In order to not underestimate the abundance in case of a lack of sequencing depth (which could result211

in certain nodes not to be traversed by sequencing reads), the mean abundance without the nodes of212

the path never covered by a read is also outputted.213

The mean abundance with and without these non-covered nodes are computed using unique mapped214

reads only or all mapped reads.215

The ratio of covered nodes, defined as the proportion of nodes from the path which abundance is216

strictly greater than zero.217

Strain-level. A colored-path associated to only one strain is called “strain-specific”. Strain-level218

abundances are obtained by exploiting the results of reads mapped on strain-specific colored-paths.219

First, for each genome, the proportion of detected genes is computed, as the proportion of specific220

genes on which at least one read maps. Then, the global abundance of the genome is computed as the221

mean or median of all its specific gene abundances. However, if the proportion of detected genes is less222

than a user-defined threshold, the genome is considered absent and hence its abundance is set to zero.223

StrainFLAIR final output is a table where each line corresponds to one of the reference genomes,224

containing in columns the proportion of detected specific genes, and our proposed metrics to estimate their225

abundances (using mean or median, with or without never covered nodes as described for the gene-level226

result).227

Results presented Section S1.3 in Supplementary Materials validate and motivate the proposed228

abundance metric by comparing it to the expected abundances and other estimations using linear models.229

RESULTS230

We validated our method on both a simulated and a real dataset. All computations were performed using231

StrainFLAIR, version 0.0.1, with default parameters. The relative abundances estimation was based232

on the mean of the specific gene abundances, computed by taking into account all the nodes (including233

non-covered nodes), and using a 50% threshold on the proportion of detected specific genes.234
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The presented results are compared to Kraken2 considered as one of the state-of-the-art tool235

dedicated to the characterization of read set content, and based on flat sequences as references. Read236

counts given by Kraken2 were normalized by the genome length and converted into relative abundances.237

Other tested tools either suffer from unfair comparisons as their features differ from StrainFLAIR238

(DESMAN, PanPhlan and StrainPhlan) or show weaker results than those obtained by Kraken2239

(StrainEst, DiTASiC, KrakenUniq and mixtureS). All results obtained with these tools are240

presented in Supplementary Materials, Section S1.8.241

Here we present a proof of concept of the variation graph application for the microbial strain detection.242

While the aim of this article is not to provide a benchmark of the state-of-the-art tools, computing setup243

and performances are indicated in Supplementary Materials, Section S1.4.244

Validation on a simulated dataset245

We first validated our method on simulated data, focusing on a single species with multiple strains. Our246

aim was to validate the StrainFLAIR ability to identify and quantify strains given sequencing data247

from a mixture of several strains of uneven abundances, and with one of them absent from the index.248

Results presented in this section can be reproduced using data and commands available from the github249

website.250

Reference variation graph251

We selected complete genomes of Escherichia coli, a predominant aerobic bacterium in the gut micro-252

biota (Tenaillon et al., 2010), and a species known for its phenotypic diversity (pathogenicity, antibiotics253

resistance) mostly resulting from its high genomic variability (Dobrindt, 2005).254

Eight strains of E. coli were selected for this experiment from the NCBI1. Seven were used to construct255

a variation graph (E. coli IAI39, O104:H4 str. 2011C-3493, str. K-12 substr. MG1655, SE15, O157:H16256

str. Santai, O157:H7 str. Sakai, O26 str. RM8426), and one was used as an unknown strain in a strains257

mixture (E. coli BL21-DE3). For ease of reading, in the following, K-12 substr. MG1655 is simply258

designed by “K12” and BL21-DE3 is designed by “BL21”.259

Mixtures and sequencing simulations260

Our aim was to simulate the co-presence of several E. coli strains. Mixtures of three strains were used261

to mimic complex single species composition in metagenomic samples. We simulated short sequencing262

reads of 150 bp using vg sim from vg toolkit with a probability of sequencing errors set to 0.1%.263

Two batches of simulations were conducted in order to highlight the detection and quantification of264

strains in the mixture. The first simulation was a mixture composed of strains indexed in the reference265

graph (O104:H4, IAI39 and K-12) while the second simulation (O104:H4, IAI39 and BL21) had one266

absent from the reference variation graph (BL21) thus simulating a strain absent from the reference graph267

to be identified and quantified. For each simulation, we tested our StrainFLAIR with various read268

coverage (Table 1), with K-12 or BL21 in equal abundance of IAI39, potentially making it more difficult269

to distinguish, or in lower abundance, potentially making it more difficult to detect at all.270

Samples O104:H4 IAI39 K-12 or BL21

1 200,000 (6.5x)

2 100,000 (3x)

3 50,000 (1.6x)

4 300,000 (8.5x) 200,000 (5.8x) 25,000 (0.8x)

5 10,000 (0.3x)

6 5,000 (0.2x)

7 1,000 (0.03x)

Table 1. Composition of the mixtures described in number of reads simulated and the

corresponding coverage (in parentheses). For each simulation (including either K-12, indexed in the

variation graph, or BL21, not indexed), seven mixtures were simulated.

1https://www.ncbi.nlm.nih.gov/genome/?term=txid562[orgn]
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Strain-level abundances271

As explained in Methods, we computed the strain-level abundances using the specific gene-level abundance272

table obtained by mapping the simulated reads onto the variation graph. We compared our results to the273

expected simulated relative abundances.274

#reads

K-12
Method O104:H4 IAI39 K-12 Sakai SE15 Santai RM8426

Expected 59.88 39.92 0.2 0 0 0 0

1,000 StrainFLAIR
56.47

(0.995)

43.53

(0.989)

0

(0.309)

0

(0.189)

0

(0.151)

0

(0.188)

0

(0.212)

Kraken2 38.91 60.72 0.22 0.04 0.07 0.03 0.02

Expected 57.14 38.1 4.76 0 0 0 0

25,000 StrainFLAIR
52.14

(0.994)

40.58

(0.989)

7.27

(0.878)

0

(0.208)

0

(0.153)

0

(0.215)

0

(0.234)

Kraken2 37.23 58.1 4.51 0.04 0.07 0.03 0.02

Expected 42.86 28.57 28.57 0 0 0 0

200,000 StrainFLAIR
38.12

(0.993)

29.81

(0.988)

32.08

(0.99)

0

(0.211)

0

(0.159)

0

(0.219)

0

(0.237)

Kraken2 28.31 44.18 27.35 0.04 0.08 0.03 0.02

Table 2. Reference strains relative abundances expected and computed by StrainFLAIR or

Kraken2 for each simulated experiment with variable coverage of the K-12 strain. Best results are

shown in bold. For StrainFLAIR, the proportion of specific genes detected is shown in parentheses.

Complete results are presented Section S1.6 in Supplementary Materials.

Simulation 1: mixtures with K-12, present in the reference graph275

StrainFLAIR successfully estimated the relative abundances of the three strains present in the276

mixture (Table 2), the sum of squared errors between the estimation given by our tool and the expected277

relative abundance was between 25 and 45 for all the experiments. However, it did not detect the very278

low abundant strain in the case of the mixture with 1,000 simulated reads for K-12 (coverage of ≈0.03x).279

With our methodology, the threshold on the proportion of detected genes (see Methods) lead to set280

relative abundance to zero of likely absent strains. This reduces both the underestimation of the relative281

abundances of the present strains and the overestimation of the absent strains.282

In comparison, Kraken2 did not provide this resolution. Applied to our simulated mixtures, while283

Kraken2 was slightly better for K-12 abundance estimation, it overestimated IAI39 relative abundance284

and underestimated O104’s one, leading to an overall higher sum of squared errors (between 456 and285

872) compared to the expected abundances. Moreover, it set relative abundances to all the seven reference286

strains whereas four of them were absent from the mixture. This was expected as some reads (from287

intergenic regions for example) can randomly be similar to regions of genes from absent strains.288

Simulation 2: mixtures with BL21, absent from the reference graph289

Here, BL21 was considered an unknown strain, not contributing to the variation graph. The closest290

strain of BL21 in the graph, according to fastANI (Jain et al., 2018), was K-12 (98.9% of identity, see291

Supplementary Materials, Section S1.5). Thus we expected to find signal of BL21 through the results on292

K-12.293

As with the K-12 mixtures, StrainFLAIR successfully estimated the relative abundances of the294

two known strains present in the mixture (Table 3), the sum of squared errors between the estimation295

given by our tool and the expected relative abundance was between 22 and 180 for all the experiments.296

Labelled as K-12, it also gave close estimations for BL21 in this controlled experimental design. Again,297

it did not detect the very low abundant strain in the case of the mixture with 1,000, 5,000, and 10,000298

simulated reads for BL21. Also similarly to the K-12 mixtures experiments, Kraken2 overestimated299

IAI39 relative abundance and underestimated O104’s one (sum of squared errors between 751 and 873),300

even less precisely than in the previous experiment. With sufficient coverage (here from the 0.8x for301

BL21), StrainFLAIR was closer to the expected values for all the reference strains than Kraken2.302

Interestingly, the proportion of detected specific genes for each strain (Fig. 4) seems to highlight a303

pattern allowing to distinguish - in this specific experiment - present strains, absent strains and likely304

new strains close to the reference in the graph. According to the experiments with enough coverage305
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#reads

BL21-DE3
Method O104:H4 IAI39 K-12 Sakai SE15 Santai RM8426

Expected 59.88 39.92 0.2* 0 0 0 0

1,000 StrainFLAIR
56.48

(0.995)

43.52

(0.989)

0

(0.254)

0

(0.189)

0

(0.151)

0

(0.192)

0

(0.214)

Kraken2 38.93 60.76 0.11 0.05 0.08 0.04 0.03

Expected 57.14 38.1 4.76* 0 0 0 0

25,000 StrainFLAIR
54.12

(0.995)

41.72

(0.989)

4.16

(0.584)

0

(0.266)

0

(0.177)

0

(0.282)

0

(0.298)

Kraken2 37.75 58.93 2.16 0.28 0.34 0.25 0.29

Expected 42.86 28.57 28.57* 0 0 0 0

200,000 StrainFLAIR
46.96

(0.993)

35.32

(0.988)

17.72

(0.711)

0

(0.318)

0

(0.211)

0

(0.346)

0

(0.351)

Kraken2 31.14 48.83 13.53 1.57 1.67 1.58 1.68

Table 3. Reference strain relative abundances expected and computed by StrainFLAIR or

Kraken2 for each simulated experiment with variable coverage of the BL21 strain, absent from

the reference variation graph. BL21 strain expected abundances are followed by an asterisk in the K-12

column. Best results are shown in bold. For StrainFLAIR, the proportion of specific genes detected is

shown in parentheses. Complete results are presented Section S1.6 in Supplementary Materials.

(from 25,000 simulated reads for BL21), three groups of proportions could be observed: proportion of306

almost 100% (O104:H4 and IAI39 : strains present in the mixtures and in the reference graph), proportion307

under 30-35% (Sakai, SE15, Santai, and RM8426 : strains absent from the mixtures), and an in-between308

proportion around 60-70% for K-12 (closest strain to BL21).309

It was expected that an absent strain would have specific genes detected as StrainFLAIR detects310

a gene once only one read mappped on it. However, all absent strains had a proportion at around 30%311

except K-12 which proportion was twice higher. Conjointly with the non-null abundance estimated for312

the reference K-12, this suggests the presence of a new strain whose genome is highly similar to K-12.313

Validation on a real dataset314

We used a mock dataset available on EBI-ENA repository under accession number PRJEB42498, in order315

to validate our method on real sequencing data from samples composed of various species and strains.316

The mock dataset is composed of 91 strains of bacterial species for which complete genomes or sets of317

contigs are available, including plasmids. Among the species, two of them contained each two different318

strains. Three mixes had been generated from the mock, and we used the “Mix1A” in the following319

results.320

Even though 20 out of 91 strains were absents in this mix, we indexed the full set of 91 genomes. This321

was done in order to mimic a controlled StrainFLAIR use case where the the reference graph contains322

a mix of strains present and absent in the queried data. The metagenomic sample was sequenced using323

Illumina HiSeq 3000 technology and resulted in 21,389,196 short paired-end reads.324

We compared our results to the expected abundances of each strain in the sample defined as the325

theoretical experimental DNA concentration proportion. As such, it has to be noted that potential326

contamination and/or experimental bias could have occurred and affected the expected abundances.327

Strain detection328

Among the 91 strains used in the reference variation graph, StrainFLAIR detected 65 strains. All of329

these 65 strains were indeed sequenced in Mix1A. Hence, StrainFLAIR produced no false positive.330

From the 26 strains considered absent by StrainFLAIR, 20 were not present in the sample (true331

negatives) and 6 should have been detected (false negatives). However, the term false negative has to be332

soften as the ground truth remains uncertain. Among those 6 undetected strains, all of them had theoretical333

abundance below 0.1%.334

More precisely, among the 6 strains undetected by StrainFLAIR, 5 had some detected genes,335

but below the 50% threshold. In this case, by default, StrainFLAIR discards these strains. Finally,336

only one of the undetected strains (Desulfovibrio desulfuricans ND 132) should have been theoretically337

detected (even if its expected coverage was below 0.1%), but no specific gene was identified. Considering338

that StrainFLAIR uses a permissive definition of detected gene (at least one read maps on the gene),339
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Figure 4. Proportion of detected specific genes for each simulated experiment with variable

coverage of the BL21 strain, absent from the reference graph.

having strictly no specific genes detected for Desulfovibrio desulfuricans ND 132 suggests that this strain340

might in fact be absent from Mix1A. This is also supported by the result from Kraken2 which estimated341

a relative abundance of ≈ 9e−5, almost 500 times lower than the theoretical result.342

As in the simulated dataset validation, Kraken2 affected non-null abundances to all the references.343

Strain relative abundances344

For the estimated relative abundances, StrainFLAIR gave more similar results compared to the345

state-of-the-art tool Kraken2 than the experimental values (Fig. 5). The sum of squared error between346

StrainFLAIR and Kraken2 was around 11. StrainFLAIR and Kraken2 gave similar results347

compared to the experimental values, with sum of squared errors of around 209 and 211 respectively.348

Interestingly, Thermotoga petrophila RKU-1 is the only case where results from StrainFLAIR349

and Kraken2 differs greatly, with, in addition, the theoretical abundance being in-between. Moreover,350

Thermotoga sp. RQ2 is the strain expected to be absent that Kraken2 estimates with the highest relative351

abundance among the other expected absent strains, and the only one exceeding the relative abundances352

of two present strains. Considering the previous results on the simulated mixtures and that Thermotoga353

petrophila RKU-1 and Thermotoga sp. RQ2 are close species (fastANI around 96.6%) it could be an354

additional indicator of how tools like Kraken2 can be mislead by too close species or strains.355

In the sample, the species Methanococcus maripaludis was represented by two strains (S2 and C5) and356

the species Shewanella baltica likewise (OS223 and OS185). StrainFLAIR successfully distinguished357

and estimated the relative abundances of each strain of these two genomes. In this very situation and358

contrary to results on E. coli strains, Kraken2 was also able to correctly estimate the abundances.359

DISCUSSION360

Recent advances in sequencing technologies have provided large reference genome resources. Represen-361

tation and integration of those multiple genomes, often highly similar, are under active development and362

led to genome graphs based tools. Integrating multiple genomes from the same species is particularly363

interesting as it provides new opportunities to characterize strains, a key resolution. This taxonomic level364
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Figure 5. Experimental relative abundance compared to relative abundance as computed by

StrainFLAIR and Kraken2. A selection of relevant results is shown here, see Supplementary

Materials (Section S1.7) for the complete results. (A) Represents a case where StrainFLAIR and

Kraken2 give similar results to the experimental value (18 cases over 91). (B) Represents a case where

StrainFLAIR and Kraken2 give similar results, but lower than the experimental value (26 cases over

91). (C) Represents a case where StrainFLAIR and Kraken2 give similar results, but greater than

the experimental value (16 cases over 91). (D, E, F, G) Represent the two species represented by two

strains each. (H, I) Represent two atypical cases.

can highlight new associations with diseases or with efficiency/toxicity of drugs for instance that the anal-365

ysis at the species level currently masks. Particularly for gut microbiota studies, characterizing individual366

gut microbiota and targeting specific bacterial strains will open the field of precision medicine (Albanese367

and Donati, 2017; Marchesi et al., 2016).368

In this context, we developed StrainFLAIR, a new computational approach for strain level profiling369

of metagenomic samples, using variation graphs for representing all reference genomes. Our intention was370

in the one hand to test whether or not indexing highly similar genomes in a graph enables to characterize371

queried samples at the strain level, and, in the other hand, to provide a end-user tool able to perform the372

indexing of genomes and the query of reads including the analyses of mapping results.373

The method exploits state-of-the art-tools additionally to novel algorithmic and statistical solutions.374

By indexing microbial species and/or strains in a graph, it enables the identification and quantification of375

strains from a sequenced sample, mapped onto this graph.376

Albeit in a controlled experiment simplifying the complex reality, we have demonstrated on simulated377

and on real datasets the ability of our method to identify and correctly estimate the abundance of microbial378

strains in metagenomic samples. In this context, StrainFLAIR was able to highlight the presence and379

also to estimate a relative abundance for a strain similar to existing references, but absent from these380

references.381

We also showed that StrainFLAIR tended to set to zero the predicted abundance of low abundant382
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strains, while a tool like Kraken2 was able detect them. As a result, it seemed that StrainFLAIR383

looses the ability to detect very low abundant strains. However, in our simulations, this situation384

corresponded to coverages of 0.03x or less, hence simulating a strain for which not all genomic content385

was present. Eventually, regarding this extremely low coverage, it might be more relevant to define386

this strain as absent. Overall, there is a need to distinguish between low abundant strains, insufficient387

sequencing depth, and reads from intergenic regions or other genes randomly matching genes. In this388

regard, StrainFLAIR integrated a threshold on the proportion of specific genes detected that can be389

further explored to refine which strain abundances are set to zero. Importantly, results also showed that390

our graph-based tool had no false positive call, contrary to general purpose tool Kraken2 that detected391

100% of strains that were indexed but absent from queried reads.392

From the validation on real datasets, we showed that StrainFLAIR was still able to correctly393

estimate the relative abundances in a more complex context mixing both different species and different394

strains, without being biased by references absent in the sample.395

Our methodology taking into account all mapped reads and imposing a threshold that sets some396

strains abundances to zero seems more adequate and closer to what is expected (experimental data or397

ground truth) compared to other tools. Moreover, being able to detect some queried strains as absent is398

particularly interesting in the metagenomics context. Unlike mock datasets that are of controlled and399

known compositions, no prior knowledge is available for real metagenomic samples. They require the400

most exhaustive references - including unnecessary genomes - hence strains absent from the sample.401

StrainFLAIR is a new step towards the objective to take into account those unnecessary genomes402

without biasing the downstream analysis.403

Measured computation time performances show that StrainFLAIR enables to analyse million reads404

in a few hours. Even if this opens the doors to routine analyses of small read sets, new development efforts405

will be made for reducing computation time in order to scale-up to very large datasets. Additionally,406

although StrainFLAIR showed convincing results on simulated and real datasets, exploring more407

complex situations is still necessary. First, the mock represented a controlled sample with prior knowledge408

for building the reference set. While this can be reproduced in a real situation by pre-filtering a genome409

database (using Kraken2 for example), further work might be needed to evaluate the scalability of our410

method with larger reference sets. However, we also showed that even by adding unnecessary genomes411

(absent from the queried sample) StrainFLAIR was able to correctly define them as absent strains.412

Secondly, we presented a case of one unknown strain in a mixture close to one of the reference strain.413

Future works will aim to address the issue of having several unknown strains close to the same reference414

or a mix of known and unknown strains close to the same reference, which StrainFLAIR can not415

distinguish yet.416

Genomic plasticity and diversity is of increasing importance in microbiology, and lead to the field417

of pangenomics. Pangenomics can mainly be defined and explored in two ways. First, from the gene418

presence/absence perspective, also allowing to characterize core and accessory genome of a species.419

Secondly, from fine analysis of genomic variations. StrainFLAIR, which uses variation graphs to420

index clusters of genes, has the potential to cover both of those aspects. Indeed, graph structures, used as421

model for representing a set of related sequences, are then of great interest to capture all information on422

presence/absence of genes and variation/similarity of sequences, leading to new highlights on genome423

organization and regions of plasticity in a species. The variability provided by the sequencing of new424

genomes arises new challenges. In particular, this variability will need to be integrated into the graphs,425

which assumes a dynamic structure.426

The natural continuation will be related to the dynamical update of the reference graph used with427

StrainFLAIR when novel species or strains are detected. As suggested in this work, when an indexed428

strain is detected in a query sample but with a low (≤ 75%) proportion of genes detected, this reflects429

the presence of another strain similar, but distinct. Other metrics could be used such as the mapping430

of non-colored paths of the graph and by nucleotidic variations between mapped reads and the graph431

sequences, and, of course, by non-mapped reads. Reads from these so-detected novel species or strains432

may be assembled using third-party haplotype-aware assemblers and the assembled sequences of genes433

will have to be added to the reference variation graph, updating clusters and path colors.434
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J., Ehrlich, S. D., and Bork, P. (2014). An integrated catalog of reference genes in the human gut481

microbiome. Nature Biotechnology, 32(8):834–841.482

Li, W. and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or483

nucleotide sequences. Bioinformatics, 22(13):1658–1659.484

Li, X., Hu, H., and Li, X. (2020b). mixtureS: a novel tool for bacterial strain genome reconstruction from485

reads. Bioinformatics.486

Loman, N. J., Constantinidou, C., Christner, M., Rohde, H., Chan, J. Z.-M., Quick, J., Weir, J. C., Quince,487

C., Smith, G. P., Betley, J. R., Aepfelbacher, M., and Pallen, M. J. (2013). A Culture-Independent488

Sequence-Based Metagenomics Approach to the Investigation of an Outbreak of Shiga-Toxigenic489

Escherichia coli O104:H4. JAMA, 309(14):1502.490

13/15PeerJ reviewing PDF | (2021:02:57988:2:0:NEW 14 Jun 2021)

Manuscript to be reviewed



Marchesi, J. R., Adams, D. H., Fava, F., Hermes, G. D., Hirschfield, G. M., Hold, G., Quraishi, M. N.,491

Kinross, J., Smidt, H., Tuohy, K. M., Thomas, L. V., Zoetendal, E. G., and Hart, A. (2016). The gut492

microbiota and host health: A new clinical frontier. Gut, 65(2):330–339.493
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