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ABSTRACT
The benthic impact of aquaculture waste depends on the area and extent of waste
accumulation on the sediment surface below and around the farm. In this study
we investigated the effect of flow on biodeposit transport and initial deposition by
calculating a rough aquaculture ‘‘footprint’’ around an oyster aquaculture farm in the
Damariscotta River, ME. We also compared a site under the farm to a downstream
‘‘away’’ site calculated to be within the footprint of the farm. We found similar
sediment biogeochemical fluxes, geochemical properties andmacrofaunal communities
at the site under the farm and the away site, as well as low organic enrichment at
both sites, indicating that biodeposition in this environment likely does not have a
major influence on the benthos. To predict accumulation of biodeposits, we measured
sediment erodibility under a range of shear stresses and found slightly higher erosion
rates at the farm than at the away site. A microalgal mat was observed at the sediment
surface in many sediment cores. Partial failure of the microalgal mat was observed
at high shear velocity, suggesting that the mat may fail and surface sediment erode
at shear velocities comparable to or greater than those calculated fromin situ flow
measurements. However, this study took place during neap tide, and it is likely that
peak bottom velocities during spring tides are high enough to periodically ‘‘clear’’
under-farm sediment of recent deposits.

Subjects Aquaculture, Fisheries and Fish Science, Marine Biology, Biogeochemistry,
Environmental Impacts
Keywords Aquaculture, Oyster aquaculture, Sediment biogeochemistry, Sediment infauna,
Particle sinking rate, Sediment erosion, Microbial mat, Oyster farm, Biodeposit, Sediment
transport

INTRODUCTION
As demand increases to feed the world’s growing population, many are looking toward
dramatically expanding marine aquaculture as an efficient and sustainable means of
food production (Kobayashi et al., 2015; Gentry et al., 2017). Growth of the aquaculture
industry seems to be rising tomeet that demand; worldwide animal aquaculture production
increased from less than 20million tons in the early 1990s to∼80million tons in 2016 and is
rapidly approaching parity with rates of wild seafood capture (FAO, 2018). As aquaculture
production increases and more marine aquaculture operations open in coastal areas,
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the need for an understanding of the local impacts of aquaculture grows more pressing,
particularly of the under-farm sediment environments receiving sinking aquaculture waste.

Past reports of the local benthic impact of aquaculture range from dramatic alteration
of bottom characteristics to apparently few effects depending on the cultured organism,
the method of culture and local environmental conditions (Kaiser et al., 1998; Newell,
2004; Crawford, Macleod & Mitchell, 2003; Forrest et al., 2009). The impacts of aquaculture
are commonly assessed by comparing sediment characteristics and communities directly
under an aquaculture farm to a less impacted or reference site (Grant et al., 1995; Findlay
& Watling, 1997; Mallet, Carver & Landry, 2006; Higgins et al., 2013 and others). However,
the deposition of aquaculture biodeposits, and therefore their eventual impact, depends on
the physical drivers that transport the biodeposits to the benthos. Direct measurements of
particle sinking rate and horizontal distance traveled are lacking in the literature (Callier
et al., 2006), although several studies have numerically modeled them (Dowd, 2005; Navas,
Telfer & Ross, 2011; Comeau et al., 2014; Silva et al., 2019). Also sparse are descriptions of
post-deposition sediment dynamics; depending on the local flow environment, settling
particles that reach the benthos may remain there or be removed by erosion.

The footprint of an aquaculture farm is determined by the intensity of lateral flow
and settling rate of the particles. In areas with low flow, biodeposits would be expected
to accumulate under the farm, increasing the organic content and driving high influxes
of oxygen and effluxes of nutrients as organic matter is degraded (Forrest et al., 2009).
Higher flow rates may be expected to increase the transport distance and therefore the
overall size of the farm footprint, likely resulting in a gradient of impact with distance
from the farm. However, very high flow may erode under-farm sediments and transport
biodeposits a considerable distance from the farm, smearing the edges of the footprint
or clearing it completely. Thus the ‘‘footprint’’ does not have a discrete value, but rather
needs to be defined explicitly from the range of particle sizes and flow velocities in the
system. In tidal systems, erosion may only occur periodically during ebb and flood tides
when flow velocities peak or even episodically during peak spring tides. If sediments are
resuspended or fluidized, they are exposed to more oxygen, increasing remineralization
rates and depleting their labile organic content compared to surface sediments (Aller,
2004). Thus, erosion and redeposition of biodeposits may reduce the effect of organic
enrichment even more than predicted by transport alone. This study aims to characterize
the footprint around an aquaculture farm, specifically addressing the questions: (Q1) How
far are biodeposit particles expected to travel from an aquaculture farm before deposition?
(Q2) Once deposits have settled to the benthos, do they remain there or are they eroded
away?

Impacts of aquaculture can be assessed from differences in the sediment environment
under the farm compared with outside of the footprint. Sediments within the footprint
are expected to be finer grained and more organic-rich because biodeposits tend to be
comprised of finer grained materials than bulk deposited sediment (Haven & Morales-
Alamo, 1966). Nutrient enrichment from biodeposits may also encourage growth of
a microalgal or microbial mat, increasing sediment surface chlorophyll a (chl-a),
binding surface sediments and altering nutrient and oxygen fluxes (Mirto et al., 2000;
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Giles, Pilditch & Bell, 2006; Walker & Grant, 2009). When deposition of biodeposits under
an oyster farm results in substantial organic enrichment of sediments, the composition
of the macrofaunal community may be altered, though this may vary depending on the
local environment of the farm (Forrest et al., 2009). Organic enrichment and physical
disturbance both tend to reduce the body size, abundance, and diversity of sediment
macrofauna (Pearson & Rosenberg, 1978; Aller & Stupakoff, 1996). Sediments with high
organic enrichment tend to host macrofaunal communities comprising hypoxia- and
sulfide-tolerant taxa (Pearson & Rosenberg, 1978), whereas physical disturbances like
sediment erosion, resuspension, and resettlement favor highly mobile, near-surface-
dwelling, deposit-feeding taxa (Brenchley, 1981; Aller & Stupakoff, 1996). Differences in
the functional traits and life histories of macrofauna may suggest the kind of disturbance
under-farm sediments experience most frequently.

The Damariscotta River Estuary, Maine, is an ideal system for this study, as it experiences
strong tidal currents (Garrett, 1972; Brooks, 2009). Mean flow rates throughout a tidal
cycle in a narrow section of the Damariscotta are ∼1.1 m s−1, with peak velocities
far higher (McAlice, 1977). Aquaculture in Maine estuaries is also quickly growing;
the total value of Maine oyster aquaculture rose from less than $1 million in 2005
to nearly $9.7 million in 2019 (State of Maine Department of Marine Resources,
https://www.maine.gov/dmr/aquaculture/data/index.html). Much of that increase is
attributable to expansion of aquaculture in the Damariscotta River, which alone constitutes
approximately two-thirds of the total oyster production in Maine and increased in harvest
yield from ∼1.3 million to ∼9.4 million oysters between 2005 and 2019. Despite the
industry’s rapid growth, there is little existing research examining the impacts of oyster
aquaculture on the local benthos. Our objective was to describe the footprint of an oyster
farm in the Damariscotta River, ME, and assess our estimate of the footprint by comparing
sediments at sites under the farm and downriver of the farm but within the same depth
and flow regime.

MATERIALS & METHODS
Study area
The Damariscotta is a narrow, partially mixed mesotidal estuary in the midcoast of Maine.
The study was conducted at Perkins Point, approximately 20 km from the mouth of
the Damariscotta River (44 00.016′N, 69 32.650′W), where a large oyster aquaculture
operation is located on a 24-acre (∼97,000 m2) lease (Mook Sea Farm, Fig. 1). Verbal
permission to use the site for the study was obtained from Bill Mook, owner/operator
of Mook Sea Farm. Eastern oysters (Crassostrea virginica) are grown at the farm in mesh
bags held in rigid, rectangular floating OysterGroTM cages that are strung together in
rows. The farm sits above a sloping shoal with a mean water depth ranging from ∼2–4
m. We assessed our estimate of the footprint by comparing a site directly underneath the
oyster cages (‘‘Farm’’ site) in the southern portion of the farm with one downstream,
∼90 m south of the edge of the farm lease area (‘‘Away’’ site). The Away site location
was constrained by the geomorphology of the river; because the river bends and narrows
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Figure 1 Map of study area. The study took place at the Perkins Point location of Mook Sea Farm
(marked ‘‘Lease’’ in C) in the Damariscotta River (white in B) in Maine, USA (A). The farm sits on a
sloping shoal, while the surface LOBO buoy is located in the channel.

Full-size DOI: 10.7717/peerj.11862/fig-1

Figure 2 Images of benthos from diver core collection. (A) Acrylic core in sediment with sparse micro-
bial mat. (B) Patchy microbial mat on sediment surface. Photo credit: Christopher Rigaud, University of
Maine, Scientific Diving Program.

Full-size DOI: 10.7717/peerj.11862/fig-2

downstream (Fig. 1), selecting a site farther than ∼90 m would risk it being in an area too
hydrodynamically different from the Farm site for comparison. Instruments were deployed
on moorings at both sites to measure hydrographic properties, with sediment traps to
quantify sedimentation. Sediment cores were also collected at each site for evaluation of
sediment erodibility, geochemical characteristics, biogeochemical fluxes, and macrofaunal
community structure. While diving to collect the cores for this study, we observed benthic
microalgal mats in distinct patches of varying sizes (Fig. 2), though we did not discriminate
between areas with and without mats in our sampling.

Flow and deposition
To determine the horizontal distance particles would be transported before deposition
(Q1), flow velocity near the bottom was measured over a tidal cycle with an Acoustic
Doppler Velocimeter (ADV) and combined with laboratory measurements of particle
settling velocities. Here we define the footprint based on the settling velocity of the mean
size of biodeposits and the maximum distance transported over the tidal cycle during neap
tide. Because mean water column height varied from∼2–4 m across the farm, calculations
were done with the maximum and minimum depths to provide a range. Thus, biodeposit
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particles smaller than the mean would travel beyond our defined footprint under peak
flow velocities, but the footprint would encompass most of the tidal range in deposition.
To demonstrate the effect of particle size on the footprint, we also calculated transport
distance for the 5th and 95th percentile of particle sizes.

The ADV was horizontally mounted to a metal tripod mooring deployed at the Farm
site, measuring velocity (8 Hz) 37 cm above the bottom. An Onset HOBO dissolved
oxygen (DO) logger was also mounted to the mooring (50 cm above the bottom) to
measure near-bottom DO to determine whether low oxygen occurred that might affect
biogeochemical fluxes or infauna. A cinder block mooring was deployed at the Away site.
Temperature and salinity measurements were collected near-surface and at bottom at both
sites to measure stratification. Water level at the farm was measured by the pressure sensor
on the ADV. Moorings were deployed for∼23 h on August 2–3, capturing nearly two tidal
cycles during a neap tidal period. Because the experiment was conducted over a short time
frame, hydrographic data for the entire summer season was obtained from a Land/Ocean
Biogeochemical Observatory (LOBO) surface mooring∼250 m southeast of the farm (part
of the Sustainable Ecological Aquaculture Buoy Network; http://maine.loboviz.com).

Sediment traps were attached to the bottom moorings at both sites to measure
sedimentation rates. The traps were made of 5.08 cm inner diameter PVC cylinders,
15 cm in length, and capped on one end, following Gardner (1980). Traps on the bottom
mooring at the Farm site were diver-deployed and intended to measure a combination
of biodeposits directly from the farm as well as ambient deposition. The Away site traps
were attached to the cinder block mooring that was lowered to the bottom from the boat
and were intended to measure the ambient particle deposition without influence from the
farm. The mooring was repositioned once it was on the bottom which may have created a
sediment plume that falsely inflated sedimentation data at that site, so those data should
be interpreted with caution. Additional traps were attached directly to the underside of
the oyster cages at the Farm site for a direct estimate of in-situ particle production by the
oysters without under-farm flow transporting the particles. Comparison of these data to
deposition at the bottom mooring took into account the area of the farm occupied by
gear (∼40% - obtained from the farm’s lease application). Six traps were deployed during
two 24-hr deployment periods separated by 5 days, during which the tidal range varied
by ∼0.5 m. All traps were deployed and retrieved at high tide. At least one trap was lost
from each location during each deployment. During the first period, traps were deployed
and recovered from the Farm site (n= 4) and the cages (n= 5). During the second period,
sediment traps were deployed and recovered from the Away site (n= 5) and the cages
(n= 5). After collection, sediments were dried for 24 h at 60 ◦C and weighed.

Tomeasure biodeposit settling velocities, biodeposits were collected from adult, harvest-
size oysters held in a flow-through seawater system. Biodeposits were spread in a petri dish
to prevent particle aggregation,maintaining the size and cylindrical shape of freshly released
biodeposits observed in both the lab and field. Deposits were then pipetted into the middle
of a 37.8 L aquarium of seawater, at least 12 cm away from any wall to prevent wall effects.
Videos of their descent were recorded using a Nikon D5300 DSLR camera equipped
with an AF-S Micro NIKKOR 105 macro lens. It was not possible to distinguish between
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feces and pseudofeces from the observations, and we did not describe the composition
of the biodeposit particles. The descents of 100 individual particles were recorded. Each
particle’s dimensions (length and diameter of cylindrical particle) were measured in ImageJ
and the angle (normal to vertical) and rate of descent tracked with the ImageJ MtrackJ
plugin (Schneider, Rasband & Eliceiri, 2012; Meijering, Dzyubachyk & Smal, 2012). Settling
velocity depends on density and particle surface area. The length and width of each particle
measured from the videos were used to calculate surface area using the geometric formula
for cylinder surface area. We were unable to measure the densities of individual pellets, but
density was calculated using a form of Stokes’ settling equation specifically modified for
small cylinders (Komar, 1980),

Vt = 0.079
1
µ

(
ρp−ρw

)
gL2

(
L
D

)−1.664
(1)

where Vt is settling velocity, µ is the viscosity of the water, ρp and ρw are the densities
of the particle and water respectively, g is acceleration due to gravity, L is particle length,
and D is particle diameter. Particle surface area and angle of descent were compared to
settling velocity using a multiple regression. Density was not included in this model, as it
was calculated from the settling velocity.

An estimate of biodeposit tidal transport (Lf ) was calculated as:

Lf =
us(t )h(t )

ws
(2)

using the bottom horizontal velocity (us) measured with the ADV and the mean particle
settling velocity (ws) calculated from the lab observations. The height of the water column
(h(t)), or vertical distance traveled, and bottom horizontal velocity (us(t)) changed
depending on the time (t ) in the tidal cycle. To provide an upper and lower bound
on the potential biodeposit tidal transport, calculations used the deepest and shallowest
mean water depths at the farm (2 and 4 m). It should be noted that this calculation uses
velocity measured with the ADV which is assumed to be in the bottom boundary layer, so
the transport distances should be viewed as conservative estimates.

Erosion
To determine whether settled biodeposits were likely to be resuspended (Q2), we calculated
bottom shear velocity throughout the flood/ebb tidal cycle and conducted laboratory
erosion experiments across a similar range of bottom shear velocities.

We used the flow velocities measured by the ADV to calculate bottom shear velocity
throughout the tidal cycle via three indirect methods (logarithmic profile, covariance and
turbulent kinetic energy methods) as described by Kim et al. (2000) for high sampling
rates (>5 Hz). Multiple methods are commonly used and compared, as methods
can be biased by local conditions such as waves, stratification, and bedforms (e.g.,
Sherwood, Lacy & Voulgaris, 2006; Pieterse et al., 2015). The logarithmic profile method
assumes a logarithmic velocity profile using the von Karman-Prandtl equation. The
reliability of the estimates from this method is severely limited by having only a single
point velocity measurement. However, single point techniques have been developed
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(Sherwood, Lacy & Voulgaris, 2006) and Kim et al.’s (2000) methodology was followed. The
covariance method requires the velocity measurements to be in the constant stress layer of
the bottom boundary (a reasonable assumption for the instrument depth and low water
column stratification, buoyancy frequency ∼0.004) and uses turbulent fluctuations in the
along-estuary direction and vertical flow velocities to determine the bottom stress. The
turbulent kinetic energy method assumes a linear relationship between turbulent kinetic
energy and bottom stress. Bottom shear stress (τb) from both of these methods is then
linked to shear velocity as τb = ρu2∗ where ρ is water density and u∗ is shear velocity.
As seen in other studies, all three methods produced results with similar patterns, but
peak magnitudes showed considerable differences (e.g., (Kim et al., 2000; Sherwood, Lacy
& Voulgaris, 2006; Pieterse et al., 2015)). Because the covariance method is less affected by
local conditions (e.g., stratification, bedforms; (Sherwood, Lacy & Voulgaris, 2006)) and the
relationship between the along-estuary velocity and shear velocity was well represented by
a quadratic fit (u∗= 0.27096u2s +0.00089us+0.00466,R= 0.93), we used that estimate for
our further analyses. The effects of waves on bed stress were not considered because of the
short fetch of the estuary.

We conducted laboratory erosion experiments using a custom-built Gust erosion
chamber to generate near-uniform bed shear (Gust & Muller, 1997; Thomsen & Gust, 2000;
Tengberg et al., 2004; U-GEMS Manual, Green Eyes LLC, 2015). Triplicate 10 cm diameter
sediment cores were collected by divers from the Farm and Away sites and placed in a
large holding tank with flowing seawater from the Damariscotta River. All erosion tests
were performed within 60 h of collection. Each core was capped with the Gust chamber,
and a rotating disc within the chamber generated increasing levels of shear velocity (0.30
cm s−1, 0.95 cm s−1, 1.34 cm s−1, 2.01 cm s−1, 2.32 cm s−1). Each shear velocity level
was maintained for 20 min before increasing disc rotation and flow rates. For each 20
min shear velocity level, water and eroded material were removed by a pump at the center
of the disc at 10 cm above the sediment surface and filtered through 47 mm Whatman
GF/F filters (1.5 µm pore size). Effluent was replaced with the same seawater supplied
to the core holding tank, so suspended mass in the pre-erosion core overlying water and
the replacement water was likely similar. The lowest shear velocity, 0.30 cm s−1, was used
as a flushing step and was not filtered for suspended sediment analysis (no resuspension
was observed at this low shear). Filters were then dried at 60 ◦C for 24 h and weighed to
obtain eroded sediment mass for each shear velocity level. One Away core was not used
in the analysis due to accidental introduction of a large nereid worm from an unrelated
experiment in the holding tank. Suspended sediment concentration, Cs (kg m−3), for each
site at each velocity level was calculated from the dry mass (kg) of filtered sediment divided
by the volume (m−3) of water filtered. Cs was converted to eroded mass per area (E ; kg
m−2):

E =
CsVc

Ac
(3)

where Vc is chamber volume (7.9 ×10−4 m3), and Ac is sediment surface area within
the core (7.9×10−3m2). Due to small and unequal sample sizes, statistical comparisons
between sites and stress levels were not performed.
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To generate specific shear velocities, cap rotation and pumping rate were set using
calibration equations from the University of Maryland Center of Environmental Science
Gust Erosion Microcosm System (U-GEMS) Manual (Green Eyes LLC, 2015):

u∗15= 0.0318n0.763 (4)

Q=−28.31u∗215+170.2u
∗

15−23.85 (5)

where u∗15 is shear velocity at 15 ◦C (cm s−1), n is rotations per minute, and Q is pumping
rate (mL min−1). Shear velocity at 15 ◦C was converted to shear velocity at the water
temperature measured during the erosion tests (22 ◦C) as:

u∗15= u∗22[1+0.006(22−15)] (6)

where u∗22 is shear velocity at 22 ◦C (cm s−1) (U-GEMS Manual, Green Eyes LLC, 2015).
For thosemore familiar with stress as ameasure of shear, the corresponding applied bottom
shear stresses (τb; Pa) generated by the Gust chamber were 0.009 Pa, 0.09 Pa, 0.18 Pa, 0.41
Pa, and 0.55 Pa. These were calculated from shear velocities (u∗22; m s−1) as:

τb= ρu∗
2

22 (7)

(U-GEMS Manual, Green Eyes LLC, 2015). A ρ of 1,021 kg m−3 was used based on an
average temperature of 22 ◦C and salinity of 31 psu.

This field sampling occurred during neap tide, and also coincided with the highest
surface water temperatures of the year when thermal stratification likely peaked. To gain
a broader sense of the potential for sediment resuspension during other times in the tidal
cycle, near-surface turbidity and velocity data from the LOBO surface mooring east of
the farm were analyzed for longer-term patterns. While turbidity is not a direct measure
of sediment resuspension, water clarity is typically related to sediment concentrations.
Potential relationships among precipitation, water level, current velocity and turbidity
were investigated using both the instantaneous data and 40-hour low-pass filtered signals.
Near-surface velocity data were also used to estimate bottom shear velocities in higher-
flow times in the spring-neap cycle. Near-surface velocity was converted to a proxy for
near-bottom velocity based on a scaling factor determined from the relationship between
the LOBO buoy and the ADV-measured velocities during the overlap period in August.
This near-bottom velocity proxy was used to estimate shear velocity using a quadratic
relationship between the longitudinal velocity and direct calculations of the shear velocity
(using the covariance method). This fitted relationship was extrapolated to predict shear
velocity expected from the highest flow in the spring-neap tidal cycle.

Geochemical characterization
Sediments at both sites were evaluated for grain size distribution, water content, percent
organic content, and concentrations of C andN. One diver-collected 10-cm diam core from
each site was vertically sectioned. Water content was calculated as the difference between
wet and dry masses after sediment was dried at 60 ◦C for 24 h. Percent organic content was
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calculated as the difference between dry and ash masses after burning sediment at 500 ◦C
for 4 h. Burned sediment was then soaked in a 1% sodium metaphosphate dispersant
solution for 24 h to rehydrate and disaggregate sediment prior to grain size analysis.
Grain size distribution was determined using a Malvern Mastersizer 3000 particle analyzer
(Malvern Panalytical, Malvern, UK). Data were analyzed using Gradistat (Kenneth Pye
Associates, Ltd., Berkshire, UK). Preparation of C and N samples included an acidification
step to remove inorganic carbon. Concentrated HCl was added to dried sediment samples
and heated at 80 ◦C until the fluid evaporated as described by EPA (2009). Acidified and
non-acidified samples were analyzed for C:N to determine the proportion of inorganic
carbon. C and N were analyzed on a CHNSO elemental combustion system analyzer (mod.
ECS 4010; Costech Analytical Technologies, Valencia, CA). C:N is reported as a molar ratio
(mmol g−1 sediment).

Biogeochemical fluxes
To determine whether the ‘‘Away’’ site exhibited similar impacts of oyster biodeposits
on biogeochemical fluxes as the site directly under the farm, sediment core incubations
were performed in the dark to measure nutrient, DIC and oxygen fluxes and sediment
surface samples were collected for chlorophyll a (chl-a) analysis. In an additional treatment,
‘‘Amended’’ cores, we added oyster feces and pseudofeces onto the top of two cores from
the ‘‘Away’’ site. Because of the lack of available data for this area on typical respiration
rates, the Amended treatment was included to determine whether Away site sediments
were being enriched with biodeposits; if sediments from the Away site were receiving large
influx of organic matter from the farm, i.e., were saturated, additional organic matter
would be expected to have minimal effect on nutrient and oxygen fluxes. The usefulness
of the Amended cores therefore depended on ‘‘background’’ (i.e., unenriched) respiration
rates being relatively low.

Incubations of sediment cores were performed to measure sediment oxygen flux and
nutrient (NH4

+ and PO4
3−) and dissolved inorganic carbon (DIC) fluxes. Only dark

incubations were performed so that maximum respiration rates could be measured
without the influence of microalgal photosynthesis. Our measurements are therefore not
representative of daytime in situ fluxes. A total of 12 15.2-cm diam sediment cores were
taken by divers during two collections (2 and 7 August 2018). During each collection, two
cores were taken from the Farm site and four were taken from the Away site. Care was taken
during collection that each core had at least 10 cm of sediment depth and at least four cm
of overlying water. The cores were brought back to the lab and kept in tanks with flowing
water from the Damariscotta River until use in the incubations (<36 h post-collection).
Immediately before the start of the incubations, eight mL wet volume of oyster feces and
pseudofeces were pipetted onto the top of two cores collected from the Away site and
designated the Amended cores. Between the two samplings, this resulted in a total of four
replicates each of Farm, Away and Amended cores.

In incubations, the cores were each submerged in separate 5-gallon buckets of seawater
and watertight caps affixed to the tops (after methods and Fig 2 inDorgan et al., 2020). The
caps allowed for six cm of overlying water and were each equipped with a stir-bar to gently
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circulate the overlying water, inflow and outflow taps for water sampling, and an Atlas
Scientific DO probe (Atlas Scientific LLC, Long Island City, NY) that measured oxygen
concentrations in the overlying water of each core every ∼12 s. The buckets containing
the cores were covered with foil to prevent oxygen production by photosynthesis from
corrupting oxygen consumption rate measurements. The incubations of cores collected
on 2 August provided simultaneous oxygen, nutrient and DIC fluxes. Nutrient and DIC
samples were gathered during the incubation of the 7 August cores, however the oxygen
measurement instrument failed to record during the initial incubation, so a second
incubation was done on the same cores the following day to collect data to calculate oxygen
flux. Sediment samples for chl-a were taken from the top ∼1cm of the cores following the
second incubation and frozen for later analysis. The samples were prepared using methods
adapted from Welschmeyer (1994) and analyzed on a Turner Trilogy 7200 using an HCl
acidification step to measure chl-a and phaeopigment concentrations.

Nutrient and DIC samples were siphoned from overlying core water at three timepoints
using methods described by Lehrter et al. (2012). Samples were taken at the start (0 h
elapsed), middle (2 h elapsed) and end (4 h elapsed) of the incubations. DIC samples were
kept dark and cold in 20 mL glass vials until processed (<24 h post-collection) on a TOC
Carbon analyzer. Nutrient samples were filtered through 25mmWhatman GF/F filters (0.7
um pore size) and frozen in the dark until processed for NH4

+ and PO4
3− at the Dauphin

Island Sea Lab. NH4
+ was measured fluorometrically with modifications as described by

United States Enviromental Protection Agency (2012) and Holmes et al. (1999). PO4
3− was

measured on a spectrophotometer with slight modifications from methods described in
Grasshoff, Ehrhardt & Kremling (1983). Rates of change in overlying water concentration
for oxygen, DIC and each nutrient were calculated from the linear regression of the
respective analyte concentrations versus time. These rates of change (mmol min−1) were
multiplied by the height of overlying water to obtain flux rates (mmol m−2 d−1). We were
unable to obtain oxygen flux values for the Amended cores because they lacked a consistent
oxygen trend. Some cores produced several successive oxygen slopes within the same range
of oxygen concentrations because low-oxygen water was replaced with high oxygen water
during the sampling for nutrients. To calculate a single oxygen flux for each of these cores,
time-weighted average slopes were calculated. Shapiro–Wilk and Kruskal–Wallis tests were
performed on nutrient and oxygen flux data to determine if there were differences in fluxes
between sites (R Core Team, 2016).

Macrofaunal community structure
After data collection, all incubation cores were sieved (500 µm) and the remaining material
preserved in 95% ethanol and rose Bengal stain. Macrofauna were picked out of each
sample, and individuals identified to family level. Statistical comparison of abundances
between the two sites was not performed due to small and uneven sample size. Data
from replicate cores were analyzed for Shannon diversity (H’) and Pielou’s evenness (J’),
averaged by site, then Student’s t-tests were performed on the diversity and evennessmetrics
to compare the two sites. An NMDS analysis was performed on square-root transformed
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Figure 3 Transport of particles throughout the tidal cycle. (A) Velocity measured 37 cm above the bed
(black line,±20 cm s−1) and water level (gray line, 2.86 m range) at the farm site, and calculated distances
that biodeposit particles travel in the (B) 2 m depth section and (C) 4 m depth section of the farm over a
∼23 h period. In panels B and C, the thick, darker line is the mean and the thin, lighter lines are the 5th
and 95th percentile of particle sizes. Positive values indicate flow and transport in a landward direction,
while negative indicates a seaward direction.

Full-size DOI: 10.7717/peerj.11862/fig-3

data (to decrease weighting of highly abundant groups) to compare community structure
between sites (PRIMER v7, PRIMER-E Ltd, Plymouth).

RESULTS
Flow and deposition
The velocity data were strongly tidal during the deployment, with a clear semi-diurnal
cycle. The water level had a 2.86 m range, with a mean water depth of 3.4 m at the away
site and 3.5 m at the farm site. The ADV measured near-bottom velocities ranging ± 20
cm s−1 (Fig. 3A). While the magnitude of the flood and ebb currents were similar, there
was temporal asymmetry in duration, with flood tide being ∼1.9 times longer than ebb.
Bottom dissolved oxygen remained above 8 mg L−1 throughout the sampling period (data
not plotted).

The rate of deposition calculated from sediment traps attached to the bottom mooring
beneath the farm was (490 ± 36 g m−2 d−1, n= 4). The cage-area normalized rates of
deposition calculated from the traps attached to the cages were (163± 86 g m−2 d−1, n= 5)
for the first deployment and (230 ± 132 g m−2 d−1, n= 5) for the second. These rates
were calculated by multiplying the deposition rate calculated from the beneath-cage traps
by the percent area of the farm occupied by gear (40%), following the methods of Testa et
al. (2015). The highest deposition rate was at the Away site (892 ± 87 g m−2 d−1, n= 5),
where deployment and repositioning of the cinder block mooring may have resuspended
sediments.
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Figure 4 Particle settling velocity plotted as a function of surface area. Black square represents means of
surface area and settling velocity with associated 95% confidence intervals.

Full-size DOI: 10.7717/peerj.11862/fig-4

The biodeposits were cylindrical in shape, with an average length of 0.64 ± 0.14 mm
and average diameter of 0.11 ± 0.02 mm. Biodeposit surface area ranged from 0.12 mm2

to 0.60 mm2 with an average surface area of 0.25 ± 0.09 mm2. For each one mm2 increase
in surface area, we observed a 0.57 (± 0.53; ± 95% CI) cm s−1 increase in settling velocity
(p= 0.03; r2= 0.03) (Fig. 4). The angle of descent did not significantly affect the settling
velocity of biodeposits (p= 0.72). Using the modified Stokes equation, mean pellet density
was calculated to be 1.42 ± 0.18 g cm−3with a range of 1.13 to 2.26 g cm−3.

To simplify calculations of horizontal particle transport, settling velocity was averaged
across all particle sizes as 0.73 ± 0.23 cm s−1. At this velocity, a particle would take ∼5-10
min from release to deposition across the range of typical site depths (2–4 m). Oyster
biodeposits had a mean tidal transport range of 72 m upstream at peak flood and 62 m
downstream at peak ebb in the shallow (2m depth) section of the farm (Fig. 3B) and 118
m both upstream and downstream in the deep (4m depth) section of the farm (Fig. 3C).

Erosion
Bottom shear velocities generated by the Gust chamber were in the range of those calculated
from the bottom velocities measured by the ADV (Fig. 5A). Shear velocity from the
covariance estimate ranged from 0.27 cm s−1 during slack tide to 1.7 cm s−1 at max ebb
and flood. The lowest shear velocity tested in the erodibility experiments (0.95 cm s−1)
was within this range, and the higher shear velocities tested extended above the maximum
field observations, with values up to 2.32 cm s−1 (Fig. 5A, Fig. 6). There appeared to be
more eroded mass at a given shear velocity under the farm than away and average total
cumulative eroded mass under the farm (6.82± 2.52 g m−2) was over twice as high as that
away from the farm (3.22 ± 0.34 g m−2). Additionally, eroded mass appeared to increase
more with increasing shear velocity at the Farm than at the Away site, but only at the
highest shear velocity did error bars not overlap between the two sites (Fig. 6).
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Figure 5 Shear velocity and effects of shear on bottom. (A) Time series of the bottom shear velocity (u*)
at the Farm site calculated with three different methods; the logarithmic profile (LP), covariance (COV)
and turbulent kinetic energy methods. The laboratory Gust chamber tested shear velocity levels marked
with dashed lines. The horizontal line at u*= 2.01 cm s−1 marks the shear velocity level during which ag-
gregates began collecting at the center of a core from the Farm site, shown in B (arrow). The line at u*=
2.32 cm s−1 marks the shear velocity during which partial mat failure was observed on the sediment sur-
face in a core from the Away site, shown in C (arrow). Red marks are on the outside of the core. Photo
credit: William C. Clemo.

Full-size DOI: 10.7717/peerj.11862/fig-5

There was visible evidence of erosion that was not quantified by the erosion chamber.
Cohesive microbial mats were observed on the sediment surface in most erosion cores, and
much of the eroded material was composed of larger particles or aggregates that were not
entrained high enough in the erosion chamber to be taken up in the effluent and quantified
by filtration. During the 2.01 cm s−1 period of one Farm replicate, dislodged aggregates
formed a mound in the center of the core (Fig. 5B). Partial mat failure was observed in the
2.32 cm s−1 period of one Away replicate (Fig. 5C).

Longer-term data from the nearby LOBO buoy show that surface velocities under
spring tidal conditions were nearly twice as high as during the period of the field sampling
(Fig. 7). The scaling factor used to estimate bottom velocity from the relationship between
the surface LOBO buoy and bottom ADV was 1.40 and showed a good fit (R= 0.95).
Using the scaling factor, bottom velocities during spring tides were estimated as ∼30 cm
s−1 during ebb and ∼25 cm s−1 during flood, with the maximum at ∼40 cm s−1. Neap
tide bottom velocities were ∼20 cm s−1 during both ebb and flood, corresponding well
with the bottom velocities measured by the ADV. During the spring tides, the calculated
shear velocity approached three cm s−1, higher than the highest shear velocities tested
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Figure 6 Cumulative erodedmass. Eroded mass for Farm (brown triangles; n= 3) and Away (blue cir-
cles; n= 2) sites at applied u∗ (shear velocity) and equivalent τ (shear stress). Smaller, unfilled symbols are
replicates and larger, filled symbols are averages, and bars are± one standard deviation.

Full-size DOI: 10.7717/peerj.11862/fig-6

in the erosion tests or encountered during the experiment (Fig. 5A). The long-term data
also show that peak velocities were often associated with high turbidity events (Fig. 7).
It should be noted that some of the high turbidity events were also associated with large
precipitation events (triangles in Fig. 7), thus were likely driven by sediment runoff rather
than resuspension.

Geochemical characterization and biogeochemical fluxes
Sediments at both sites were poorly sorted coarse silt to fine sand (Fig. 8A, Table S1) (Folk
& Ward, 1957). Organic content and water content were higher in muddier sediments as
expected, and muddiness increased with depth at the Away site but varied with depth at
the Farm site (Fig. 8, Table S1). The C:N (mmol g−1 sediment) was 11.2 at the Away site
and 11.48 at the Farm site (Table S1). Surface sediment chl-a measurements from Farm
sediments were 14.3 and 11.8 µg chl-a g−1 dry sediment and Away sediments were 7.3 and
22.5 µg chl-a g−1 dry sediment. Phaeopigment concentrations were lower than chl-a in
both samples from both the Farm site (5.88 and 6.80 µg g−1 dry sediment) and Away site
(11.05 and 8.74 µg g−1 dry sediment).

Replication was not high enough to test if measurements of sediment fluxes differed
between the two incubations, so data from both incubations were pooled by treatment
(Away, Farm, and Away Amended, n= 4 for each treatment, Table S2). Sediment oxygen
flux did not differ between the Farm and the Away sites, with negative values indicating
flux into the sediment (Mann–Whitney Wilcoxon p= 0.69) (Fig. 9A). DIC fluxes out of
the sediment did not differ among treatments (Kruskall–Wallis p= 0.66) but were highly
variable, especially among the Away cores (Fig. 9B). NH4

+ and PO4
3− fluxes were similar

among all treatments (Kruskall–Wallis p= 0.79 and 0.31, respectively) (Figs. 9C, 9D).
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Figure 7 Surface velocity (A) and turbidity (B) during summer 2018. The 40-hour velocity standard de-
viation (darker blue line) closely corresponds to the 40-h low pass filtered turbidity data (darker brown
line). Some peaks in turbidity are associated with large precipitation events (triangles). The field survey
time is shown with a dashed line. Positive velocity vales show landward flow and negative values show sea-
ward flow.

Full-size DOI: 10.7717/peerj.11862/fig-7

Figure 8 Sediment characteristics. (A) Grain size distribution in percent for surface (0–3 cm) and sub-
surface (3–7 cm), (B) water content in percent, and (C) percent organic content at the away site (blue line
and circles) and farm site (brown line and triangles).

Full-size DOI: 10.7717/peerj.11862/fig-8

There was no relationship between fluxes of O2 and DIC (p= 0.36), NH4
+ (p= 0.44) or

PO4
3− ( p= 0.51) (Figs. 9C, 9E, 9G).

A large nereid worm was found in a core taken from directly underneath the farm. This
core also had the highest oxygen flux of all cores measured (−72.5 mmol m−2 d−1). A large
nephtyid worm was found in an Away core that had the next highest oxygen flux measured
(−60.6 mmol m−2 d−1). Removing these two cores from the sediment flux analyses did not
result in significant differences among treatments (all p> 0.1) or significant relationships
between nutrients and oxygen flux (all p> 0.45).
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Figure 9 Sediment biogeochemical fluxes. (A) Oxygen, (B) DIC, (D) NH+4 , and (F) PO3−
4 fluxes. Posi-

tive value indicates flux out of the sediment. Also shown are relationships between oxygen flux and each
nutrient flux (C, E and G). There was no significant relationship between oxygen flux and the DIC or nu-
trient fluxes. Because oxygen flux could not be measured from the amended cores, no data are shown for
that treatment. Error bars are standard deviation.

Full-size DOI: 10.7717/peerj.11862/fig-9

Macrofaunal community structure
Twelve families of macrofauna in 3 phyla were found among all samples collected
(Fig. 10A, Table S3). Overall, macrofauna present at both sites were small-bodied and
mainly consisted of burrowing, suspension-feeding bivalves (e.g., Myidae, Mactridae),
surface deposit-feeding polychaetes (e.g., Spionidae, Flabelligeridae) and the burrowing,
carnivorous polychaete, Nephtyidae. Abundance and taxa richness were highly variable
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Figure 10 Macrofaunal community structure. (A) Average macrofaunal abundance by family for Farm
(brown; n= 4) and Away (blue; n= 8) sites. Bars are± one standard deviation. (B) Non-metric multi-
dimensional scaling ordination of Farm (brown triangles; n= 4) and Away (blue circles; n= 8) replicate
samples based on square-root-transformed macrofaunal abundances and Bray-Curtis similarities (stress
= 0.11). Clusters at similarity levels of 20% (dotted line), 40% (dashed line) and 60% (solid line) are indi-
cated. Bold solid line indicates Away replicates with high abundance of small nephtyids. Replicate 3 of the
Away sites (Table S3) was excluded from the ordination because no macrofaunal animals were found.

Full-size DOI: 10.7717/peerj.11862/fig-10

at both sites. Family richness did not appear to differ between the sites, with 3.25 ± 1.89
families (mean± st. dev.) at the Farm site and 4.0± 2.0 families at the Away site. Abundance
appeared to be higher at the Away site, with 3,411 ± 3,902 individuals m−2, compared to
459 ± 397 individuals m−2 at the Farm site, but variability was high with the abundance
of most families having a greater standard deviation than the mean (Fig. 10A, Table S3).
Abundance was low in all macrofaunal groups except for small nephtyid polychaetes which
dominated at the Away site, making up 88% of the abundance. Shannon diversity also
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appeared similar but variable, with H’= 0.85± 0.22 at the Farm site and H’= 0.71± 0.60
at the Away site (Student’s t -test, p= 0.59). Pielou’s evenness (J’) at the Farm site was 0.86
± 0.18 and at the Away site was 0.54 ± 0.36 and was not significantly different between
sites (Student’s t -test, p= 0.08). There was no distinct partitioning in community structure
between Farm and Away samples, although several of the Away site samples that shared
relatively high abundance (> 6,000 m−2) of nephtyids were > 60% similar (bold circle in
Fig. 10B).

DISCUSSION
Farm footprint
The near-bottom velocities at the study site during the study period and lab measurements
of biodeposit settlement rates were used to calculate a rough ‘‘footprint’’ of the impact
of the farm on the sediment. An average-sized biodeposit released in the deeper section
of the farm likely settled at a maximum of 118 m up or downstream of the farm at peak
tidal flows, and far less if it was released in the shallower part of the farm (Fig. 3). At peak
flow the smallest biodeposits in the deep section of the farm could have traveled up to 200
m from the farm before deposition, however transport of particles in the shallow section
was more constrained (Fig. 3B), indicating that most particles would be settling within
a far smaller range. Based on our footprint estimation, our selected Away site at ∼90 m
downstream falls within the footprint of the farm and would therefore be expected to
regularly but not continually receive oyster biodeposits.

There are few recordedmeasurements of oyster biodeposition settling velocities, however
our mean rate of 0.73 cm s−1 used in the ‘‘footprint’’ calculation is similar to previous
measurements of ∼0.8cm s−1 (Haven & Morales-Alamo, 1972) and, unlike previous
investigations, was measured using biodeposits from the system of study. Our estimate of
settling velocity is conservative, as it assumes biodeposits are sinking unaggregated. In situ,
biodeposits may aggregate together, increasing settling velocity and reducing the farm’s
‘‘footprint’’.

The weak correlation between settling velocity and surface area (Fig. 4) in addition to
the non-zero intercept (we would expect particles with a surface area of 0 mm2 to have a
settling velocity of 0 cm s−1) illustrates that either the relationship between surface area and
settling velocity is nonlinear near zero, or that other parameters such as biodeposit density
vary in a non-random way. We hypothesize that the scatter of data and the related poor
fit likely results from differences in density among biodeposits, specifically that smaller
biodeposits settle relatively faster because they are more dense than larger biodeposits.
Oysters separate labile organic matter from refractory material and nonorganic material
like sand and excrete these materials in feces and psuedofeces, respectively (Haven &
Morales-Alamo, 1966). Biodeposits at the lower end of our range of densities (1.14 g cm−3)
are likely composed primarily of organic matter, while those at the upper end (2.26 g cm−3)
likely consist primarily of nonorganic minerals. Presumably, the relative makeup of these
deposits depends on the composition of the suspended material in the water column at the
time of filtration, affecting the densities of both feces and pseudofeces. We were unable to
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differentiate between feces and pseudofeces in this study, and did not measure the density
of individual pellets, preventing stronger correlations between biodeposit characteristics
and settling velocity.

The biodeposits of different species of bivalves also appear to have different settling
velocities, and larger bivalves tend to produce more biodeposits than smaller ones (Haven
& Morales-Alamo, 1972). It is therefore important to consider the species and the size of
bivalves when estimating the area of impact. For example, Callier et al. (2006) found that
settling velocities for marine mussel biodeposits ranged from ∼0.3–1.8 cm s−1 and varied
based on the size of the individual. These higher settling velocities would result in an area
of impact smaller than that calculated here based on oyster biodeposits, which may lead to
greater rates of accumulation, particularly if individual bivalves were larger and produced
more biodeposits. We did not account for individual size in this study, which could have
been a source of variability in both the mean settling velocity and mean deposition rate.

Cage-area normalized rates of deposition ranged from roughly one third to one half
of the deposition rates measured at the bottom mooring underneath the farm, suggesting
that particle deposition beneath the farm consists of more than just oyster biodeposits.
While all our deposition rates were within the range of other literature values, ∼10–650
g m−2 d−1 (Comeau et al., 2014), oyster biodeposition rates can vary widely with season
(Mitchell, 2006; Comeau et al., 2014) and oyster size (Haven & Morales-Alamo, 1972), so
direct comparisons between farms should be done with that in mind. Deposition at the
Away site was particularly high, however in hindsight we suspect this may have been an
artifact of the deployment method; the Away mooring was lowered to the bottom from
the boat and was repositioned after deployment, which may have created a sediment
plume that inflated settlement trap data. We also found that our Away site fell within
the deposition footprint of the farm, leaving us unable to parse the relative impact of
farm-sourced biodeposits and ambient particle deposition on total particle flux.

Site comparison
The lack of difference in biogeochemical fluxes and macrofaunal community structure
between the Farm and Away sites and the relatively low organic matter content indicate that
biodeposition is not a major influence at either site, i.e., that regardless of whether the Away
site was within the footprint of the farm, deposition was small enough to have minimal
impact. Previous studies in other systems have generally found significant differences in
biogeochemical fluxes between farm and references sites, however reference sites in these
studies tend to be >500 m away from farm sites (Testa et al., 2015; Richard et al., 2007;
Giles, Pilditch & Bell, 2006), considerably further than the Away site in this study, which
was selected at only ∼90 m from the edge of the farm lease to avoid the flow effects of
the constriction in the river downstream. A similar reference site distance was selected by
Mallet, Carver & Landry (2006) in a study of an oyster farm in New Brunswick, Canada.
There, the researchers also found no difference between sediment geochemistry at reference
and farm sites. Additionally, any potential difference in fluxes between our two sites may
have been obscured by high within-site variability (Fig. 9). Callier et al. (2009) also found
trends, but no significant differences, in biogeochemical fluxes between ‘‘unimpacted’’
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reference cores and cores with increasing densities of mussels suspended above them to
simulate farm deposition, with high variability within their core treatments.

Like the variability in erosion, microalgal aggregations on the sediment surface may have
contributed to variability in fluxes. Microphytobenthos have been shown in several studies
to regulate biogeochemical fluxes across the sediment-water interface (Reay, Gallagher &
Simmons, 1995;Cerco & Seitzinger, 1997), evenwhen cores are kept in the dark (Sundbäck &
Graneli, 1988). Indeed, chl-a measurements from the incubation cores (7.3–22.5 µg g−1 dry
sediment) were higher than the highest measured byWatling et al. (2001) (5.24 µg g−1 dry
sediment) in sediments from a deeper area of the Damariscotta. Chl-a concentrations were
also higher than concentrations of phaeopigments (which indicate degraded chlorophyll
often due to grazing), implying abundant living microphytobenthos (e.g., Bianchi, Dawson
& Sawangwong, 1988). Chl-a was highly variable between samples, suggesting patchiness
that may have contributed to variation in fluxes.

Although there was not a correlation between oxygen flux and DIC (Fig. 9), the ratio
of DIC flux to O2 flux was ∼2, higher than predicted from stoichiometry and observed
in high-Arctic sediments (Rysgaard et al., 1998), but similar to other studies in sediments
under normoxic conditions and lower than in hypoxic sediments (Lehrter et al., 2012; An
& Joye, 2001). This is also in line with a previous study byNewell, Cornwell & Owens (2002)
on the influence of biodeposition on sediments. They performed dark incubations of
biodeposit-enriched sediment cores with a microalgal mat and found low oxygen influxes
relative to DIC efflux, attributing the skewed ratio to the diversion of oxygen into oxidizing
reduced compounds (Newell, Cornwell & Owens, 2002).

The ‘‘Amended’’ cores that were enriched with biodeposits prior to incubation showed
no differences in nutrient fluxes from unenriched Away site cores, which suggests that
these sediments were already saturated with organic matter. The amount of biodeposits
added was comparable to the deposition at the farm site over a day (8 mL × 1.4 g mL−1

density of biodeposits spread over the area of a 15 cm diam core is 634 g m−2; assuming
the biodeposits were loosely packed, this would be an overestimate, so the actual amount
added is closer to the 490 g m−2 d−1 collected in sediment traps under the farm). However,
it is important to note that, because of the incubation equipment malfunction, the oxygen
flux measurements and nutrient sample collections for the second set of cores did not
occur simultaneously, so conclusions about the relationship between oxygen and nutrient
fluxes should be drawn with caution.

There was relatively low organic matter content at both sites, supporting the idea
that biodeposition is minimal. Surprisingly, sediment at the Away site appeared to be
slightly muddier and have higher organic content than the Farm site (Fig. 8). While we
expected sediments at the Farm site to be finer and have higher organic content because
of increased biodeposition, the potential addition of larger particles from eroding oyster
shell to sediment directly beneath the oyster cages could coarsen the sediment and dilute
its organic content with large and mostly inorganic shell fragments. However, it is difficult
to assess site differences from these data given only one core was taken from each site.

The Away and Farm sites had similar infaunal communities, except for the abundant
small nephtyids in some of the Away cores. It is likely that these were juveniles, and the
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differences in abundance due to patchy recruitment. There is a general absence of recent
infaunal community data from this area of the Damariscotta, which makes it difficult to
assess from the literature whether the communities at and around the farm are comparable
to other locations in the estuary. Additionally, macrofaunal abundance and community
assemblage appear very patchy in these sediments and were probably not fully described
by our sampling. Also, the cores were stored in a tank with sediment containing large
macrofauna from an unrelated experiment, so it is possible that the large nereid and
nephtyid worms found when samples were sorted had migrated and established in our
cores and were not representative of the natural community at our sites. However, many
large nereid jaws were observed in the bulk material while samples were being sorted, as
well as many juvenile nephtyids counted, which suggests that the large macrofauna were
likely present in the cores when they were collected.

Other than the abundant, small nephtyids at the Away site, the macrofaunal
assemblages at both Farm and Away sites mainly consisted of discretely-motile, surface
deposit/suspension feeding polychaetes (spionids and flabelligerids) and suspension-
feeding infaunal bivalves (myids, mactrids, and pharids). Relative dominance of suspension
feeders suggests that flow is slow enough to avoid sediment destabilization but fast enough
tomaintain sufficient suspended food particle flux (e.g.,Widdows et al., 2004). Additionally,
surface-deposit feeding may be particularly advantageous where an algal biofilm offers a
concentrated high-quality food source at the sediment surface (Decho & Lopez, 1993;
Montserrat et al., 2008). Such mats, however, may disadvantage subsurface deposit feeders
by impeding sediment-water exchange of oxygen and reduced compounds (e.g., Hansen &
Kristensen, 1997). Subsurface deposit feeders contributed less than 20% to Farm and Away
total abundance, excluding nephtyid abundance. Though our sampling occurred during
a relatively quiescent period of low flow and turbidity, the spring tide several weeks prior
(Fig. 7) would have produced high flow rates and sediment erosion potentially stressful for
infauna.

Potential flushing of biodeposits
The partial mat failure during the erosion experiments suggests the possibility that these
sediments are at least periodically eroded, decreasing the impact of biodeposits on sediments
under the farm. The high variability in erosion at the higher shear velocity levels (Fig. 6)
suggests sediment erosion occurs suddenly and at shear velocities exceeded only at the
highest flow rates recorded by the ADV during the∼23 h deployment. This is likely because
a microphytobenthic mat stabilizes surface sediments, resisting erosion until a point of
critical failure; this is consistent with the high chl-a values measured in the incubation
cores and with the divers’ observations of patchiness in the mat cover of the sediment
surface (Fig. 2). Though only observed in one of our replicate cores, the partial mat failure
at the highest tested shear velocity (2.32 cm s−1) falls within the broad range of shear
velocities at which biofilms fail. Walker & Grant (2009) performed erosion experiments
on sand and sandy mud sediments with patchy cyanobacterial mats beneath mussel long
lines, observing mat failure at around 1.5 cm s−1. Grant & Gust (1987), however, examined
erosion of purple sulfur bacteria and cyanobacteria biofilms on sand and found critical
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friction velocity increased from around 1 cm s−1 for clean sands to around 4 cm s−1 on
sands with biofilms.

Massive sediment erosion was not observed in our lab experiments, even as the shear
velocities tested exceeded the maximum calculated from the measured in situ bottom flow
(Fig. 5A). However, the in situ bottom flow was measured only for a short period during
neap tide, and higher flow velocities during spring tides would substantially increase shear
on the bottom because bed shear stress is proportional to the square of current velocity.
Using data from the LOBO station, we predicted that bottom velocity during the time of
greatest flow in the spring-neap cycle that summer reached ∼40 cm s−1, driving bottom
shear velocities close to 3 cm s−1. This would be well above the shear velocity that resulted
in partial mat failure in our erosion experiments. Erosion of surface sediment under the
farm during maximum velocities of spring tides probably flushed the deposited sediment
away from the farm. The periodic peaks in surface turbidity at spring tides observed in
the long-term record are consistent with episodic erosion and flushing of biodeposits.
Relatively high eroded mass at two of the three replicates from beneath the farm suggests
some flushing of recent biodeposits may have also occurred during the neap tide in which
our observations were made (Fig. 6). The poor sorting of sediments at both sites at surface
and depth, however, suggests that bulk subsurface sediments do not undergo frequent
erosion and deposition events (Fig. 8A, Table S1). Frequent erosion and redeposition tends
to result in graded deposition due to gravity sorting and therefore well-sorted sediment
profiles (e.g., Morton, 1988). It therefore seems likely that erosion is limited to surface,
recently deposited sediments and that these sediments are not redeposited in bulk around
the farm.

CONCLUSIONS
We estimate that, during neap tide in this system, the average oyster biodeposit released in
the deep section of the farm may be tidally transported up to 118 m before reaching the
benthos. Our away site at 90 m distance would therefore be expected to fall within the farm
footprint. Though our site comparison indicated no difference between the away site and
the farm site, the lack of sediment organic enrichment suggests that this may be because
biodeposition is generally low and is not resulting in harmful impacts at either site.

Furthermore, the combined observations from the erosion experiments and
consideration of maximum flow rates during other times in the tidal cycle suggest a
tidally-driven erosion-deposition scenario; biodeposits accumulate and microalgal mats
form on the sediment surface within the footprint during the low-energy tidal period. Then,
as flow rates increase during spring tide, the bed experiences sudden failure as increased
flow velocities produce bottom flow greater than the critical shear velocity and surface
sediment detaches from the benthos in fragments, resulting in patchiness that contributes
to highly variable fluxes. Periodic, sudden mass failure of sediment integrity would also
disturb sessile macrofauna, which have more difficulty surviving physical disturbance
than mobile taxa (Brenchley, 1981). Loss of microalgal biomass due to erosion may reduce
the favorability of the sediment to settling macrofauna which generally prefer settling
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on algal biofilm-covered sediment to bare sediment (Pillay, Branch & Forbes, 2007; Van
Colen et al., 2009). The switching between deposition and erosion would cycle based on
tidal flow, intermittently ‘‘clearing’’ patches of sediment under the farm and preventing
excessive buildup of biodeposits. Particularly given the large range of flow velocities this
area can experience, future investigations into this possible scenario should conduct
sampling at several times throughout the spring-neap tidal cycle to get a full picture
of how physical forcing affects aquaculture waste deposition and erosion. Additionally,
more spatial sampling should be conducted to corroborate a calculated footprint with an
actual footprint, and more comprehensively map the farm’s area of influence and resolve
uncertainty as to the impact of biodeposition.
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