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ABSTRACT
Sharks and rays are increasingly being identified as high-risk species for extinction,
prompting urgent assessments of their local or regional populations. Advanced
genetic analyses can contribute relevant information on effective population size
and connectivity among populations although acquiring sufficient regional sample
sizes can be challenging. DNA is typically amplified from tissue samples which
are collected by hand spears with modified biopsy punch tips. This technique is
not always popular due mainly to a perception that invasive sampling might harm
the rays, change their behaviour, or have a negative impact on tourism. To explore
alternative methods, we evaluated the yields and PCR success of DNA template
prepared from the manta ray mucus collected underwater and captured and stored
on a Whatman FTATM Elute card. The pilot study demonstrated that mucus can
be effectively collected underwater using toothbrush. DNA stored on cards was
found to be reliable for PCR-based population genetics studies. We successfully
amplified mtDNA ND5, nuclear DNA RAG1, and microsatellite loci for all samples
and confirmed sequences and genotypes being those of target species. As the yields of
DNA with the tested method were low, further improvements are desirable for assays
that may require larger amounts of DNA, such as population genomic studies using
emerging next-gen sequencing.

Subjects Aquaculture, Fisheries and Fish Science, Conservation Biology, Ecology, Genetics,
Marine Biology
Keywords Animal welfare, CITES, Fish pain, Eco-tourism, Epidermal cells, CMS,
Whole genome amplification, Stable isotope, Genotyping errors, SCUBA

INTRODUCTION
Sharks and rays are increasingly being identified as high-risk species for extinction,

prompting urgent assessments of their local or regional populations (Dulvy et al., 2014a).

The Reef Manta Ray Manta alfredi (Krefft 1868) and the Giant Manta Ray M. birostris

(Walbaum 1792) are currently listed as Vulnerable by the International Union for the
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Figure 1 Tissue sampling with a biopsy tip and a hand spear.

Conservation of Nature (IUCN) Red List of Threatened Species in 2011 (Marshall et

al., 2011a; Marshall et al., 2011b). Both species have been listed on Appendix I & II of

the Convention for Migratory Species (CMS) and both species were recently awarded

Appendix II listing on the Conventions on International Trade in Endangered Species of

Wild Fauna and Flora (CITES). These key conservation steps represent the first significant

movement to address reported global declines in manta rays (Vincent et al., 2014). Manta

rays have been described as having extremely conservative life history traits, representing

one of the least fecund elasmobranch species and with one of the lowest maximum

intrinsic rates of population increase of any studied Chondrichthyan (Couturier et al.,

2012; Dulvy et al., 2014b).

A crucial knowledge gap still exists in the empirical understanding of their population

dynamics, structure, status and trends, which needs to be addressed for the imple-

mentation of effective management (CITES, 2013). DNA-based population studies can

complement logistically and financially challenging long-term field studies by providing

insights into the patterns of population structure, connectivity, and effective population

sizes (Dudgeon et al., 2012; Schwartz, Luikart & Waples, 2007).

Apart from land-based sampling at fish landing sites, manta ray tissue samples are

typically collected underwater while SCUBA or free diving using hand spears with biopsy

punch tips (Fig. 1). As manta rays are a major attraction for tourism (O’Malley, Lee-Brooks

& Medd, 2013), such sampling activity may not be popular or discouraged in some areas

where people fear that the technique might harm the rays, change their behaviour or have a

negative impact on tourism (Braithwaite, 2010; Huntingford et al., 2006; Rose et al., 2014).

Availability of alternative and less invasive methods to collect DNA from manta rays would

increase sampling opportunities.
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Here we test the feasibility of the collection of body surface mucus from wild manta

rays and its effectiveness as a DNA source for PCR-based population genetics studies.

Epidermal cells in surface mucus have been successfully used in many studies for humans,

livestock, and wild animals (Gustavsson et al., 2009; Le Vin et al., 2011; McClure et al.,

2009; Prunier et al., 2012; Smith & Burgoyne, 2004), but only a handful of studies exist that

have examined large marine fish (Hoolihan et al., 2009; Lieber et al., 2013). Lieber et al.

(2013), recently reported an ∼75% PCR success rate using mucus from the Basking Shark

Cetorhinus maximus (Gunnerus 1765), stored in 99 % ethanol, in amplifying the high copy

number mitochondrial DNA (mtDNA) genes cytochrome c oxidase subunit 1 (CO1) and

control region (CR) and the nuclear ribosomal internal transcribed spacer 2 (ITS2) region.

The feasibility of using mucus from other sharks and rays has been largely unexplored,

particularly in regards to underwater collection, amplification of single copy nuclear genes

and microsatellites, and dry storage methods that may eliminate the needs for special

shipping considerations and freezers (Smith & Burgoyne, 2004; Williams, 2007). Here we

report preliminary results on the effectiveness of these techniques, limitations, and its

applicability to future manta ray research. We also discuss potential areas for improvement

and future directions.

MATERIALS AND METHODS
All procedures were conducted in accordance to the University of Queensland Animal

Ethics Committee approval number SBMS/206/11/ARC and Ecuadorian Ministry of the

Environment research permits: 009RM-DPM-MA.

Mucus from eighteen Manta birostris was collected on SCUBA from Isla de la Plata

in Ecuador (1◦15 29.62S, 81◦4 25.96W) between 2 September and 20 September 2012.

Samples were obtained using a small toothbrush held in the diver’s hand (Video S1)

or mounted on an extendable pole (Fig. 2). For each sample, the dorsal surface of the

ray was rubbed back and forth or in a circular motion ∼3–5 times, then the brush was

placed into an individual 50 ml plastic tube to prevent cross contamination. On dry

land, approximately 120 µl mucus was transferred from the brush with a clean sterile

cotton bud and then onto FTATM Elute Cards and/or Indicating FTATM Elute Cards (GE

Healthcare) using three side-to-side motions, 90◦ each way (Fig. 3), spreading mucus and

cells evenly to an area of approximately 625 mm2. These cards, which are impregnated with

a chemical formula that lyses cells and denatures proteins upon contact, are designed for

room temperature storage and shipment of DNA from biological samples for PCR analysis.

The applied volume of liquid samples is the recommended amount to avoid overloading

the chemicals (GE Healthcare). Cards were then air dried and placed in separate resealable

plastic bags. Samples were then transported via land and air as normal domestic and

international postage and kept at room temperature with desiccants until further analysis

in the lab.

DNA for downstream analyses was prepared using the recommended simple protocol

for FTATM Elute Cards that releases single stranded DNA (ssDNA) into water. Three

squares (6 mm × 6 mm × 3) were cut out using a clean scalpel, washed by pulse-vortex in
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Figure 2 Mucus sampling with a toothbrush mounted on an extendable pole.

1.5 ml of sterile water for 5 s, then placed in 300 µl of sterile water and heated at 98 ◦C for

30 min. At the end of the incubation step, tubes went through 60 times pulse-vortex at a

rate approximately one pulse/second. The cut-outs were removed from tubes and eluates

were stored at −20 ◦C until further analyses.

The quality and quantity of template DNA was assessed with three commonly used

methods: Spectrophotometry (NanoDropTM 1000; Thermo Scientific), fluorometry

(QubitTM ssDNA Assay Kit; Invitrogen), and 1% agarose gel electrophoresis. Spec-

trophotometry can be used to estimate DNA concentration based on light absorbance
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Figure 3 Application of mucus to FTA card. (A) Black mucus collected on toothbrush, (B) cotton bud
with ∼120 µl of mucus, (C) transferring mucus onto FTA card using three side-to-side motions, 90◦ each
way, (D) FTA card with mucus sample.

measurements at wavelength 260 nm (A260). As a number of substances also absorb light

at 260 nm, the results may be unreliable or inaccurate when samples are not purified

DNA. Lower detection limit of the instrument was 2 ng/µl. Fluorometry (QubitTM ssDNA

Assay Kit, Invitrogen) uses fluorescent-based dyes that bind specifically to DNA, thus more

reliable for the quantification of the target molecules. Lower detection limit of the assay

employed was 0.05 ng/µl. Gel electrophoresis can provide information on DNA quantity

and quality. High amount and intact genomic DNA should appear as a bright compact,

high-molecular weight band whereas low amount and degraded DNA might appear faint

and low-molecular-weight smears.

We performed PCR for mtDNA (ND5), nuclear DNA (RAG1) and three microsatellite

loci (MA09, MA14 and MA34) using published protocols and 1–4 µl of template DNA

in 12–20 µl reaction (Kashiwagi et al., 2012a; Kashiwagi et al., 2012b) with positive and

negative controls and replicated experiments. PCR products for ND5 and RAG1 genes

were sequenced in both forward and reverse directions and compared with known

types (Kashiwagi et al., 2012b) with GenBank Accession numbers FJ235624–FJ235631

and KR703213–KR703233. PCR products for three microsatellites were genotyped and

compared with previously reported size range (Kashiwagi et al., 2012a). Robustness of

genotyping results were tested with replicated experiments for their consistency.

RESULTS
Time between sampling and lab analyses ranged from 81 to 343 days. DNA concentration

estimated by spectrophotometric measurements of the concentration of DNA templates

ranged from 12.18 to 29.00 ng/µl (23.16 ± 4.05 ng/µl, mean ± s.d., n = 18). Estimate for

blank sample (i.e., card only) was 11.7 ng/µl. Absorbance spectra lacked the typical peak at

wavelength 260 nm preceded by a dip at 230 nm, which was observable in DNA templates

prepared from tissue samples using a commercial DNA extraction kit (e.g., Qiagen DNeasy

Kit) (Fig. 4). Instead, spectra showed high absorbance around wavelength 230–240 nm

that was also present in blank sample. Fluorometric measurements ranged from 0.0743
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Figure 4 Absorbance spectrum of DNA prepared from mucus samples (grey lines), blank (i.e.,
card only, black dotted) and a tissue sample with DNA extraction kit (black solid) measured by
NanodropTM.

to 2.16 ng/µl (0.589 ± 0.536 ng/µl, mean ± s.d., n = 18). Measurement for blank sample

(i.e., card only) was lower than the detection limit of 0.05 ng/µl. There was no visible band

or smear with gel electrophoresis loaded with 10 µl of samples. Samples concentrated

approximately ten times by both standard ethanol precipitation and vacuum drying also

failed to show a band or smear.

PCR was successful for all five markers (ND5, RAG1 and three microsatellite loci)

across all 18 samples. Fourteen of 18 samples showed known M. birostris ND5 haplotypes

(Table 1). One sample showed haplotype (MA04) previously only known from M. alfredi.

Three new haplotypes were detected (MB13, 14 and 15, GenBank Accession numbers

KR703235, KR703236, and KR707237, respectively), that were within 3 bp differences

in comparison to common haplotype MB01. Seventeen of 18 samples showed known

M. birostris RAG1 sequence types. One sample showed new sequence type, MBRAG05

(GenBanK Accession Number KR73234), that is uniquely heterozygous R = A + G at

position #615 in comparison to all other known types that are homozygous G at the

position. Size range for microsatellite was 378–394 (locus MA09), 189–221 (locus MA14),

and 183–189 (locus MA34), that extended previously reported ranges for these loci, 378,
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Table 1 Sequencing and genotyping results.

Sample name RAG1 ND5 Microsatellite loci

MA09 MA09 MA14 MA14 MA34 MA34

EC01 MBRAG01 MB06 378 378 201 209 187 187

EC02 MBRAG01 MB05 378 378 197 201 189 189

EC03 MBRAG01 MB06 378 378 201 209 187 187

EC04 MBRAG05a MB06 378 378 197 201 189 189

EC05 MBRAG01 MB01 378 390 201 217 189 189

EC06 MBRAG01 MB01 378 386 209 221 185 187

EC07 MBRAG02 MA04 378 378 197 201 185 187

EC08 MBRAG01 MB01 378 386 209 221 185 187

EC09 MBRAG01 MB13a 378 390 197 209 187 191

EC10 MBRAG01 MB01 378 394 193 221 187 187

EC11 MBRAG01 MB01 378 390 189 201 187 187

EC12 MBRAG01 MB01 386 390 201 201 187 187

EC13 MBRAG01 MB01 378 390 197 201 187 189

EC14 MBRAG02 MB01 378 378 197 201 187 187

EC15 MBRAG01 MB14a 378 390 189 201 187 187

EC16 MBRAG02 MB15a 378 378 201 221 187 187

EC17 MBRAG02 MB01 378 378 197 201 183 187

EC18 MBRAG02 MB05 378 378 189 201 183 187

Notes.
a Newly detected sequence types in this study (GenBank: KR73234–KR73237). Sequence types without superscript are as

Kashiwagi et al. (2012b) (GenBank: FJ235624–FJ235631 and KR703213–KR703233).

197–221, and 185–189, respectively (Kashiwagi et al., 2012a). Genotyping results were

consistent among replicated PCR experiments.

DISCUSSION
Our results demonstrate that DNA from manta ray mucus collected underwater and

stored dry on FTATM Elute cards can be reliably used in PCR-based population genetic

studies. To our knowledge, this study is the first example involving underwater collection

of mucus by SCUBA divers. The advantages of the developed method include: (i) a

reduction in sampling gear, (ii) a significantly reduced impact on the sampled organism,

(iii) an increased acceptance as a sampling protocol in region of vibrant tourism, and

(iv) reliable, dry, room temperature storage of DNA without need for liquid reagents,

refrigerator/freezer, and special shipping considerations.

Sampling of manta ray mucus can be relatively easily achieved, but should only be

attempted by experienced field researchers that understand the behavior of these animals.

Minimal to no reaction to sampling was noted in all samples taken from manta rays in

Ecuador by experienced field researchers (see Video S1). Several collection tools were

initially tested to trap mucus from the dorsal and ventral surfaces of mantas including

scouring pads, cotton buds, cotton wool, and a small comb, but small disposable

toothbrushes were found to be most effective. Adequate amount of samples were obtained

using the toothbrush in the hand or attached to an extendable pole, however the former
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technique was more effective in applying forces to the brush. Researchers wanting to

sample individual manta rays that cannot be approached closely underwater or that are

sampling manta rays at the surface from a boat may benefit from the latter technique.

Larger amount of mucus samples were taken with circular brushing motions than back

and forth motions and from the dorsal surface rather than the ventral surface. The black

pigment on the dorsal surface (Coles, 1916) tinting the mucus helps visual confirmation

of mucus on the brush during underwater collection and transferring onto the FTA Elute

Cards on land.

DNA yields from FTA Elute cards using the simple purification method were low judg-

ing from the lack of visible DNA in gel electrophoresis and fluorometric measurements

showing that only three out of 18 templates were above 1 ng/µl. The estimated DNA

concentration by spectrophotometry is likely to be inaccurate judging from the lack of

distinct peak at 260 nm in spectrometry and positive value in blank sample. This is an

expected result judging from the manufacturer’s product information (GE Healthcare

Life Sciences, 2012) and empirical findings (De Vargas Wolfgramm et al., 2009), which

state that the single stranded DNA eluted from FTA Elute cards using the simple protocol

is often below the lower detection limit of the current spectrophotometer. As such, we

recommend flurometric quantitation as an important first step in downstream analyses

for avoiding genotyping errors by using too little copy number of template DNA (Taberlet

et al., 1996; Taberlet, Waits & Luikart, 1999). Furthermore, it is safest to assume that the

amount of cell materials in a given volume of mucus is low. Therefore, it is important

that the sampler spread the mucus evenly and fully onto the card. Indeed, we observed

variable PCR success when preparing DNA template from three 3 mm diameter punches,

where the samples were simply tapped onto the card directly from the brush (E Maxwell

and A Christensen, 2013, unpublished data). We are uncertain about substances that

produced high spectrophotometry reading ∼230–240 nm among mucus and blank

samples from FTA card. It appears those impurities and low DNA yield did not interfere

with downstream analyses in this study.

Sequencing results and genotyping results confirmed that the targeted DNA of the

species was amplified. Discovery of new haplotypes, sequence types and extended size

range for microsatellite is as expected because samples from Ecuador were not included

in previous studies (Kashiwagi et al., 2012a; Kashiwagi et al., 2012b). Discovery of one

M. birostris individual with mtDNA haplotype MA04, that is only 1 bp different from

common M. birostris haplotype MB01, but previously known from M. alfredi only, was

surprising but interpretable. As the speciation event of M. alfredi and M. birostris was

recent, lineage sorting of various genes might not be complete and post divergence

hybridization might have occured occasionally (Kashiwagi et al., 2012b). Manta alfredi

do not occur in East Pacific Ocean (Kashiwagi et al., 2011; Marshall et al., 2011b) and

the inspection of the photograph of the individual clearly keys out as Manta birostris

(Marshall, Compagno & Bennett, 2009). Thus, there is no evidence to support the

hypothesis that the observed results are due to hybridization in current generations.
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Our interpretation is that the results indicate that the current mtDNA marker is not yet

information-rich enough to distinguish the two species world-wide.

We successfully sequenced M. alfredi using this method as well (E Maxwell and A

Christensen, 2013, unpublished data). We recommend that the potential utilization of

mucus samples beyond the basic PCR based assay be explored further because high quality

and quantity of DNA will likely become increasingly important for population genomic

analyses with emerging technological advancement in high throughput sequencing (Allen-

dorf, Hohenlohe & Luikart, 2010; Hohenlohe, Catchen & Cresko, 2012; Narum et al., 2013).

Higher yields and purer recovery may be possible by the use of special recovery kit for FTA

card (Mas et al., 2007; McClure et al., 2009; Stangegaard et al., 2011) or use of alternative

storage media (Allen-Hall & McNevin, 2013; Ivanova & Kuzmina, 2013; Lee et al., 2012).

Whole genome amplification may be useful for generating suitable quantities of DNA from

minute amounts (Pinard et al., 2006). At the same time, presence of foreign DNA in the

mucus and its effect in downstream analyses should be investigated in the near future.

In conclusion, we demonstrated that mucus samples collected underwater can be

effectively used for PCR based population genetic studies in manta rays. This newly

described method may create new opportunities to study sensitive or threatened species

in regions where tissue sampling had been discouraged or prevented previously. However,

tissue sampling remains as the most preferred option for DNA sampling until more

conclusive testing on yields and presence of foreign DNA are completed and for additional

reasons that tissues are also useful for research applications such as fatty acid and stable

isotope analyses (Couturier et al., 2013a; Couturier et al., 2013b).
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