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ABSTRACT
The noise in daily infection counts of an epidemic should be super-Poissonian due to
intrinsic epidemiological and administrative clustering. Here, we use this clustering
to classify the official national SARS-CoV-2 daily infection counts and check for
infection counts that are unusually anti-clustered. We adopt a one-parameter model
of f0

i infections per cluster, dividing any daily count ni into ni=ϕ0
i ‘clusters’, for

‘country’ i. We assume that ni=f
0
i on a given day j is drawn from a Poisson

distribution whose mean is robustly estimated from the four neighbouring days,
and calculate the inferred Poisson probability P0

ij of the observation. The P
0
ij values

should be uniformly distributed. We find the value fi that minimises the
Kolmogorov–Smirnov distance from a uniform distribution. We investigate the
(ϕi, Ni) distribution, for total infection count Ni. We consider consecutive count
sequences above a threshold of 50 daily infections. We find that most of the daily
infection count sequences are inconsistent with a Poissonian model. Most are found
to be consistent with the ϕi model. The 28-, 14- and 7-day least noisy sequences
for several countries are best modelled as sub-Poissonian, suggesting a distinct
epidemiological family. The 28-day least noisy sequence of Algeria has a preferred
model that is strongly sub-Poissonian, with f28

i < 0:1. Tajikistan, Turkey, Russia,
Belarus, Albania, United Arab Emirates and Nicaragua have preferred models that
are also sub-Poissonian, with f28

i < 0:5. A statistically significant (Pτ < 0.05)
correlation was found between the lack of media freedom in a country, as represented
by a high Reporters sans frontieres Press Freedom Index (PFI2020), and the lack of
statistical noise in the country’s daily counts. The ϕi model appears to be an effective
detector of suspiciously low statistical noise in the national SARS-CoV-2 daily
infection counts.
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INTRODUCTION
The daily counts of new, laboratory-confirmed infections with severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) constitute one of the key statistics followed by
citizens and health agencies around the world in the ongoing 2019–2020 Coronavirus
Disease 2019 (COVID-19) pandemic (Huang et al., 2020a; Li et al., 2020). Can these
counts be classified in a way that makes as few epidemiological assumptions as possible, as
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motivation for deeper analysis to either validate or invalidate the counts? While full
epidemiological modelling and prediction is a vital component of COVID-19 research
(Chowdhury et al., 2020; Kim et al., 2020;Molina-Cuevas, 2020; Jiang, Zhao & Shao, 2021;
Afshordi et al., 2020), these cannot be accurately used to study the pandemic as a whole—a
global phenomenon by definition—if the data at the global level is itself inaccurate.
Knowledge of the global state of the current pandemic is weakened if any of the
national-level SARS-CoV-2 infection data have been artificially interfered with by the
health agencies providing that data or by other actors involved in the chain of data lineage
(Thomas et al., 2017). Since personal medical data are private information, only a limited
number of individuals at health agencies are expected to be able to check the validity of
these counts based on original records. Nevertheless, artificial interventions in the counts
could potentially reveal themselves in statistical properties of the counts. Unusual
statistical properties in a wide variety of quantitative data sometimes appear, for example,
as anomalies related to Benford’s law (Newcomb, 1881; Nigrini & Miller, 2009), as in the
2009 first round of the Iranian presidential election (Roukema, 2014, 2015;Mebane, 2010).
Benford’s law analysis has been used to argue that countries with higher democracy
indices, high gross domestic product, and better health system indices tend to have a lower
probability of having manipulated their key COVID-19 related cumulative counts
(confirmed cases and deaths, Balashov, Yan & Zhu, 2021). For other Benford’s law
COVID-19 count analyses, see Koch & Okamura (2020) and Lee, Han & Jeong (2020).
For a case-specific analysis of the lack of noise in governmental medical data, see the
analysis of official deceased-donor organ-donation data from China (Robertson, Hinde &
Lavee, 2019), using methods different to the one introduced in this article. For the
politics of organisational strategies regarding open government data, see Ruijer et al.
(2019).

Here, we check the compatibility of noise in the official national SARS-CoV-2 daily
infection counts, ni(t), for country

1 i on date t, with expectations based on the Poisson
distribution (Poisson (1837); for a review, see, e.g., Johnson, Kemp & Kotz, 2005).
The Poisson distribution is motivated by the one-day time scale for an infection count
being several times shorter than the dominant time scale involved, the incubation time
scale, estimated at about five days (Lauer et al., 2020; Yang et al., 2020), with a 95%
confidence interval (CI) from about one to 15 days (Yang et al., 2020). Since each infected
person typically infects about two to three others (R0 ∼ 2.4–3.3 at 95% (CI), Billah, Miah &
Khan, 2020), these secondarily infected people would typically be assessed as SARS-CoV-2
positive on independent days, if they were diagnosed immediately after the onset of
symptoms, with instantaneous laboratory testing and test results reported instantly in the
official national count data. In reality, delays for diagnosis, testing and reporting and
collating the test results are random processes which should further add delays that reduce
correlations among positive test results between distinct nearby days; a Poissonian process
is a simple hypothesis for each of these separate processes. Poisson processes are both
additive and infinitely divisible (Johnson, Kemp & Kotz, 2005, “Discussion”), so the
combination of these processes can reasonably yield an overall Poisson process.

1 No position is taken in this paper
regarding jurisdiction over territories; the
term “country” is intended here as a
neutral term without supporting or
opposing the formal notion of state.
Apart from minor changes for technical
reasons, the countries are defined by the
data sources.
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However, it is unlikely that any real count data will be fully modelled by a Poisson
distribution, both due to the complexity of the logical tree of time-dependent intrinsic
epidemiological infection as well as administrative effects in the SARS-CoV-2 testing
procedures, and the sub-national and national level procedures for collecting and
validating data to produce a national health agency’s official report. In particular, clusters
of infections on a scale of f0

i infections per cluster, either intrinsic or in the testing and
administrative pipeline, would tend to cause relative noise to increase from a fraction of
1=

ffiffiffiffi
ni

p
for pure Poisson noise up to

ffiffiffiffiffiffiffiffiffiffiffi
f0
i=ni

q
, greater by a factor of

ffiffiffiffiffi
f0
i

q
. This

overdispersion has been found, for example, for SARS-CoV-2 transmission (Endo et al.,
2020; He et al., 2020) and for COVID-19 death rate counts in the United States (Kim et al.,
2020).

In contrast, it is difficult to see how anti-Poissonian smoothing effects could occur,
unless they were imposed administratively. For example, an administrative office might
impose (or have imposed on it by political authorities) a constraint to validate a fixed or
slowly and smoothly varying number of SARS-CoV-2 test result files per day,
independently of the number received or queued; this would constitute an example of an
artificial intervention in the counts that would weaken the epidemiological usefulness of
the data.

A one-parameter model to allow for the clustering is proposed in this paper, and used to
classify the counts. We allow the parameter to take on an effective anti-clustering value, in
order to allow the data to freely determine its optimal value, without forcing
overdispersion. While a distribution of clustering values for a given country is likely to be
more realistic than a single value, Occam’s razor favours adding as few parameters as
possible. For example, a power-law distribution of arbitrary (negative) index would require
a second parameter to truncate the tail in non-convergent cases. While the one-parameter
anti-clustering value is a simplified model, it has the advantage of allowing a
straightforward, though simplified, interpretation in terms of clustering. If the
one-parameter method proposed here is found to viable, then the method could be
extended by including models of directly observed estimates of SARS-CoV-2 clustering.

As an alternative to this clustering model, we also consider a negative binomial
distribution (e.g. Johnson, Kemp & Kotz, 2005, “Conclusion”). Lloyd-Smith et al. (2005)
found the negative binomial distribution, as a mix of Poisson distributions over a Gamma
distribution, to be better at modelling secondary infections by SARS-CoV-1 (and other
infectious agents) than Poisson and geometric distributions, quantifying what are referred
to as superspreader events in an epidemic. This has also been found to be relevant to
SARS-CoV-2 secondary infections (Endo et al., 2020; He et al., 2020). However, since the
negative binomial model only allows overdispersion with respect to the Poisson model, it is
unlikely to provide the best model for data which may have been artificially modified to
the extent of becoming sub-Poissonian. More in-depth models of clustering, called
burstiness in stochastic models of discrete event counts, include power-law models
(Barabási, 2005; Goh & Barabasi, 2006).

The method is presented in “Method”. “SARS-CoV-2 Infection Data” describes the
choice of data set and the definition, for any given country, of a consecutive time sequence
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that has high enough daily infection counts for Poisson distribution analysis to be
reasonable. The method of analysis is given in “Primary Analysis” for full sequences
(“Poissonian and f0

i Models: Full Sequences”), subsequences (“Subsequences”) and
alternatives to the main method (“Alternative Analyses”). Results are presented in
“Results”. A non-parametric comparison with the Reporters sans frontières Press Freedom
Index, which should not have any relation to noise in SARS-CoV-2 daily counts in the
absence of a sociological connection, is provided in “Comparison with the RSF Press
Freedom Index”. Qualitative discussion of the results is given in “Discussion”. Conclusions
are summarised in “Conclusion”. This work is intended to be fully reproducible by
independent researchers using the Maneage framework; it was produced using
commit f72cb84 of the live Git repository https://codeberg.org/boud/subpoisson on a
computer with Little Endian x86_64 architecture; the source is archived at zenodo.4765705
and swh:1:rev:789e651c0fb23b2585555c08de1b44d9e25cfb6d.

METHOD
SARS-CoV-2 infection data
Two obvious choices of a dataset for national daily SARS-CoV-2 counts would be those
provided by the World Health Organization (WHO), (archive: https://covid19.who.int/
WHO-COVID-19-global-data.csv) or those curated by the Wikipedia WikiProject
COVID-19 Case Count Task Force (https://en.wikipedia.org/w/index.php?title=Wikipedia:
WikiProject_COVID-19/Case_Count_Task_Force&oldid=1001119689) in medical cases
chart templates (hereafter, C19CCTF ). While WHO has published a wide variety of
documents related to the COVID-19 pandemic, it does not appear to have published
details of how national reports are communicated to it and collated. Given that most
government agencies and systems of government procedures tend to lack transparency,
despite significant moves towards forms of open government (Yu & Robinson, 2012) in
many countries, data lineage tracing from national governments to WHO is likely to be
difficult in many cases. In contrast, the curation of official government SARS-CoV-2
daily counts by the Wikipedia WikiProject COVID-19 Case Count Task Force follows
a well-established technology of tracking data lineage. The Wikipedia community
high-tempo collaborative editing that has taken place in response to the COVID-19
pandemic is well quantified (Keegan & Tan, 2020). The John Hopkins University Center
for Systems Science and Engineering curated set of official COVID-19 data is discussed
below.

Unfortunately, it is clear that in the WHO data, there are several cases where two
days’ worth of detected infections appear to be listed by WHO as a sequence of two days j
and j + 1 on which all the infections are allocated to the second of the two days, with
zero infections on the first of the pair. There are also some sequences in the WHO data
where the day listed with zero infections is separated by several days from a nearby
day with double the usual amount of infections. This is very likely an effect of difficulties in
correctly managing world time zones, or time zone and sleep schedule effects, in any of
several levels of the chains of communication between health agencies and WHO.
In other words, there are several cases where a temporary sharp jump or drop in the counts
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appears in the data but is reasonably interpreted as a timing artefact. Whatever the reason
for the effect, this effect will tend to confuse the epidemiological question of interest here:
the aim is to globally characterise the noise and to highlight countries where unusual
smoothing may have taken place.

We quantify this jump/drop problem as follows. We consider a pair of days j, j + 1 for a
given country to be a jump if the absolute difference in counts, |ni(j + 1) − ni(j)|, is greater
than the mean, (ni(j + 1) + ni(j))/2. In the case of a pair in which one value is zero, the
absolute difference is twice the mean, and the condition is necessarily satisfied.
We evaluate the number of jumps Njump for both the WHO data and the C19CCTF
medical cases chart data, starting, for any given country, from the first day with at least 50
infections. Figure 1 shows Njump for the 137 countries in common to the two data sets;
there are 237 countries in the WHO data set and 139 in the C19CCTF data. It is clear
that most countries have fewer jumps or drops in the Wikipedia data set than in the WHO
data set.

Thus, at least for the purposes of understanding intrinsic and administrative clustering,
the C19CCTF medical cases chart data appear to be the better curated version of the
national daily SARS-CoV-2 infection counts as reported by official agencies. The detailed
download and extraction script of national daily SARS-CoV-2 infection data from
these templates and the resulting data file zenodo.4765705/WP_C19CCTF_SARSCoV2.
dat (downloaded 6 May 2021) are available in the reproducibility package associated with

Figure 1 Number Njump of sudden jumps or drops in counts on adjacent days in WHO and
Wikipedia WikiProject COVID-19 Case Count Task Force medical cases chart national daily
SARS-CoV-2infection counts for countries present in both data sets. A line illustrates equal quality
of the two datasets. The C19CCTF version of the data is clearly less affected by sudden jumps than the
WHO data. Plain-text table: zenodo.4765705/WHO_vs_WP_jumps.dat.

Full-size DOI: 10.7717/peerj.11856/fig-1
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this paper (§Code availability). Dates without data are omitted; this should have an
insignificant effect on the analysis if these are due to low infection counts.

Another global collection of daily SARS-CoV-2 counts that could be considered is the
John Hopkins University Center for Systems Science and Engineering (JHU CSSE) git
repository. Unfortunately, for several countries, the JHU CSSE data are provided for
sub-national divisions rather than as official national statistics, making the dataset
inhomogeneous for the purposes of this study. Artificial interference in the data at the
national level will not be shown in data that is the sum of data obtained directly from
sub-national geographical/political divisions. Moreover, detailed data provenance analysis
(Which exact government URL did a particular count come from? Where is the
archived version of the data of the original URL?) appears to be more difficult for the
JHU CSSE data than for the C19CCTF data. Nevertheless, for completeness, the JHU CSSE
data is analysed using the same method as the main analysis, with results presented as
tables in Appendix A.

The full set of C19CCTF data includes many days, especially for countries or territories
(as defined by the data source) of low populations, with low values, including zero and one.
The standard deviation of a Poisson distribution (Poisson, 1837) of expectation value N
is

ffiffiffiffi
N

p
, giving a fractional error of 1=

ffiffiffiffi
N

p
. Even taking into account clustering or

anticlustering of data, inclusion of these periods of close to zero infection counts would
contribute noise that would overwhelm the signal from the periods of higher infection
rates for the same or other countries. In the time sequences of SARS-CoV-2 infection
counts, chaos in the administrative reactions to the initial stages of the pandemic will tend
to create extra noise, so it is reasonable to choose a moderately high threshold at which the
start and end of a consecutive sequence of days should be defined for analysis. Here, we
set the threshold for a sequence to start as a minimum of 50 infections in a single day.
The sequence is continued for at least 7 days (if available in the data), and stops when the
counts drop below the same threshold for 2 consecutive days. The cutoff criterion of 2
consecutive days avoids letting the analysable sequence be too sensitive to individual days
of low fluctuations. If the resulting sequence includes less than 7 days, the sequence is
rejected as having insufficient signal to be analysed.

RSF press freedom index
The Reporters sans frontières (RSF) Press Freedom Index is derived annually from an
87-question survey translated into 20 languages and sent to media professionals, lawyers
and sociologists from 180 countries, yielding scores on six general criteria of media
freedom and a weighted score representing executions, imprisonments, kidnappings and
related abuses against journalists (Reporters sans frontieres, 2021). The scores are combined
into an overall score from zero (best) to 100 (worst) that we denote here as PFI2020.

In the absence of artificial interference in the SARS-CoV-2 daily counts, there is no
obvious reason why media freedom should relate to the noise in the SARS-CoV-2 counts.
However, a correlation between the lack of media freedom and the publication of
manipulated data by government agencies would not be surprising. Governments and the
public service as organisations, and the individuals that compose them, are under more
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pressure to be honest in places and epochs where there is more press freedom. To see if the
hypothesis of artificial interference is credible, the results of the current work are compared
with PFI2020, as published for 20202, in “Comparison with the RSF Press Freedom Index”.

Primary analysis
Poissonian and f0

i models: full sequences
We first consider the full count sequence {ni(j), 1 ≤ j ≤ Ti} for each country i, with Ti valid
days of analysis as defined in “SARS-CoV-2 Infection Data”. Our one-parameter model
assumes that the counts are predominantly grouped in clusters, each with f0

i infections per
cluster. Thus, the daily count ni(j) is assumed to consist of niðjÞ=f0

i infection events.
We assume that niðjÞ=f0

i on a given day is drawn from a Poisson distribution of mean
l̂iðjÞ=f0

i. We set l̂iðjÞ to the median of the 4 neighbouring days, excluding day j and
centred on it. For the initial sequence of 2 days, l̂iðjÞ is set to l̂ið3Þ, and l̂iðjÞ for the final 2
days is set to l̂i(Ti −2). By modelling l̂i as a median of a small number of neighbouring
days, our model is almost identical to the data itself and statistically robust, with only
mild dependence on the choices of parameters. This definition of a model is more likely to
bias the resulting analysis towards underestimating the noise on scales of several days
rather than overestimating it; this method will not detect oscillations on the time scale of a
few days to a fortnight that are related to the SARS-CoV-2 incubation time (Lauer et al.,
2020; Yang et al., 2020; Huang et al., 2020b). For any given value f0

i, we calculate the
cumulative probability P0

ij that ni(j)/f
0
i is drawn from a Poisson distribution of mean l̂i(j)/

f0
i. For country i, the values P

0
ij should be drawn from a uniform distribution if the model is

a fair approximation. In particular, for f0
i set to unity, P0

ij should be drawn from a
uniform distribution if the intrisic data distribution is Poissonian. Individual values of P0

ij

(those that are close to zero or one) could, in principle, be used to identify individual days
that are unusual, but here we do not consider these further.

We allow a wide logarithmic range in values of f0
i, allowing the unrealistic subrange of

f0
i < 1, and find the value ϕi that minimises the Kolmogorov–Smirnov (KS) distance

(Kolmogorov, 1933; Smirnov, 1948; Justel, Pen & Zamar, 1997; Marsaglia, Tsang & Wang,
2003) from a uniform distribution, i.e. that maximises the KS probability that the data are
consistent with a uniform distribution, when varying f0

i. The one-sample KS test is a
non-parametric test that compares a data sample with a chosen theoretical probability
distribution, yielding the probability that the sample is drawn randomly from the
theoretical distribution. This test uses information from the whole of the reconstructed
cumulative distribution function, i.e. the set of P0

ij values for a given country i. We label the
corresponding KS probability as PKS

i . We write PPOISS
i : = PKS

i (f0
i = 1) to check if any

country’s daily infection rate sequence is consistent with Poissonian, although this is likely
to be rare, as stated above: super-Poissonian behaviour seems reasonable. Of particular
interest are countries with low values of ϕi. Allowing for a possibly fractal or other
power-law nature of the clustering of SARS-CoV-2 infection counts, we consider the
possibility that the optimal values ϕi may be dependent on the total infection count Ni.
We investigate the (ϕi, Ni) distribution and see whether a scaling type relation exists,

2 (https://rsf.org/en/ranking/2020, down-
loaded 4 May 2021)
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allowing for a corrected statistic ψi to be defined in order to highlight the noise structure of
the counts independent of the overall scale Ni of the counts.

Standard errors in ϕi for a given country i are estimated once ϕi has been obtained by
assuming that l̂iðjÞ and ϕi are correct and generating 30 Poisson random simulations of
the full sequence for that country. Since the scales of interest vary logarithmically, the
standard deviation of the best estimates of log10 ϕi for these numerical simulations is used
as an estimate of σ(log10ϕi), the logarithmic standard error in ϕi.

Subsequences
Since artificial interference in daily SARS-CoV-2 infection counts for a given country
might be restricted to shorter periods than the full data sequence, we also analyse 28-,
14- and 7-day subsequences. These analyses are performed using the same methods as
above (“Poissonian and f0

i Models: Full Sequences”), except that the 28-, 14- or 7-day
subsequence that minimises ϕi is found. The search over all possible subsequences would
require calculation of a Šidàk–Bonferonni correction factor (Abdi, 2007) to judge how
anomalous they are. The KS probabilities that we calculate need to be interpreted keeping
this in mind. Since the subsequences for a given country overlap, they are clearly not
independent from one another. Instead, the a posteriori interpretation of the results of the
subsequence searches found here should at best be considered indicative of periods that
should be considered interesting for further verification.

Alternative analyses
Alternatives to the method presented in “Poissonian and f0

i Models: Full Sequences” are
checked to see if they provide better models of the data.

Logarithmic median model

Each country’s time series is by default modelled with the mean of the expected Poisson
distribution for ni(j)/f

0
i on a given day being l̂i(j)/f

0
i, where l̂i(j) is the median of ni in

the 4 neighbouring days, excluding day j and centred on it. As an alternative, we replace
l̂i(j) on day j by vi(j): = exp(median(ln(ni))) calculated over the same set of neighbouring
days. That is, we replace the usual linear median by a logarithmic median. This might
better model the growing and decaying exponential phases of the infection count sequence.

Negative binomial model
The negative binomial distribution forbids underdispersion, but is worth considering,
given its epidemiological motivation for the step from primary to secondary infections
(Lloyd-Smith et al., 2005; Endo et al., 2020; He et al., 2020). For the counts of a given
country i, we define an overdispersion parameter ω0

i, where the binomial probability mass
function for a given infection count k, considered as k failures, compared to r successes,
with a probability p of success, is

Pðk; n; pÞ ¼ kþ r � 1
k

� �
ð1� pÞkpr (1)
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p :¼ x0
i

1þ x0
i
: (2)

On day j, with a modelled count of i(j), we set

r :¼ x0
i bliðjÞ ; (3)

giving l̂i(j) as the mean of the distribution and l̂i(j) (1 + ω0
i) as the variance. The preferred

value of ω0
i (that yielding the lowest Kolmogorov–Smirnov test statistic when comparing

the set of cumulative probabilities with a uniform distribution, as in “Poissonian and
f0
i Models: Full Sequences”) is then ωi. Thus, ωi should behave similarly to ϕi to represent

typical cluster size when both are greater than unity, while at low values (below unity), ωi

will be unable to represent distributions that are underdispersed with respect to the
Poisson distribution, and will instead rapidly approach zero (the Poisson limit).

Does anti-clustering exist in grouped data?
The temptation to make ‘unnoticeable’ modifications that hide an increase in data from
day j to day j + 1 might be less likely to occur on greater timescales. Moreover, some of the
phenomena contributing to the intrinsic and administrative components of f0

i should
be independent of time scale, while others should depend on the time scale. To provide
clues for this type of analysis, the ni(j) data have been summed in pairs and triplets of days,
ignoring any one- or two-day remainder at the end of a sequence. These were analysed
using the same algorithm as above for the full sequences (“Poissonian and f0

i Models: Full
Sequences”).

Akaike and Bayesian information criteria
In each case we calculate the Akaike (1974) and Bayesian (Schwarz, 1978) information
criteria, defined

AIC :¼ 2k� 2
X
i

ln Li (4)

BIC :¼ lnðNdaysÞk� 2
X
i

ln Li; (5)

respectively. The number of free parameters k is defined as the number of countries
satisfying the criteria for a sequence to be analysable (“SARS-CoV-2 Infection Data”), since
there is one free parameter allowed to vary individually for each country. The number of
data points for BIC is set to the total number of days Ndays in the sequences over all k
countries. The f0

i model, and the logarithmic median and negative binomial alternatives,
each have the same values of k and Ndays. The 2-day and 3-day alternatives can be expected
to have slightly smaller numbers of countries k whose sequences satisfy the analysis
criteria, and much smaller numbers Ndays of days, since in reality these no longer represent
single days. The maximum likelihoood is defined Li: = PKS

i , i.e. the Kolmogorov–Smirnov
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probability that the observed values for the country are drawn from a rescaled Poisson (or
negative binomial) distribution, as defined above.

RESULTS
Data
The 139 countries and territories in the C19CCTF counts data have 27 negative values
out of the total of 36,445 values. These can reasonably be interpreted as corrections for
earlier overcounts, and we reset these values to zero, with a negligible reduction in
the amount of data. Consecutive sequences of days satisfying the criteria listed in
“SARS-CoV-2 Infection Data” were found for Mvalid = 78 countries.

Clustering of SARS-CoV-2 counts
Full infection count sequences
Figure 2 shows, unsurprisingly, that only a small handful of the countries’ daily
SARS-CoV-2 counts sequences have noise whose statistical distribution is consistent with
the Poisson distribution, in the sense modelled here: PPoiss

i (red circles) is close to zero
in most cases. Specifically, 63 countries (80.8%) are inconsistent with the Poisson
distribution at a significance of PPoiss

i < 0.01 and 66 countries ( 84.6%) are non-Poissonian
at PPoiss

i < 0.05. On the contrary, the introduction of the f0
i parameter, optimised to ϕi

for each country i, provides a sufficiently good fit in most cases, especially for the countries
with low clustering ϕi. While some of the probabilities (PKS

i (ϕi), green X symbols) in
Fig. 2 are low in countries with the highest numbers of infections, these countries also have
high ϕi, so are not of interest as indicators of the absence of noise. Among countries with
ϕi < 10.0, the lowest probability PKS

i is that of Algeria with PKS
i = 0.17, i.e., the ϕi model is

Figure 2 Probability of the noise in the country-level daily SARS-CoV-2 counts being consistent with
a Poisson point process, PPoiss

i , shown as red circles; and probability PKS
i (ϕi) for the ϕi clustering

model proposed here (“Poissonian and f0
i Models: Full Sequences”), shown as green X symbols;

versus Ni, the total number of officially recorded infections for that country. The horizontal axis is
logarithmic. As discussed in the text (“Full Infection Count Sequences”), the Poisson point process is
unrealistic for most of these data, while the ϕi clustering model is consistent with the data for most
countries. Plain-text table: zenodo.4765705/phi N full.dat. Full-size DOI: 10.7717/peerj.11856/fig-2

Roukema (2021), PeerJ, DOI 10.7717/peerj.11856 10/36

https://zenodo.org/record/4765705/files/phi_N_full.dat
http://dx.doi.org/10.7717/peerj.11856/fig-2
http://dx.doi.org/10.7717/peerj.11856
https://peerj.com/


consistent with the data. In contrast, the negative binomial model fNB
i (see “Alternative

Analyses” below), which is super-Poissonian by definition, and cannot model
sub-Poissonian behaviour, yields PKS

i = 0.01 for Algeria. Consistently with this, the
Poissonian model for Algeria gives PPoiss

i = 0.005. The full sequence for Algeria is only fit by
the f0

i model, which allows sub-Poissonian behaviour.
The consistency of the ϕi model with most of the data justifies continuing to Fig. 3,

which clearly shows a scaling relation: countries with greater overall numbers Ni of
infections also tend to have greater noise in the daily counts ni(j). A Theil–Sen linear fit
(Theil, 1950; Sen, 1968) to the relation between log10ϕi and log10Ni has a zeropoint of −1.10
± 0.44 and a slope of 0.48 ± 0.07, where the standard errors (68% confidence intervals
if the distribution is Gaussian) are conservatively generated for both slope and zeropoint
by 100 bootstraps. By using a robust estimator, the low ϕi cases, which appear to be
outliers, have little influence on the fit. The fit is shown as a thick green line in Fig. 3.

This ϕi–Ni relation is consistent with fi /
ffiffiffiffiffi
Ni

p
. To adjust the ϕi clustering value to take

into account the dependence on Ni, and given that the slope is consistent with this simple
relation, we propose an empirical definition of a normalised clustering parameter

wi :¼ fi=
ffiffiffiffiffi
Ni

p
; (6)

so that ψi should, by construction, be approximately constant. While the estimated slope
of the relation could be used rather than this half-integer power relation, the fixed relation
in Eq. (6) offers the benefit of simplicity.

Figure 3 Noisiness in daily SARS-CoV-2 counts, showing the clustering parameter ϕi (“Poissonian
and f0

i Models: Full Sequences”) that best models the noise, versus the total number of counts for that
country Ni. The error bars show standard errors derived from numerical simulations based on the model.
The axes are logarithmic, as indicated. Values of the clustering parameter ϕi below unity indicate
sub-Poissonian behaviour—the counts in these cases are less noisy than expected for Poisson statistics. A
robust (Theil, 1950; Sen, 1968) linear fit of log10 ϕi against log

10 Ni is shown as a thick green line (“Full
Infection Count Sequences”). Plain-text table: zenodo.4765705/phi N full.dat.

Full-size DOI: 10.7717/peerj.11856/fig-3

Roukema (2021), PeerJ, DOI 10.7717/peerj.11856 11/36

https://zenodo.org/record/4765705/files/phi_N_full.dat
http://dx.doi.org/10.7717/peerj.11856/fig-3
http://dx.doi.org/10.7717/peerj.11856
https://peerj.com/


This relation should not be confused with the usual Poisson error. By the divisibility of
the Poisson distribution, the relation fi /

ffiffiffiffiffi
Ni

p
that was found here can be used to show

that

r½bliðjÞ=fi��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibliðjÞ=fi

p

) r½bliðjÞ��fi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibliðjÞ=fi

p
/ N1=4

i bliðjÞ1=2 ; (7)

where σ[x] is the standard deviation of random variable x. If we accept l̂iðjÞ as a fair model
for ni(j) and that ni(j) is proportional to Ni, then we obtain

r½niðjÞ� / n3=4i : (8)

Figure 4 shows visually that ψi appears to be scale-independent, in the sense that the
dependence on Ni has been cancelled, by construction. The countries with the 10 lowest
values of ψi are Algeria, Belarus, Nicaragua, Turkey, Russia, Tajikistan, Croatia, Syria,
Saudi Arabia, and Iran. Detailed SARS-CoV-2 daily count noise characteristics for the
countries with lowest ϕi and ψi are listed in Table 1, including the Kolmogorov–Smirnov
probability that the data are drawn from a Poisson distribution, PPoiss

i , the probability of
the optimal ϕi model, PKS

i , and ϕi and ψi.
The approximate proportionality of ϕi to

ffiffiffiffiffi
Ni

p
for the full sequences is strong and helps

separate low-noise SARS-CoV-2 count countries from those following the main trend.
However, the results for subsequences shown below in “Subsequences of Infection Counts”
suggest that this Ni dependence may be an effect of the typically longer durations of the
pandemic in countries where the overall count is higher.

Figure 4 Normalised noisiness ψi (Eq. (6)) for daily SARS-CoV-2 counts versus total counts Ni. The
error bars are as in Fig. 3, assuming no additional error source contributed by Ni. The axes are loga-
rithmic. Several low ψi values appear to be outliers of the ψi distribution.

Full-size DOI: 10.7717/peerj.11856/fig-4

Roukema (2021), PeerJ, DOI 10.7717/peerj.11856 12/36

http://dx.doi.org/10.7717/peerj.11856/fig-4
http://dx.doi.org/10.7717/peerj.11856
https://peerj.com/


Subsequences of infection counts
Figures 5–7 show the equivalent of Fig. 2 for sequences of lengths 28, 14 and 7 days,
respectively. The Theil–Sen robust fits to the logarithmic ðf28

i ;NiÞ; ðf14
i ;NiÞ; and ðf7

i ;NiÞ
relations are zeropoints and slopes of 0.57 ± 0.43 and 0.06 ± 0.08; 0.52 ± 0.47 and 0.01 ±
0.09 ; and −0.10 ± 0.83 and 0.02 ± 0.13, respectively. There is clearly no significant
dependence of fd

i on Ni for any of these fixed length subsequences, in contrast to the case
of the ϕi dependence on Ni for the full count sequences. Thus, the empirical motivation for
using ψi (Eq. (6)) to discriminate between the countries’ full sequences of SARS-CoV-2
data is not justified from the information gained from the subsequences alone. Tables 2–4
show the countries with the least noisy sequences as determined by f28

i , f14
i and f7

i ,
respectively.

Tables 2 and 3 show that the lists of countries with the strongest anti-clustering are
similar to one another. Thus, Fig. 8 shows the SARS-CoV-2 counts curves for countries
with the lowest f28

i , and Fig. 9 the curves for those with the lowest f7
i . Both figures exclude

countries with total counts Ni ≤ 10000, in which low total counts tend to give low
clustering. It is clear in these figures that several countries have subsequences that are
strongly sub-Poissonian—with some form of anti-clustering, whether natural or artificial.

Table 1 Clustering parameters for the countries with the 10 lowest ϕi and 10 lowest ψi values, i.e. the
least noise; extended version of table: zenodo.4765705/phi_N_full.dat.

Country f0
i Model Alternative analyses

bvi ωi

Ni PPoiss
i PKS

i ϕi ψi PKS
i ϕi PKS

i ωi

Nicaragua 6,046 0.17 0.77 0.30 0.003 0.66 0.30 0.17 0.00

Syria 4,931 0.29 0.92 0.58 0.008 0.92 0.58 0.29 0.00

Tajikistan 13,062 0.17 0.76 0.63 0.005 0.78 0.67 0.16 0.00

Algeria 99,610 0.01 0.17 0.65 0.002 0.13 0.62 0.01 0.00

Belarus 194,284 0.01 0.53 1.70 0.003 0.40 1.57 0.46 0.58

Croatia 210,837 0.27 0.89 3.24 0.007 0.89 3.24 0.70 1.02

Albania 58,316 0.00 0.44 3.27 0.013 0.41 3.27 0.30 1.80

New Zealand 2,164 0.44 0.90 4.32 0.092 0.94 4.32 0.86 1.19

Australia 28,430 0.11 0.90 5.07 0.030 0.90 5.69 0.87 3.55

Thailand 6,884 0.29 0.99 5.37 0.064 0.99 5.37 0.96 3.80

Algeria 99,610 0.01 0.17 0.65 0.002 0.13 0.62 0.01 0.00

Belarus 194,284 0.01 0.53 1.70 0.003 0.40 1.57 0.46 0.58

Nicaragua 6,046 0.17 0.77 0.30 0.003 0.66 0.30 0.17 0.00

Turkey 2,669,568 0.00 0.20 6.46 0.003 0.16 6.09 0.16 5.07

Russia 3,159,297 0.00 0.24 7.24 0.004 0.19 7.08 0.22 6.03

Tajikistan 13,062 0.17 0.76 0.63 0.005 0.78 0.67 0.16 0.00

Croatia 210,837 0.27 0.89 3.24 0.007 0.89 3.24 0.70 1.02

Syria 4,931 0.29 0.92 0.58 0.008 0.92 0.58 0.29 0.00

Saudi Arabia 331,359 0.00 0.91 6.31 0.010 0.84 6.17 0.83 4.90

Iran 1,225,142 0.00 0.82 12.73 0.011 0.58 11.61 0.71 11.35
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Countries in the median of the f28
i and f7

i distributions have their curves shown in
Fig. 6 for comparison. It is visually clear in the figure that the counts are dispersed widely
beyond the Poissonian band, and that the f28

i and f7
i models are reasonable as a model

for representing about 68% of the counts within one standard deviation of the model
values.

Alternative analyses
Figure 11 (left) shows that the logarithmic median model (“Logarithmic Median Model”)
of the counts gives almost identical best estimates to those of the primary model, i.e. wLM

i ≈
ψi, but Table 5 shows very strong evidence favouring the original, arithmetic median
model.

Figure 5 Clustering parameter f28
i for the 28-day sequence of lowest f28

i , as in Fig. 3. The vertical axis
range is expanded from that in Fig. 3, to accommodate lower values. A robust (Theil, 1950; Sen, 1968) linear
fit of f28

i against log10Ni is shown as a thick green line (“Full Infection Count Sequences”). Plain-text table:
zenodo.4765705/phi_N_28days.dat. Full-size DOI: 10.7717/peerj.11856/fig-5

Figure 6 Clustering parameter f14
i for the 14-day sequence of lowest f14

i , as in Fig. 5. plain-text table:
zenodo.4765705/phi_N_14days.dat. Full-size DOI: 10.7717/peerj.11856/fig-6
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Figure 11 (right) shows that the negative binomial model (“Negative Binomial Model”)
roughly gives wNB

i ∼ ψi (i.e. ωi ∼ ϕi), tending to wNB
i < ψi, especially for the least clustered

cases. The error bars are very big for wNB
i for several countries. Table 5 again shows

very strong evidence favouring the original model over the negative binomial model.
Figure 12 shows that the counts grouped (summed) in pairs and triplets (“Does

Anti-Clustering Exist in Grouped Data?”) yield w2d
i and w3d

i with more scatter and
generally larger error bars than that of ψi, and w2d

i and w3d
i are mostly greater than ψi.

Whether the AIC and BIC evidence (Table 5) for 2- and 3-day grouped data can be directly
compared to that of the main analysis depends on whether the grouped data can be
considered to be the same observational data as the original data, modelled with fewer free
parameters. Since the characteristic of study is the noise, not the signal, the validity of this

Figure 7 Clustering parameter f7
i for the 7-day sequence of lowest f

7
i , as in Fig. 5. There are clearly a

wider overall scatter and bigger error bars compared to Figs. 5 and 6; a low f7
i is a noisier indicator than

f28
i and f14

i for individual countries. Plain-text table: zenodo.4765705/phi_N_07days.dat.
Full-size DOI: 10.7717/peerj.11856/fig-7

Table 2 Least noisy 28-day sequences—clustering parameters for the countries with the 10 lowestf28
i

values; extended table: zenodo.4765705/phi_N_28days.dat.

Country Ni n28i
� �

PPoiss
i PKS

i f28
i Starting date

Algeria 99,610 227.6 0.00 0.36 0.05 2020-09-03

Tajikistan 13,062 63.0 0.02 0.96 0.13 2020-06-07

Turkey 2,669,568 1,014.5 0.03 1.00 0.14 2020-06-30

Russia 3,159,297 5,403.8 0.26 0.59 0.20 2020-07-20

Belarus 194,284 921.9 0.14 0.89 0.21 2020-05-08

Albania 58,316 203.8 0.33 0.64 0.23 2020-09-27

United Arab Emirates 207,822 512.8 0.08 0.23 0.23 2020-04-14

Nicaragua 6,046 135.7 0.17 0.77 0.30 2020-07-07

Syria 4,931 70.0 0.19 0.91 0.50 2020-08-15

Saudi Arabia 331,359 1,182.2 0.47 0.54 1.11 2020-04-12
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direct comparison is doubtful. Nevertheless, if the values of the AIC and BIC evidence are
considered literally, then the 2-day grouping would yield a worse model than the model of
the daily data, while the 3-day grouping would yield a better model than that for the
daily data. The comparison of these different analyses could potentially be used to obtain a
deeper understanding of the complex dynamics of this pandemic. The epidemiologically
relevant sociological parameters of countries around the world are highly diverse
(varying in population density, patterns of social contact, tendency to obey or disobey
official health guidelines such as lockdown measures, demographic profiles, quality and
availability of health services, communication patterns, frequency of COVID-19
comorbidity conditions, climate (Afshordi et al., 2020)), so comparison of the clustering
behaviour on these different time scales might help to separate out some of these
contributions.

Table 3 Least noisy 14-day sequences—clustering parameters for the countries with the 10 lowestf14
i

values; extended version of table: zenodo.4765705/phi_N_14days.dat.

Country Ni n14i
� �

PPoiss
i PKS

i f14
i Starting date

Algeria 99,610 285.9 0.12 0.40 0.05 2020-09-01

Nicaragua 6,046 73.6 0.12 0.98 0.08 2020-09-22

Tajikistan 13,062 64.6 0.02 0.99 0.09 2020-06-11

United Arab Emirates 207,822 521.2 0.11 0.56 0.09 2020-04-19

Turkey 2,669,568 971.6 0.12 0.86 0.11 2020-07-08

Belarus 194,284 945.6 0.22 1.00 0.13 2020-05-12

Albania 58,316 143.4 0.21 0.96 0.17 2020-09-01

Russia 3,159,297 5627.0 0.47 0.98 0.20 2020-07-21

Saudi Arabia 331,359 1227.5 0.38 0.96 0.30 2020-04-19

Syria 4,931 76.6 0.42 0.96 0.35 2020-08-14

Table 4 Least noisy 7-day sequences—clustering parameters for the countries with the 10 lowest f7
i

values; extended table: zenodo.4765705/phi_N_07days.dat.

Country Ni n7i
� �

PPoiss
i PKS

i f7
i Starting date

United Arab Emirates 207,822 544.9 0.24 0.99 0.05 2020-04-27

India 10,266,674 10109.3 0.34 0.60 0.05 2020-06-06

Turkey 2,669,568 929.6 0.22 0.93 0.05 2020-07-15

Tajikistan 13,062 51.9 0.16 0.77 0.05 2020-06-28

Albania 58,316 297.7 0.23 0.98 0.05 2020-10-18

Belarus 194,284 947.9 0.60 0.94 0.05 2020-05-13

Algeria 99,610 204.3 0.37 0.49 0.05 2020-10-14

Russia 3,159,297 5076.7 0.36 0.68 0.10 2020-08-09

Ethiopia 124,264 456.7 0.83 0.93 0.13 2020-12-13

Poland 1,294,878 297.7 0.31 0.96 0.16 2020-06-20
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Figure 8 Least noisy 28-day official SARS-CoV-2 national daily counts for countries with total
counts Ni > 10,000 (see Fig. 5 and Table 2), shown as dots in comparison to the bmiðjÞ model
(median of the four neighbouring days) and 68% error band for the Poisson point process. The
ranges in daily counts (vertical axis) are chosen automatically and in most cases do not start at zero.
About nine (32%) of the points should be outside of the shaded band unless the counts have an
anti-clustering effect that weakens Poisson noise. The dates indicate the start date of each sequence. ISO-
3166-1 key: (A) DZ: Algeria; (B) TJ: Tajikistan; (C) TR: Turkey; (D) RU: Russia; (E) BY: Belarus; (F) AL:
Albania. Full-size DOI: 10.7717/peerj.11856/fig-8
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Figure 9 Least noisy 7-day daily counts for countries with total counts Ni > 10,000 (see Fig. 7 and
Table 4), as in Fig. 8. A concentration of points close to the model indicates an anti-clustering effect;
about 68% (five) of the points should scatter up and down throughout the shaded band if the counts are
Poissonian, and about 32% (two) should be outside the band. In several cases, the data points appear to be
mostly stuck to the model, with almost no scatter. ISO-3166-1 key: (A) AE: United Arab Emirates; (B) IN:
India; (C) TR: Turkey; (D) TJ: Tajikistan; (E) AL: Albania; (F) BY: Belarus.

Full-size DOI: 10.7717/peerj.11856/fig-9
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Comparison with the RSF press freedom index
Figures 13–16 show the relation between ϕi and ψi and the RSF Press Freedom Index
(PFI202; “RSF Press Freedom Index”) for the full sequences and subsequences. Table 6
non-parametrically tests for correlations in these relations using the Kendall rank
correlation statistic τ (Kendall, 1938; Kendall, 1970; Croux & Dehon, 2010). The first row of
the table shows that the unnormalised clustering parameter ϕi for the full sequence and
subsequences generally anticorrelates with PFI2020. The strongest case is for 7-day
subsequences, in which case the anticorrelation is significant at Pτ = 0.0108.

The normalised clustering parameter ψi was found to be necessary above (Eq. (6)) to
remove dependence on the total infection scale Ni in the full sequences. The second row of
Table 6 shows that for ψi, the anticorrelation is significant at the Pτ < 0.05 level for the full
sequence (Pτ = 0.0408) and for all the subsequences. However, the analysis of the
subsequence results (“Subsequences of Infection Counts”) only justifies considering ψi as
the preferred parameter for the full sequence, and using f28

i ;f14
i ; and f7

i for the
subsequences. Together, ψi, f

28
i ;f14

i ; and f7
i yield a median significance level of

Pτ = 0.0496 < 0.05 (the significance is stronger in the JHU CSSE data; see the
corresponding table in Appendix A). Thus, there is statistically significant evidence that
the worse the press freedom is in a country (as measured by higher PFI2020), the more
likely it is that the SARS-CoV-2 daily counts are best modelled as sub-Poissonian.

This result is an anticorrelation; it is not proof of a causal relation. Nevertheless, a
simple explanation of the observed relation would be that there is interference in the data
in association with a lack of media freedom.

DISCUSSION
Figures 3–7 vary in the degree to which they separate some groups of countries as being
unusual in terms of the characteristics of their location in the (Ni,ψi) plane. On visual
inspection, Fig. 5, for f28

i , appears to show the sharpest division between the main relation
between clustering and total infection count, in which nine countries appear to have
sub-Poissonian preferred models in a group well-separated from the others. If we interpret
the sub-Poissonian behaviour as a result of interference associated with the lack of media
freedom (high PFI2020, “Comparison with the RSF Press Freedom Index”, Table 6), then
the more significant results are those for f7

i (Fig. 7, Table 4). If interference did occur, then
other public evidence of interference might add credibility to the interpretation. Here,
some possible interpretations are discussed, including some individual low-noise
sequences in Figs. 8 and 9. Some typical sequences (as selected by median f28

i and f7
i ) are

shown for comparison in Fig. 10.
The analysis in this paper makes very few assumptions and does not claim to measure

the full nature of the pandemic. The following interpretations of the numerical results
would benefit from future studies that attempt worldwide models of the underlying
epidemiology of the pandemic. Detailed modelling is usually restricted to a small number
of countries (e.g. Chowdhury et al., 2020; Kim et al., 2020; Molina-Cuevas, 2020; Jiang,
Zhao & Shao, 2021; Afshordi et al., 2020).
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Figure 11 (A) Normalised clustering parameter wLM
i (Eq. (6)) using the logarithmic median model of

the expected full-sequence counts (“Logarithmic Median Model”) versus ψi for the primary analysis.
(B) Normalised clustering wNB

i :¼ xi=
ffiffiffiffiffi
Ni

p
for the negative binomial model (see Eqs. (2), (3)) versus ψi. A

line wLM
i ¼ wi shows and w

NB
i ¼ wi, respectively. The data point for Algeria, with log10wi = −2.69 ± 0.05,

log10w
NB
i = −5.69 ± 0.93, lies below the displayed area in the right-hand panel. Plain-text table: zenodo.

4765705/phi_N_full.dat. Full-size DOI: 10.7717/peerj.11856/fig-11

Figure 10 Typical (median) 28-day (above) and 7-day (below) daily counts, as in Figs. 8 and 9. The
dark shaded band again shows a Poissonian noise model, which underestimates the noise. A faint shaded
band shows the ϕi models for these countries’ SARS-CoV-2 daily counts, and should contain about 68%
of the infection count points. ISO-3166-1 key: (A) PK: Pakistan; (B) RO: Romania; (C) ID: Indonesia; (D)
CA: Canada. Full-size DOI: 10.7717/peerj.11856/fig-10
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Figure 12 Normalised noisiness w2d
i and w3d

i (Eq. (6)) for counts summed in successive pairs (A) and
triplets (B) of days, respectively, versus that for the primary analysis. A line shows w2d

i ¼ wi and
w3d
i ¼ wi, respectively. Plain-text table: zenodo.4765705/phi_N_full.dat.

Full-size DOI: 10.7717/peerj.11856/fig-12

Table 5 Akaike (1974) and Bayesian (Schwarz, 1978) information criteria for the f0
i and alternative

analyses; plain-text version: zenodo.4765705/AIC_BIC_full.dat.

Model f0
i Log. median Neg. binomial 2-Day grouping 3-Day grouping

AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

268.60 848.87 289.91 870.18 377.52 957.79 313.21 878.50 208.49 743.75

Figure 13 Dependence of ϕi (left: A) and ψi (right: B) on the Press Freedom Index (PFI2020) for the
full sequences. The vertical axis ranges in these two panels and through to Fig. 16 differ from one
another. Full-size DOI: 10.7717/peerj.11856/fig-13

Figure 14 Dependence of f28
i (A) and w28

i (B) on PFI2020 for the 28-day subsequences.
Full-size DOI: 10.7717/peerj.11856/fig-14
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High total infection count
While the main question of interest in this paper is whether anti-clustering can be detected,
the results may also indicate characteristics of countries with high clustering values.
The United States, India and Brazil are clearly separated in Figs. 3 and 4 from the majority
of other countries by their high official total infection counts of about 107. They have
correspondingly higher clustering values ϕi, although their normalised clustering values ψi
are in the range of about 0.01 < ψi < 1 covered by the majority of countries in Fig. 4.

It does not seem realistic that the ϕi values greater than 600 for the US and Brazil are
purely an effect of intrinsic infection events—superspreader events in crowded places or
nursing homes. While individual big clusters may occur given the high overall scale of
infections, it seems more likely that there is a strong role played by administrative
clustering. Both countries are federations, and have numerous geographic administrative

Figure 16 Dependence of f7
i (A) and w7

i (B) on PFI2020 for the 7-day subsequences.
Full-size DOI: 10.7717/peerj.11856/fig-16

Figure 15 Dependence of f14
i (A) and w14

i (B) on PFI2020 for the 14-day subsequences.
Full-size DOI: 10.7717/peerj.11856/fig-15

Table 6 Kendall τ statistic and its significance (two-sided) Pτ for the null hypothesis of no
correlation between the ranking of PFI2020 and ϕi or ψi for the full data or subsequences;
plain-text version: zenodo.4765705/pfi_correlations_table.dat.

Parameter Full 28-day 14-day 7-day

τ Pτ τ Pτ τ Pτ τ Pτ

ϕi −0.118 0.131 −0.126 0.108 −0.148 0.0584 −0.200 0.0108

ψi −0.160 0.0408 −0.157 0.0445 −0.176 0.0249 −0.170 0.0300
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subdivisions with a diversity of political and administrative methods. A plausible
explanation for the dominant effect yielding ϕi > 600 in these two countries is that on any
individual day, the arrival and full processing of reports depends on a number of
sub-national administrative regions, each reporting a few hundred new infections.

For example, if there are 100 reporting regions, with typically about 10 of these each
reporting about 600 infections daily, then typically (on about 68% of days) there will be
about 7 to 13 reports per day. This would give a range varying from about 4,200 to 7,800
cases per day, rather than 5,923 to 6,077, which would be the case for unclustered,
Poissonian counts ( since

ffiffiffiffiffiffiffiffiffiffi
6000

p � 77). Lacking a system that obliges sub-national
divisions—and laboratories—to report their test results in time-continuous fashion and
that validates and collates those reports on a time scale much shorter than 24 h, this type of
clustering seems natural in the sociological sense. It is also possible that in these two
large federations, the intrinsic heterogeneity compared to many countries of smaller
populations leads to other noise effects that combine with the administrative effect of
stochasticity in the number of regional reports received as sketched above.

India’s overall position in the (ψi, Ni) plane (Fig. 4 and Table 1) appears quite typical,
with an unnormalised clustering parameter ϕi = 124.45 × 10±0.054. However, Table 4 shows
that despite its large overall infection count, India achieved a 7-day sequence with a
preferred f7

i ¼ 0:05, giving it a place in Table 4 and being easy to identify in the
bottom-right part of Fig. 7. Figure 9 presents this subsequence. Five values appear almost
exactly on the model curve rather than scattering above and below. Moreover, the value is
just below 10,000. Epidemiologically, it is not credible to believe that 10,000 officially
reported cases per day should be an attractor resulting from the pattern of infections
and system of reporting. Given that the value of 10,000 is a round number in the
decimal-based system, a reasonable speculation would be that the daily counts for India
were artificially held at just below 10,000 for several days. The crossing of the 10,000
psychological threshold of daily infections was noted in the media (Porecha, 2020), but
the lack of noise in the counts during the week preceding the crossing of the threshold
appears to have gone unnoticed. After crossing the 10,000 threshold, the daily infections
in India continued increasing, as can be seen in the full counts (zenodo.org/4765705/
WP_C19CCTF_SARSCoV2.dat).

Neither poissonian nor super-poissonian
The negative binomial model fNB

i (“Alternative Analyses”) rejects the possibility of Algeria
having a super-Poissonian noise distribution at PKS

i = 0.01. The Poissonian model for
Algeria is similarly rejected with PPoiss

i = 0.005. However, the ϕi model does model the
Algeria data adequately, with a modest probability of PKS

i = 0.17.
Figure 8 dramatically shows the least noisy 28-day sequence for Algeria. Only two days

of SARS-CoV-2 recorded infections during this period appear to have diverged towards
the edge of the Poissonian 68% band, rather than about nine, the expected number
that should be outside this band for a Poissonian distribution. Almost all of the points
appear to stick extremely closely to the median model. It is difficult to imagine a natural
process for obtaining noise that is this strongly sub-Poissonian, especially in the context
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where most countries have super-Poissonian daily counts. Compartmental epidemic
modelling of the Algerian data, which has been published for the period ending 24 May
2020 (Rouabah, Tounsi & Belaloui, 2021), could be used to try to reconstruct the true daily
counts.

Low normalised clustering ψi or subsequence clustering f28
i ;f14

i or f7
i

Low clustering, high Ni

Turkey and Russia have total infection counts of about 3 million, similar to those of
several other countries, but have managed to keep their daily infection rates much less noisy—
by about a factor of 10 to 100—than would be expected from the general pattern displayed
in the figures. These two countries appear as an isolated pair in the bottom-right of both Figs. 4
and 5, and appear in all four tables of low ψi (Table 1) and low subsequence ϕi (Tables 2–4).
Russia has the very modest value of ϕi = 7.24 × 10±0.067 and Turkey has ϕi = 6.46 × 10±0.057,
despite their large total infection counts. This would require that both intrinsic clustering of
infection events and administrative procedures work much more smoothly in Russia and
Turkey than in other countries with comparable total infection counts. Tables 2 and 3 and
Fig. 8 show that the Russian and Turkish official SARS-CoV-2 counts indeed show very little
noise compared to more typical cases (Fig. 10). There appear to be weekend dips in the
Russian case (see “Weekend Dips in the Counts” below). Since these are included in the
analysis, an exclusion of the weekend dips would lead to an even lower clustering estimate.
At the intrinsic epidemiological level, if the Russian and Turkish counts are to be considered
accurate, then very few clusters—in nursing homes, religious gatherings, bars, restaurants,
schools, shops—can have occurred. Moreover, laboratory testing and transmission of data
through the administrative chain from local levels to the national health agency must have
occurred without the clustering effects that are present in the data for the United States, Brazil,
India, and other countries with high total infection counts Ni > 2 million, for which ϕi is
typically above 100. International media interest in Russian COVID-19 data has mostly
focussed on controversy related to COVID-19 death counts (Cole, 2020), with apparently no
attention given so far to the modestly super-Poissonian nature of the daily counts, in contrast
to the strongly super-Poissonian counts of other countries with high total infection counts.
How did Russia and Turkey achieve low ϕi (super-Poissonian), i.e. low clustering?

Low clustering, medium Ni

Some cases of interest appear among the countries with officially lower total infection
counts. The Belarus (BY) case is present in all four tables (Tables 1–4). The least noisy
Belarusian counts curve appears in Figs. 8 and 9. As with the other panels in the daily
counts figures, the vertical axis is set by the data instead of starting at zero, in order to best
display the information on the noise in the counts. With the vertical axis starting at
zero, the Belarus daily counts would look nearly flat in this figure. They appear to be
bounded above by the round number of 1,000 SARS-CoV-2 infections per day, which,
again, as in the case of India, could appear to be a psychologically preferred barrier. Media
have expressed scepticism of Belarusian COVID-19 related data (Kramer, 2020; AFN,
2020). The Albanian case (Figs. 8 and 9) also could be interpreted as hitting a psychological
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barrier of a decimal round number, an artificial cap of 300 infections per day, in
mid-October 2020.

One remaining case of a coincidence is that the lowest noise 7-day sequence listed for
Poland (Table 4) is for the 7-day period starting 20 June 2020, with f7

i ¼ 0:16� 10�0:13.
This is a factor of about 300 below Poland’s clustering value for the full sequence of its
SARS-CoV-2 daily infection counts, ϕi = 45.71 × 10±0.057, which Fig. 3 shows is typical for
a country with an intermediate total infection count. On 28 June 2020, there was a de facto
(of disputed constitutional validity, Wyrzykowski, 2020; Letowska & Pacewicz, 2020)
first-round presidential election in Poland. Figure 9 shows that the counts for Poland
during the final pre-first-round-election week did not scatter widely throughout the
Poissonian band. A decimal-system round number also appears in this figure: the daily
infection rate is slightly above about 300 infections per day and drops to slightly below
that. This appears to be the same psychological daily infection count attractor as for
Albania. The intrinsic clustering of SARS-CoV-2 infections in Poland together with
testing and administrative clustering of the confirmed cases appear to have temporarily
disappeared just prior to the election date, yielding what is best modelled as an incident of
sub-Poissonian counts.

JHU CSSE data
The JHU CSSE data give mostly similar results to the C19CCTF data. These are presented
and briefly discussed in Appendix A.

Weekend dips in the counts
One sociological contribution to noise not mentioned above is that in several countries,
the official daily counts are lower on or immediately after weekends. Credible factors
include fewer medical and laboratory workers available to carry out tests and fewer
administrators registering, collecting and transmitting data. A dip in the counts on
weekends would tend to add noise to the daily count time series, making the above results
conservative. These dips can be quantified using the one-dimensional discrete fast Fourier
transform (FFT). With the usual FFT convention, we transform ni(j) into fi(j) at j days,
where fi(0) is the mean and a weekly dip should appear as a negative value at fi(7).
We define a weekend dip wi for country i by subtracting the mean of the neighbours
and normalising:

wi :¼ 1þ p
fið7Þ � ½fið6Þ þ fið8Þ�=2

fið0Þ : (9)

This should correspond to a multiplicative factor, i.e., wi = 0.85 means a 15% dip.
Figure 17 shows the distribution of wi (mean ± std. error: 1.001 ± 0.015; std. dev.: 0.137;

median: 0.999; interquartile range: 0.104). Unexpectedly, not only are there several
countries with dips, but there are also several countries with a strong excess signal on the
7-day time scale. There is no reason to expect the overall distribution to be Gaussian.
The Shapiro–Wilk statistic (Shapiro &Wilk, 1965) isW = 0.806, rejecting the possibility of
the distribution being Gaussian to extremely high significance: p = 9.82 10−9. Future work
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in studying the noise characteristics of a pandemic could take into account this weekly
component of daily infection statistics.

Further statistical models: autoregression
A possible extension of the current work would be to iteratively consider an autoregressive
model (e.g., Papoulis & Pillai, 2002, §12-3; Fokianos & Tjøstheim, 2011; Agosto et al., 2021)
for each time series. An initial model such as the one used here, the median of the
preceding and succeeding days, could first be inferred from the sequence. This would
be subtracted from the time series ni(j) to obtain a process that could be assumed as having
a stationary central value and a time-varying noise distribution. An autoregressive
model of the resulting sequence (or its logarithm) could then be modelled by a
time-dependent (j-dependent) Poissonian or negative binomial stochastic term to find
the optimal autoregression coefficients. The resulting coefficients could then be used to
subtract an improved model from the times series and obtain a new iteration of an
autoregression model. Continuing the iteration might lead to convergence on a specific
autoregressive model that is stable against further iteration. In this case, the residual noise
could then be analysed as in the current work. Alternatively, time series analysis of
SARS-CoV-2 counts allowing time-varying trends (Harvey & Kattuman, 2020) could be
carried out prior to analysing the properties of the noise itself, as in this work.

RSF press freedom index
Although the relations in Figs. 13–16 generally show anticorrelations (PFI2020 increases
from 0 to 100 as press freedom decreases, i.e. it could be better described as a lack-of-press-
freedom parameter), there does appear to be a tendency for the countries with the
lowest clustering values to have intermediate PFI2020 ∼ 40. In other words, despite the
overall relation, some countries with the lowest levels of press freedom appear to have
noise in their daily SARS-CoV-2 counts that appears only moderately low or typical.

Figure 17 Histogram of weekly dip wi (Eq. (9)) in national daily SARS-CoV-2 counts. Values below
unity indicate a dip; values above unity indicate a bump. Plain-text full list of wi: zenodo.4765705/phi_N_
full.dat. Full-size DOI: 10.7717/peerj.11856/fig-17
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Mainland China stands out as an exception in all eight panels of these four figures, with
both a high clustering, ϕi = 80.35 in the full sequence case, and a high lack of press freedom,
PFI2020 = 78.48.

While a causal relation, via general processes of media freedom pressuring politicians
and public servants to produce honest data, and vice versa, would provide the simplest
interpretation of the overall correlation found here, other interpretations should be
considered. Indices to measure the much wider concept of democracy tend to suffer from a
lack of clarity in definitions and method (Munck & Verkuilen, 2002), quite likely due to
the nature of democracy as a highly complex phenomenon that is difficult to represent
with a single index. Nevertheless, Balashov, Yan & Zhu (2021) study the relations between
democracy indicators and validity in daily COVID-19 data, using a very different
method to the one introduced in this paper, and point out that democracy, economic and
health system national indicators tend to correlate strongly to one another (see §2 of
Balashov, Yan & Zhu, 2021 for a literature review of relations between democracy and data
manipulation). An alternative interpretation to direct causality could be explored along
these lines. Other lines of analysis would be needed to establish causal relations instead of
statistical correlations.

CONCLUSION
Given the overdispersed, one-parameter Poissonian ϕi model proposed, the noise
characteristics of the daily SARS-CoV-2 infection data suggest that most of the countries’
data form a single family in the (ϕi,Ni) plane. The clustering—whether epidemiological in
origin, or caused by testing or administrative pipelines—tends to be greater for greater
numbers of total infections. Several countries appear, however, to show unusually
anti-clustered (low-noise) daily infection counts.

Since these daily infection counts data constitute data of high epidemiological
interest, the statistical characteristics presented here and the general method could
be used as the basis for further investigation into the data of countries showing
exceptional characteristics. The relations between the most anti-clustered counts and the
psychologically significant decimal system round numbers (India: 10,000 daily, Belarus:
1,000 daily, Albania, Poland: 300 daily), and in relation to a de facto national presidential
election, raise the question of whether or not these are just coincidences. A statistically
significant anticorrelation of the clustering with the Reporters sans frontières Press
Freedom Index was found, i.e., less press freedom was found to correlate with less
clustering, strengthening the credibility of the ϕi clustering model for judging the
validity of daily pandemic data published by national government agencies. The suspicious
periods of data found here are mostly complementary to those studied by Balashov et al.,
since those authors’ Benford’s law analysis mainly focuses on the first-digit Benford’s law
during the exponentially growing phases of the pandemic in any particular country
(Balashov, Yan & Zhu, 2021), while this analysis studies noise in data for the full pandemic
up to 6 May 2021.

It should be straightforward for any reader to extend the analysis in this paper by first
checking its reproducibility with the free-licensed source package provided using the
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Maneage framework (Akhlaghi et al., 2021), and then extending, updating or modifying it
in other appropriate ways; see xCode availability below. Reuse of the data should be
straightforward using the files archived at zenodo.4765705.

APPENDIX A

JHU CSSE DATA
The John Hopkins University Center for Systems Science and Engineering global time
series data was downloaded on 6 May 2021 from https://raw.githubusercontent.com/
CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/
time_series_covid19_confirmed_global.csv, from Git commit 51CB3EE, and analysed using
the same software and parameters as for the C19CCTF data. Tables A1–A4 show the
equivalent of Tables 1–4, respectively. The rankings and ϕi estimates appear mostly similar
between the two datasets, with small differences. One difference is that the low f7

i value for
India shown in Table 4 is absent in Table A4. In other words, while the media stated that
the daily confirmed count in India first went above the 10,000-per-day psychological
threshold on 12 June 2020 (Porecha, 2020), the JHU CSSE data crossed this threshold
earlier, and contains noise that was unknown at that time to the national Indian media and
is absent from the C19CCTF data.

Another difference is that Saudi Arabia, Iran, and the United Arab Emirates have
lowest-noise subsequence dates detected in 2021 in the JHU CSSE Tables A2–A4, while no
country has lowest-noise subsequences in 2021 in the C19CCTF data (Tables 2–4).
The relative strengths of the AIC and BIC evidence in Table A5 are similar to those in
Table 5, even though the values change.

Table A6 shows that the JHU CSSE data generally find somewhat stronger
anticorrelations between the clustering parameters and PFI2020 compared to Table 6.

SOFTWARE ACKNOWLEDGEMENTS
This research was partly done using the following free-licensed software packages: Boost
1.73.0, Bzip2 1.0.6, cURL 7.71.1, Dash 0.5.10.2, Discoteq flock 0.2.3, Eigen 3.3.7, Expat
2.2.9, File 5.39, Fontconfig 2.13.1, FreeType 2.10.2, Git 2.28.0, GNU Autoconf 2.69.200-
babc, GNU Automake 1.16.2, GNU AWK 5.1.0, GNU Bash 5.0.18, GNU Binutils 2.35,
GNU Compiler Collection (GCC) 10.2.0, GNU Coreutils 8.32, GNU Diffutils 3.7, GNU
Findutils 4.7.0, GNU gettext 0.21, GNU gperf 3.1, GNU Grep 3.4, GNU Gzip 1.10, GNU
Integer Set Library 0.18, GNU libiconv 1.16, GNU Libtool 2.4.6, GNU libunistring 0.9.10,
GNU M4 1.4.18-patched, GNU Make 4.3, GNU Multiple Precision Arithmetic Library
6.2.0, GNU Multiple Precision Complex library, GNU Multiple Precision Floating-Point
Reliably 4.0.2, GNU Nano 5.2, GNU NCURSES 6.2, GNU Patch 2.7.6, GNU Readline 8.0,
GNU Sed 4.8, GNU Tar 1.32, GNU Texinfo 6.7, GNU Wget 1.20.3, GNU Which 2.21,
GPL Ghostscript 9.52, ImageMagick 7.0.8-67, Less 563, Libbsd 0.10.0, Libffi 3.2.1, libICE
1.0.10, Libidn 1.36, Libjpeg v9b, Libpaper 1.1.28, Libpng 1.6.37, libpthread-stubs (Xorg)
0.4, libSM 1.2.3, Libtiff 4.0.10, libXau (Xorg) 1.0.9, libxcb (Xorg) 1.14, libXdmcp (Xorg)
1.1.3, libXext 1.3.4, Libxml2 2.9.9, libXt 1.2.0, Lzip 1.22-rc2, Metastore (forked) 1.1.2-
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23-fa9170b, OpenBLAS 0.3.10, Open MPI 4.0.4, OpenSSL 1.1.1a, PatchELF 0.10, Perl
5.32.0, pkg-config 0.29.2, Python 3.8.5, Unzip 6.0, util-Linux 2.35, util-macros (Xorg)
1.19.2, X11 library 1.6.9, XCB-proto (Xorg) 1.14, xorgproto 2020.1, xtrans (Xorg) 1.4.0, XZ
Utils 5.2.5, Zip 3.0 and Zlib 1.2.11. Python packages used include: Cycler 0.10.0,
Cython 0.29.21 (Behnel et al., 2011), Kiwisolver 1.0.1, Matplotlib 3.3.0 (Hunter, 2007),
Numpy 1.19.1 (Van der Walt, Colbert & Varoquaux, 2011), pybind11 2.5.0, PyParsing
2.3.1, python-dateutil 2.8.0, Scipy 1.5.2 (Oliphant, 2007; Millman & Aivazis, 2011),
Setuptools 41.6.0, Setuptools-scm 3.3.3 and Six 1.12.0. LaTeX packages for creating the pdf
version of the paper included: algorithmicx 15878 (revision), algorithms 0.1, biber 2.16,
biblatex 3.16, bitset 1.3, booktabs 1.61803398, breakurl 1.40, caption 56771 (revision),
changepage 1.0c, courier 35058 (revision), csquotes 5.2l, datetime 2.60, dblfloatfix 1.0a, ec
1.0, enumitem 3.9, epstopdf 2.28, eso-pic 3.0a, etoolbox 2.5k, fancyhdr 4.0.1, float 1.3d,
fmtcount 3.07, fontaxes 1.0e, footmisc 5.5b, fp 2.1d, kastrup 15878 (revision), lastpage
1.2m, latexpand 1.6, letltxmacro 1.6, lineno 4.41, listings 1.8d, logreq 1.0, microtype 2.8c,
multirow 2.8, mweights 53520 (revision), newtx 1.642, pdfescape 1.15, pdftexcmds 0.33,
pgf 3.1.8b, pgfplots 1.17, preprint 2011, setspace 6.7a, soul 2.4, sttools 2.1, subfig 1.3, tex

Table A1 As in Table 1, for the JHU CSSE data: clustering parameters for the countries with the 10
lowest ϕi and 10 lowest ψi values, i.e., the least noise; extended version of table: zenodo.4765705/phi_
N_full_jhu.dat

Country f0
i Model Alternative analyses

bvi ωi

Ni PPoiss
i PKS

i ϕi ψi PKS
i ϕi PKS

i ωi

Syria 23,121 0.48 0.94 0.72 0.004 0.94 0.72 0.48 0.00

Algeria 123,272 0.04 0.19 0.98 0.002 0.20 1.00 0.04 0.00

Croatia 339,412 0.27 0.89 3.24 0.005 0.89 3.24 0.70 1.02

Saudi Arabia 422,316 0.00 0.83 3.67 0.005 0.66 3.55 0.62 2.43

New Zealand 2,637 0.10 0.88 3.85 0.074 0.89 4.68 0.90 3.63

Albania 131,419 0.00 0.16 4.90 0.013 0.17 4.90 0.09 3.76

Thailand 74,921 0.29 0.99 5.37 0.019 0.99 5.37 0.96 3.80

Denmark 257,182 0.00 0.97 5.56 0.010 0.99 5.56 0.91 5.50

Iceland 6,498 0.33 1.00 5.96 0.073 0.99 5.96 0.95 4.27

Greece 352,027 0.03 0.98 6.53 0.011 0.92 5.43 0.67 5.50

Algeria 123,272 0.04 0.19 0.98 0.002 0.20 1.00 0.04 0.00

Russia 4,792,354 0.00 0.31 10.12 0.004 0.26 9.44 0.26 8.81

Syria 23,121 0.48 0.94 0.72 0.004 0.94 0.72 0.48 0.00

Croatia 339,412 0.27 0.89 3.24 0.005 0.89 3.24 0.70 1.02

Saudi Arabia 422,316 0.00 0.83 3.67 0.005 0.66 3.55 0.62 2.43

Iran 2,591,609 0.00 0.33 11.61 0.007 0.17 10.00 0.25 9.66

Turkey 4,955,594 0.00 0.02 19.95 0.008 0.01 19.27 0.01 16.98

Denmark 257,182 0.00 0.97 5.56 0.010 0.99 5.56 0.91 5.50

Hungary 785,967 0.02 0.99 9.23 0.010 0.98 14.29 0.91 7.00

Belarus 363,732 0.00 0.01 6.92 0.011 0.01 6.46 0.01 5.13
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3.141592653, texgyre 2.501, times 35058 (revision), titlesec 2.13, trimspaces 1.1, txfonts
15878 (revision), ulem 53365 (revision), varwidth 0.92, wrapfig 3.6, xcolor 2.12, xkeyval 2.8
and xstring 1.83.

DATA AVAILABILITY
As described above in “SARS-CoV-2 Infection Data”, the source of curated SARS-CoV-2
infection count data used for the main analysis in this paper is the C19CCTF data,
downloaded using the script download-wikipedia-SARS-CoV-2-charts.sh and stored in
the file Wikipedia_SARSCoV2_charts.dat in the reproducibility package available at
zenodo.4765705. The data file is archived at zenodo.4765705 /WP C19CCTF SARSCoV2.
The WHO data that was compared with the C19CCTF data via a jump analysis (Fig. 1)
was downloaded from https://covid19.who.int/WHO-COVID-19-global-data.csv and
archived on 6 May 2021 at https://web.archive.org/web/20210506113321/https://covid19.
who.int/WHO-COVID-19-global-data.csv.

Table A2 As in Table 2, for the JHU CSSE data: least noisy 28-day sequences—clustering parameters
for the countries with the 10 lowest fi values; extended table: zenodo.4765705/phi_N_28days_jhu.
dat.

Country Ni wi PPoiss
i PKS

i f28
i Starting date

Algeria 123,272 338.2 0.02 0.72 0.05 2020-08-18

Turkey 4,955,594 1,014.5 0.03 1.00 0.14 2020-06-30

United Arab Emirates 529,220 2,884.9 0.01 0.07 0.15 2020-12-30

Belarus 363,732 921.9 0.14 0.89 0.21 2020-05-08

Albania 131,419 203.8 0.33 0.64 0.23 2020-09-27

Russia 4,792,354 5,414.0 0.36 0.85 0.24 2020-07-19

Saudi Arabia 422,316 332.5 0.54 0.78 0.43 2021-02-01

Syria 23,121 70.0 0.19 0.91 0.50 2020-08-15

Iran 2,591,609 6,594.5 0.14 0.41 1.51 2021-01-15

Georgia 315,913 384.4 0.79 0.99 1.66 2020-09-17

Table A3 As in Table 3, for the JHU CSSE data: least noisy 14-day sequences—clustering parameters
for the countries with the 10 lowest f14

i values; extended version of table: zenodo.4765705/phi_N_
14days_jhu.dat.

Country Ni n14i
� �

PPoiss
i PKS

i f14
i Starting date

United Arab Emirates 529,220 3384.1 0.07 0.35 0.05 2021-01-11

Algeria 123,272 336.4 0.06 0.80 0.05 2020-08-26

Turkey 4,955,594 971.6 0.12 0.86 0.11 2020-07-08

Belarus 363,732 945.6 0.22 1.00 0.13 2020-05-12

Albania 131,419 143.4 0.16 0.92 0.15 2020-09-01

Saudi Arabia 422,316 337.7 0.32 0.79 0.20 2021-02-08

Russia 4,792,354 5165.5 0.47 0.51 0.28 2020-08-01

Syria 23,121 76.6 0.42 0.96 0.35 2020-08-14

Poland 2,811,951 299.9 0.55 0.68 0.53 2020-06-17

Kenya 161,393 126.2 0.54 0.91 0.57 2020-06-03
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CODE AVAILABILITY
In addition to the SARS-CoV-2 infection count data for this paper, the full downloading of
complementary data, calculations, production of figures, tables and values quoted in
the text of the pdf version of the paper are intended to be fully reproducible on any
POSIX-compatible system using free-licensed software, which, by definition, the user may
modify, redistribute, and redistribute in modified form. The reproducibility framework
is technically a git branch of the Maneage package (Akhlaghi et al., 2021) (https://maneage.
org), earlier used to produce reproducible papers (Infante-Sainz, Trujillo & Roman, 2020).
The git repository commit ID of this version of this paper is subpoisson-f72cb84.
The primary (live) git repository is https://codeberg.org/boud/subpoisson, archived at

Table A4 As for Table 4, for the JHU CSSE data: least noisy 7-day sequences—clustering parameters
for the countries with the 10 lowest f14

i values; extended table: zenodo.4765705/phi_N_07days_jhu.
dat.

Country Ni n14i
� �

PPoiss
i PKS

i f7
i Starting date

United Arab Emirates 529,220 544.9 0.24 0.99 0.05 2020-04-27

Turkey 4,955,594 929.6 0.22 0.93 0.05 2020-07-15

Albania 131,419 297.7 0.23 0.98 0.05 2020-10-18

Belarus 363,732 947.9 0.60 0.94 0.05 2020-05-13

Algeria 123,272 204.3 0.37 0.49 0.05 2020-10-14

Russia 4,792,354 5,035.0 0.38 0.75 0.10 2020-08-09

Poland 2,811,951 297.0 0.51 0.99 0.10 2020-06-20

Saudi Arabia 422,316 175.6 0.52 0.99 0.15 2021-01-13

Syria 23,121 82.3 0.21 0.97 0.17 2020-08-14

Panama 365,975 171.1 0.82 0.96 0.17 2020-05-09

Table A6 As for Table 6, Kendall τ statistic and its significance (two-sided) Pτ for the null hypothesis
of no correlation between the ranking of PFI2020 and ϕi or ψi for the full data or subsequences, for the
JHU CSSE data; plain-text version: zenodo.4765705/pfi_correlations_table_jhu.dat.

Parameter Full 28-day 14-day 7-day

τ Pτ τ Pτ τ Pτ τ Pτ

ϕi −0.124 0.105 −0.158 0.0400 −0.175 0.0230 −0.232 0.00254

ψi −0.165 0.0318 −0.162 0.0346 −0.163 0.0339 −0.194 0.0112

Table A5 As for Table 5, Akaike (1974) and Bayesian (Schwarz, 1978) information criteria for the f0
i

and alternative analyses for the JHU CSSE data; plain-text version: zenodo.4765705/AIC_BIC_full_
jhu.dat.

Model f0
i Log. median Neg. binomial 2-Day grouping 3-Day grouping

AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

376.18 994.94 401.69 1,020.44 498.00 1116.75 421.96 1,032.94 239.83 811.89
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swh:1:rev:789e651c0fb23b2585555c08de1b44d9e25cfb6d. The full reproducibility
package is archived at zenodo.4765705. Bug reports and discussion are welcome at
https://codeberg.org/boud/subpoisson/issues.
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Data Availability
The following information was supplied regarding data availability:

The source of curated SARS-CoV-2 infection count data used for the main analysis in
this article is the C19CCTF data, available using the script download-wikipedia-SARS-
CoV-2-charts.sh and stored in the file Wikipedia SARSCoV2 charts.dat in the
reproducibility package available at https://zenodo.org/record/4765705.

The data file is archived at https://zenodo.org/record/4765705/files/WP_C19CCTF_
SARSCoV2.dat.

The WHO data that was compared with the C19CCTF data via a jump analysis (Fig. 1)
was downloaded from https://covid19.who.int/WHO-COVID-19-global-data.csv and
archived on 6 May 2021 at https://web.archive.org/web/20210506113321/https://covid19.
who.int/WHO-COVID-19-global-data.csv.
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The complementary data, calculations, production of figures, tables and values are
intended to be fully reproducible on any POSIX-compatible system using free-licensed
software.

The reproducibility framework is technically a GIT branch of the MANEAGE package
(https://maneage.org; Akhlaghi et al., 2021), earlier used to produce reproducible papers
(Infante-Sainz, Trujillo & Roman, 2020).

The GIT repository commit ID of this version of this article is subpoisson-f72cb84.
The primary (live) GIT repository (https://codeberg.org/boud/subpoisson) is archived at
https://archive.softwareheritage.org/browse/revision/789e651c0fb23b2585555c08de1b4
4d9e25cfb6d.

The full reproducibility package is archived at Zenodo: Roukema, Boudewijn F. (2021).
Anti-clustering in the national SARS-CoV-2 daily infection counts (Version 72242ca).
Peerj, in press. DOI 10.5281/zenodo.4765705.

Bug reports and discussion are welcome at https://codeberg.org/boud/subpoisson/
issues.
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